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SUR LES QUADRATURES MECANIQUES

PAR

J. Favarp, Paris

1. — La wvariété surabondante des formules de quadratures
mécaniques incite a les enseigner a partir d’une modeste théorie.
Dans les lignes qui suivent, je donne le schéma de ’exposé que
j’ai adopté dans mon cours de 1’Ecole polytechnique, car un
exposé détaillé serait fastidieux pour le public de ce journal.

2. — Par similitude on peut toujours se ramener au cas ou il
s’agit d’évaluer l'intégrale d’une fonction f (z) définie dans le
segment [0, 1], et dont nous supposerons qu’elle admet des
dérivées bornées au moins jusqu’a l'ordre employé dans les
formules.

Pour valeur approchée de 'intégrale

1
(2,1) [ 1@ dz,
0

on prend la somme:
R

(2,2) 2 mif(gi) )

1

ou les &; sont des nombres donnés tels que
0<E < <. < £k<1

et ou les m;, également donnés, sont des coefficients que nous
supposerons choisis de facon que la somme (2, 2) coincide avec
Pintégrale (2, 1) lorsque f(z) est une fonction linéaire, ce qui
donne:

R

~ " 1
(2a3) E mi = 1 5 }/_1 mi C—’l — 6 .

1 -
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Pour étudier I’erreur commise en remplacant 'intégrale (2, 1)
par la somme (2, 2), considérons la fonction:

1

(2a4) E1 (CE) - T — '2_ )

pour 0 <z <1, B;(0) =DB,(1) =0

et périodique de période 1 (figure 1). Pour £ donné, on a:

- 1
(2,5) |Bile — 8 dz = [ B, :
0 0
Fig. 1
puis:
1 . 1
[raBie—gd =g —10)(g—8) —[fd+ 1.
0 0
Posant & présent:
R
(2,6) —Bl () = Z m; E1 (33 — Ez) )
1

1l vient:

1 . ,
ST @) By de = 17 (1) — £(0)) D) m, (%_ ;.) _
0

soit, d’apres (2,3):

1 kR
(2,7) ./ flz)dz = _\_] m’jf(gi) —/ f () B, () dz .
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De (2, 5) et (2, 6) on déduit:
1
[Bi(z)dz =0
0

par suite, les primitives de la fonction périodique El (x) sont pério-
diques; appelons alors Ez (x) celle dont la valeur moyenne est
nulle, Ez (x) aura & son tour une primitive périodique & valeur
moyenne nulle, et ainsi de suite; ﬁn (x) sera définie par:-

dB,_(z) —
n
T =N B, (2),

(2,8) En () de = 0 (n > 1) .

To—

Comme B; () =z —% est le polynome de Bernoulli de degré

un, on voit par (2, 6) qu'on a:

kR
En (z) = Z my En (x o Ei)
1

ou B, () désigne la fonction périodique de période 1, continue
pour n > 1, et égale au polynéme de Bernoulli B, (z), de degré n,
pour 0 << z < 1, les polynomes de Bernouilli étant définis par
la relation de récurrence

o

B, () =nB _, (2), n=1,2,3,...,

avec

Posons alors:
_ _ k _ kR
B, =B (0) =B (1) = zmi B, (— &) = EmiBn (1 —E;)
1 1

des intégrations par parties successives donnent:

(2,9)
R

1
S de = Simif (&) — 20 (1) — (0] + B0 () — 1 (0] +
0

1

B, g =
(= B[ ) — o0 )] ¢ ST L0 () B (o)
0
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Cette formule est souvent employée avec la variante suivante:
on rassemble les deux derniers termes du second membre et on
écrit:

1 R
297 [fllde = Smif(E) — 20 1) — £ O] + o +
0 1

B _on\n !
e D (1) — 0 (0] R [ ) [B, (@) — B, ]do
0

la valeur abhsolue de I'erreur commise ne dépasse pas:

M, |

— /By (a) — B, | da
0

lorsque 1: | f* ()| < M,, et cette borne est atteinte pour:
f™ (@) = M, sgn[B, () —B,].
Une autre variante consiste a déterminer, quand on le peut,

1
la constante A, de facon que: [ |B, (x)-—Anl dx, soit mini-
0

mum, et on écrit:

1 3 ,
. —1 n-1 e
Off(:c) dz = ;mi}‘(gi) + ...+ %n——)T)—I(B"_ A) [fD (1) —
1
(2,97 — 0]+ D [ ) (B, () — 4,7 o,
0
la valeur absolue de ’erreur commise ne dépasse pas:

%!/.I—Bn(x)——*Anldx
0

Ce procédé a été employé pour des besoins théoriques, dans le
cas de la méthode des trapézes (voir ci-dessous) 2

1 Dans le cas des fonctions tabulées supposant que: B, = ... = Bpg = 0 on se
contente d’évaluer M, & partir des différences d’ordre n des valeurs données de la
fonction.

2 Une évaluation grossiére donne: lB (x)l n! et, par suite:

[Bn (x) [ < (Z [ m, ]) !, et, en particulier: l B, l ()3 I m; l)n'
1

donc, en posant: f (x) = e*® dans (2,9’), on peut faire croitre n indéfiniment et il vient,
aprés une transformation immeédiate:

1 5 723 1 B By ,a
ez_i'%miei=?+mz+' (~1)” 2+ ..

la série du second membre étant convergente, au moins pour ]z l < 1, et cette relation
permet de calculer les B, de proche en proche.
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Nous allons examiner quelques cas particuliers.

3. — Pour mémoire, rappelons que, dans le cas de la méthode

des trapézes (k=2, £ =0, & =1, m; = my, = %), comme

B, () = En (), d’ot B, = B,, on profite du fait que tous les
B, sont nuls pour n impair plus grand que 1, et on écrit:

g & B
L/ f(z) dz = I_(OJ_%'M _ Y‘ B ;1591 []c(Qp—i) (1) — f(2p~1) (0)] +
0 b=

1

O (2) [By,y g (@) — Bo,ie]de

o
~~

1
T e E
0

mais: B,,,, () — By,., & toujours le signe de (— 1), et le
théoréme de la moyenne appliqué au reste donne:

1
1 * (22
m/ f( n+ )(x) [Byio () — BQn+2] dr —

(2n+2) =
J— n+2 2 9

2 n 4+ 2 | [ 2n+2 on+2)dx = — mf( n+ )(i)

(0< &<1).

Comme E2n+2 () a un seul extremum pour 0 < z < 1,

atteint pour z = 1. on voit facilement que le minimum de

27

| | Bonsg (@) — Aq,.o | dz, est réalisé pour:
0

L 1 3 B2n+2 1
A2n+2 - B'Zn—&? (Z) = B2n+2 (Z) - 92n+2 [1 T 2‘2,n+1]

et ce minimum vaut:

Il vient alors:

1
1 n+?
m {f(g ) (.2?) [BQ’n-}-Q (x) - BQ?’H—?] dr —

0
1
B2n+2 —‘ B2n+2 ( )

——ma e ) — 0] + R
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avec:

& M, 1
IR| < m‘32n+%<z>[ ’

or, lorsque n augmente indéfiniment, le rapport:

2n + 3)! + 3) 2n+3 l IB2n+2|
(2n 4+ 2)

tend en croissant vers —E (< —?:); cette nouvelle limitation est donc

intéressante.
4. — Quant & la méthode de Simpson, on a:
1 1 4
k=3; & =0, Zz———g, & = 1, m1:m3=€, mzzg

de sorte que 1—3,1 (), que nous désignerons dans ce cas particulier
par S, (), vaut:

et, pour S_n (0) = gn (1) =S, a partirde B, (1 e (1 — 57%) B,,
il vient:
B 1
Les S, d’indice impair sont nuls, les premiéres valeurs sont
1 >
Sg =0 s S-l = m 3 Se == — m .

Ci-dessous (fig. 2) on a dessiné les courbes _Sn () 0 <z <1,
pour n = 1, 2, 3; de la forme de §3 (x) suit que, pour n > 3,
le dessin des §n (x) est le méme que celui des gn (), & une symeé-
trie prés par rapport & Ox; en particulier: [§2n (x) — S,,,] ne
change pas de signe dans Pintervalle (0, 1), pour n > 2, et on
peut donc procéder a une amélioration analogue a celle donnée
ci-dessus, en introduisant:

1
B —
Son+2 (z) = Bonie (7;) et Sonig (z) =——3
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1A
( n + 3 2n+3 l/ [Sanl
2n + 2)

2
tend encore vers —.

1

T3

: 1

: 5,

1 i S,(x]
z

04 /\ - 500

!
2

Le rapport

1
O~ (e

Wi

0 ; 5,

Nt~

;=7g. 2

5. — Pour qu’une méthode de quadrature soit sans reste pour
les polyndémes de degré inférieur a n, il faut et il suffit que:
B, =0, pour p = 2, ..., n— 1; la méthode de Gauss consiste,
pour k donné, & annuler tous les B, jusqu’a I'ordre (2k — 1);
les &, sont alors, comme on sait, les zéros du polyndéme de
Legendre de degré k, polyndme défini & un facteur pres, par:
dk

ot @ —1)*]

dx

et on a: 0 < §; < &, < ... < § < 1. Pour évaluer l'erreur,
remarquons que la fonction El (z) a, au plus, (2k — 1) change-
ments de signe dans (0, 1), en comptant parrm les changements
de signe les points & ou B (& —0) et B (¢ + 0) n’ont pas
le méme signe (figure 3, £ = 2). D’autre part, d’apres (2, 8), et
en tenant compte du fait que tous les B, sont nuls jusqu’a
n=2k—1, on a:

L’Enseignement mathém., t. III, fasc. 4. 3
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— x__
B, (z) =n[B,, (d (n<2k—1),
0

les fonctions En (x) étant continues pour » > 1, un dessin gros-
sier est facile & tracer; en particulier on voit que ﬁz () présente
au plus (2k — 2) changements de signe, que B, (z) en a, au plus,

3 §1M

1 Byx)

1 By

Fig.3

(2k — 3), et ainsi de suite jusqu’a EQh-i (x) qui présente au plus
un changement de signe dans (0,1), mais en a nécessairement un
puisque sa valeur moyenne est nulle 3; ﬁ?k—i (z) a donc un dessin
analogue a celui de ]—3_2}‘%_1 (), & une symétrie prés par rapport a
Ocz. Il s’ensuit que, pour n > 2k — 1, les dessins des En (x) sont
analogues 4 ceux des Ign (x) (toujours a une symétrie pres par

rapport & Oz); en particulier: [ﬁ% () — B,, ] garde un signe
constant; par (2, 9’), on a done:

1 k 1
ff (2) dw = D\ m;f(E;) + ﬁﬁfﬂ?h) (z) [ By, (z) — By,)de
0 1 0

Lerreur de la formule de quadrature de Gauss est donc, en
supposant f*® (z) continue:

3 Ce raisonnement peut étre généralisé lorsque, comme c’est le cas le plus fréquent,
les m; sont tous positifs.




SUR LES QUADRATURES MECANIQUES 271

) (g £ (g)
f(gk)(!) .[[BQR(SU)——-B%]dx = —WBQh 0 < E<1).
0

La quantité Bék se calcule facilement en prenant pour f(x)
le polynéme [Q, (z)]?, de degré 2k, qui s’annule aux points &,
et on trouve:

B _ 1 [(k.)Z]A
T 2k 1) L(2K)!
Les nombres suivants, Bo,.o, Bo,.,, ... qui sont rationnels,

peuvent se calculer de proche en proche, mais la formule générale
donnant B,,., est déja fort compliquée, il n’y a pas intérét a
Pécrire dans le cas général.

Par contre, pour k = 1, tenant compte de la valeur de

B, (%), on a:

[fieae = j(5) + 5150 W — 7 0] +

n-1
P (1= ) UV W D 0

HSHE o ) -

Par combinaison de cette formule avec celle des trapézes,
on en tire la formule de Simpson; pour p donné quelconque,
on peut aussi, par combinaison, annuler le terme en By ; la
formule qui consiste & annuler B, m’a été signalée par M. J. Ka-

ramata.

+

6. — Il y a bien des moyens de varier les formules de quadra-
ture (2, 9 et 9'); c’est ainsi que G. KowaLEwskI dans son livre
(Interpolation und gendherte Quadratur, Berlin-Leipzig, 1932),
considérant un ensemble donné { &, } et posant:

Pl .
— ' g — — i
m, _.6/ P (5= dz, P(z) = 111 (x — &),
de sorte que la formule soit sans reste pour les polynémes de
degré inférieur & k%, trouve:
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B, () = (@ — 1) + & 2 m; (x — 51)}%_1 .

1
E_i>x

Partant de la formule (2,7), on peut aussi ajouter a ﬁl (x)
une constante, puls intégrer par parties en introduisant d’autres
primitives que les B, (x), ce qui revient & ajouter a ﬁn () un
polyndme quelconque P, () de degré inférieur & n, et nous
avons la formule:

1 k
(6,1) f}‘ (x) de = Zmif(ii) el ann—n @[ (1) — £(0)] —
0 1
B x) 1 B .
— (35« Py R (2w )1 @) ot

B
b e (B2 p ) e o

1 1 R
=1t [ @) (5",2—(,90—) + Py (w>> dz.
0

Cette variante a été utilisée de bien des facons, la plus connue
est la variante permettant I’obtenir la formule de Taylor; une
autre due a4 Petr 4, est obtenue a partir de la formule des trapézes,
lorsque n = 2p est un nombre pair; son calcul revient & poser:

ng (z)
(2p)!

aP (x — 1)P
(2p)!

+ P2) =

Les dérivées d’ordre p, p + 1, ..., (2p — 1) ne figurent pas dans
le second membre de (6,1). Quant aux dérivées d’ordre ¢ < p,
elles figurent sous la forme

AP [ (0) + (— 1)7f@ (1)]

N <

ol A7 est un nombre facile & calculer; l'erreur est:

PP (E)  (pl)2
]

= e T e 01

A vpartir de la formule de Gauss, avec k= 1, comme
. By, (z) = B,, (x — 1), en posant:

‘ 4 K. PETR (5asopis, t. 44, 1915, pp.4b4-55); G. N. WATSON (5asopis, t. 65, 1935,
- pp. 1-7); G. Riccr (Annali di Mat., IV, t. 15, 1936-37, pp. 187-196). Je dois ces indi-
cations bibliographiques 4 M. J. Karamata.
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lng(x) xp(x—npl 2 ng@x)_mx)p(zx—-m}
Pl =|gnT~ @p! | |32 @p) 2]

on obtiendra une formule analogue & celle de Petr qui, par
combinaison avec la précédente, permettra d’en obtenir une
autre ayant la formule de Simpson pour point de départ.

Une autre variante consiste & itérer le procédé qui a conduit
a la formule (2,9) en écrivant:

1 R {
f’ (’I) S f’ (O) — f]u/ (x) dx = E m; f” (52) — % ffl\‘ (J/) dx + ...
0 1 v I

il vient alors:

et on continue en évaluant de la méme facon j ' () de.
0

Dans le cas de la formule des trapézes, par exemple, cela
revient & ’addition du polynéme d’Euler E, (z) tel que:

2 2™

E (2) + E (z + 1) =

nl

Pour la formule de Gauss, aveec &k = 1, il s’agit alors seule-
ment de P'addition de deux séries de Taylor.

7. — Plus généralement, on peut se proposer d’approcher des
intégrales de la forme:

1
[ f()dg
0

ou ¢ est une fonction & variation bornée, par des expressions de
R

la forme: Z m; f (&;); appelant alors % (z) la fonction a variation
1

bornée constante partout, sauf aux points £, ol elle présente

un saut m;, une intégration par parties donne, en supposant la
formule sans reste pour les constantes:




274 J. FAVARD

1 k 1
[ 1la)dg = Dimif (&) — [ 1 (@) (g (2) — h()]da
0 1 0

et on peut alors continuer le développement comme ci-dessus °.
En calcul numérique, on est conduit & de telles considérations
lorsqu’il s’agit de l’application, aux panneaux de téte ou de
queue, d’une formule de quadrature & une fonction tabulée:
on fait alors intervenir des valeurs &, extérieures & I'intervalle
d’intégration.
Voyons un seul exemple, relatif & la formule de Simpson;
1

changeant les notations, pour calculer [ f(z)dx, nous ferons
0

intervenir f (2) en remplacant f (x) par le polynome d’interpola-
tion, du second degré, prenant les mémes valeurs que f (z) pour
x = 0,1, 2. On voit facilement qu'on a alors:

1 2

[ 1) ae = 2LELESFR=IE _ fo )7 o) a0

0 0

avec:

S
= <o 1
x 19 pour O r <

Posant ensuite (figure 4):

2
%——~%:r pour 0 <z <1
CPz(x>: 1 ’
—E(x—Q) pour 1 <z < 2
3
%~%x2 pour 0 <z <1
CPs(x): 1
l—ﬂ(x—m2 pour 1 <z <2
il vient:
1 | 2
5 0 ~+8 1 - 2 ’ 777
[0 ae = SHEEEFOD T [, 0y ) e
b 0

5 M. S. ALianéié a montré que ce développement est, en général, divergent (Sur
une formule sommatoire généralisée, Publications de U’ Institut math. de U”Acad. serbe
t. 2, 1948, pp. 263-269).
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2

Comme ¢;z) < 0, et que: j o5 () do = — ;—4, Perreur de la

0
formule de quadrature est de la forme: f QS), lorsque f

1244

est

2 o
L 1

Fig.4

continue (0 < & < 2). On peut aussi retrancher de ¢4 sa valeur
moyenne (mais alors les dérivées secondes de f, en O et 2, inter-
viennent) et continuer le développement comme précédemment.
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