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SUR LES QUADRATURES MÉCANIQUES

PAR

J. Fayard, Paris

1. — La variété surabondante des formules de quadratures
mécaniques incite à les enseigner à partir d'une modeste théorie.
Dans les lignes qui suivent, je donne le schéma de l'exposé que
j'ai adopté dans mon cours de l'Ecole polytechnique, car un
exposé détaillé serait fastidieux pour le public de ce journal.

2. — Par similitude on peut toujours se ramener au cas où il
s'agit d'évaluer l'intégrale d'une fonction / {x) définie dans le

segment [0, 1], et dont nous supposerons qu'elle admet des

dérivées bornées au moins jusqu'à l'ordre employé dans les

formules.
Pour valeur approchée de l'intégrale

î
(2,1) J f {x) dx

0 -
1

on prend la somme:
h

<2>2>

1

où les ^ sont des nombres donnés tels que

0 < ^ < 52 < < < 1

et où les également donnés, sont des coefficients que nous
supposerons choisis de façon que la somme (2, 2) coïncide avec
l'intégrale (2, 1) lorsque / (x) est une fonction linéaire, ce qui
donne:

(2,3) 2 mi1 "i F
1 1
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Pour étudier l'erreur commise en remplaçant l'intégrale (2, 1)

par la somme (2, 2), considérons la fonction:

(2.4) Bx (x) x — ~ pour 0 < x < 1 B± (0) Bx (1) — .0

et périodique de période 1 (figure 1). Pour E, donné, on a:

1
__

1

_
(2.5) J Bx (x — 5) dx J B1 (x) dx — 0

0 0 •

2 /
' 0 \ / ]/

puis :

î

Fig. 1

J f (x) B, (x-5) dx[ f(1)- / (0)] (i - ç) -J / dx + / (Ç)

0

Posant à présent:

(2,6)

il vient:

î

Bi (x) V miBx (x —
1

i=1/f (x) B, (x) dx [/ (1) - / (0)1 V m. (I - Çi) -
1 fe

~ (2 + 2 w»a^)
i=l

soit, d'après (2,3):

(2,7) J f(x)dx V /«, f(Çj)—/' (x) B, (x) dx
i=\
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De (2, 5) et (2, 6) on déduit:

î _J (x) dx 0

0

par suite, les primitives de la fonction périodique Bx (x) sont

périodiques; appelons alors B2(x) celle dont la valeur moyenne est

nulle, B2 (x) aura à son tour une primitive périodique à valeur

moyenne nulle, et ainsi de suite; Bn (x) sera définie par:

dB (x) _ p_
<2'8) —dx— n Bn~1 ^ 7 J Bn ^ dx ° (* > 1) "

0 •

/[
Comme Bx (x) — x — — est le polynome de Bernoulli de degré

un, on voit par (2, 6) qu'on a:

k

Sn M E mi(x~ 5j)
1

où Bn (x) désigne la fonction périodique de période 1, continue
pour n > 1, et égale au polynôme de Bernoulli Bn (x), de degré 72,

pour 0 < x < 1, les polynômes de Bernouilli étant définis par
la relation de récurrence

B'n {x) n Bn_{ (x) n 1, 2, 3,

avec
î

B0 (x) 1 et J Bn (t) dt 0, n 1, 2, 3,
0

Posons alors:

B„ Bn (0) B„ (1) y m. B„ (- Ç,) £ ^ Bn (1 -Çj)
1 1

des intégrations par parties successives donnent:

(2,9)

^ ^
B

J f (x) dxy «i/ (Çj) — 2-f [/' (1) — /' (0)] + (1) — (0)] +
Q 1

B
1

+ ^A (1) ~ /<n_1> (0)] + ffM {X) 5n (*) ^ •

o
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Cette formule est souvent employée avec la variante suivante :

on rassemble les deux derniers termes du second membre et on
écrit :

(2,9') J'f (x) dx2 m4/ (5;) - (1) - f (0)] + +
0 1

n
1

+ (-^ - f(n~2) (°)1 + Ut~ /'<n) <"> [Bn (*) - «»]
0

la valeur absolue de l'erreur commise ne dépasse pas:
î

J | Bn N — ßn\dx
M„

1

n
0

lorsque1: | fn {x) | < Mn, et cette borne est atteinte pour:
O Mnsgw[Bn (x) — BJ.
Une autre variante consiste à déterminer, quand on le peut,

i _la constante An de façon que : J | Bn (#) — An | dx, soit mini-
o

mum, et on écrit:
1 b

(— I)«""1fi(x) dxy m.f(5j)+ + L _>
t (Bn - An) [/<"-" (1) -

0 1

1

(2,9") — /(n_1> (0)] + ^ y /(n) (n) [Bn (x) — An] dx

0

la valeur absolue de l'erreur commise ne dépasse pas:

M« n-i-^J\Bn(x)-An\dx
0

Ce procédé a été employé pour des besoins théoriques, dans le

cas de la méthode des trapèzes (voir ci-dessous) 2.

1 Dans le cas des fonctions tabulées supposant que: B2 ~ Bn.\ 0 on se

contente d'évaluer Mn à partir des différences d'ordre n des valeurs données de la
fonction. _

2 Une évaluation grossière donne: I B (x) I < ni et, par suite:

Bn M < ^2 | w-i et, en particulier: | Bn | < (f Kl)«!
donc, en posant: / (x) ezx dans (2,9'), on peut faire croître n indéfiniment et il vient,
après une transformation immédiate:

e* _ li* z 2 ni
la série du second membre étant convergente, au moins pour | z | < 1, et cette relation
permet de calculer les Bn de proche en proche.
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Nous allons examiner quelques cas particuliers.

3. — Pour mémoire, rappelons que, dans le cas de la méthode

des trapèzes (k — 2, 0, — 1, mx — m2 — comme

(x) ~ (x)i d'où Bn — Bn, on profite du fait que tous les

Bn sont nuls pour n impair plus grand que 1, et on écrit:

ff [x)dx V %[/(-;.-1) _ (0)] +
S p=i[ n '

1

(3-1) +
(2re + 2)! //(2n+2) (*) [®2n+2 (*) - B2n+2] ^

0

mais: B2n+2 (x) — B2n+2 a toujours le signe de (— l)n+1, et le
théorème de la moyenne appliqué au reste donne:

î

________ j j{ n 0 ^ [B2n+2 (x) B2n+2] dx

0

Crft/ <B>«« w - '<M I«

(0 < Ç < 1)

Comme B2n+2 (x) a un seul extremum pour 0 < a; < 1,

atteint pour x —, on voit facilement que le minimum de
i
J | ^2n+2 (x) — ^2n+2 I ^xi es^ réalisé pour :

0

Ao^rO B0_0 (—"J B,__ _ ®2n+2 |

2n+2 ^2n+2 { 4 j J32n+2 ^ 4 J — 92n+2

et ce minimum vaut:
4

B0

^2n+l

2 n + 3

Il vient alors:
1

2n+3 \ 4

(2 n + 2) J ^ } ^ p2n+2 M B2n+2] dx ~
0

Bo^.o Bn2n+2 2n+2 "4

_____ [/<2n+1) (i) _ ^Zn+l) (0)] + R
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avec:
4 M

I R I <- B
1

'2n+3(2 n + 3)

or, lorsque n augmente indéfiniment, le rapport:
4

(2 n+ 3)

(2 n+ 2)

2 2tend en croissant vers — (< cette nouvelle limitation est donc
7T o

intéressante.

4. — Quant à la méthode de Simpson, on a:

1 14k 3 ; 0 Ç2 — Ç3 1 ; ra3 — m2 —

de sorte que Bn (#), que nous désignerons dans ce cas particulier
par Sn (x), vaut:

§n (*) 1 [bb (*) + 4Bn(* - i) + Bn (* - 1)]

i[Bn(,) + 2Bn(,-i
et, pour Sn (0) Sn (1) Sn, à partir de B„ (1) — (l —^ B„
il vient:

B^ / iSn -fp-^j ">V Sira0

Les Sn d'indice impair sont nuls, les premières valeurs sont:

s- «< s'-s< s- "Ar
Ci-dessous (fig. 2) on a dessiné les courbes Sn (x) 0 < x < 1,

pour n 1, 2, 3; de la forme de S3 (#) suit que, pour n > 3,

le dessin des Sn (x) est le même que celui des Bn (x), à une symétrie

près par rapport à Ox; en particulier: [S2n (x) — S2n] ne

change pas de signe dans l'intervalle (0, 1), pour n > 2, et on

peut donc procéder à une amélioration analogue à celle donnée

ci-dessus, en introduisant:
B0

S2n+2 (4") — B2n+2 4
et S2n+3 \ 4

1\ « /1\ 2n+3 4
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Le rapport
4 m /

IS,

269

(2 n + 3) 2 7i+3 1

2n+2 |

(2n + 2)

tend encore vers —
7T

S, M

Fig. 2

5. — Pour qu'une méthode de quadrature soit sans reste pour
les polynômes de degré inférieur à n, il faut et il suffit que:
Bp — 0, pour p 2, n— 1; la méthode de Gauss consiste,

pour k donné, à annuler tous les Bp jusqu'à l'ordre (2k — 1);
les ^ sont alors, comme on sait, les zéros du polynôme de

Legendre de degré k, polynôme défini à un facteur près, par:

Qk H ~[^xh 'x ~ ^ '

et on a: 0 < ^ < Ç2 < < < 1. Pour évaluer l'erreur,
remarquons que la fonction Bx (x) a, au plus, (2k — 1) changements

de signe dans (0, 1), en comptant parmi les changements
de signe les points ^ où Bx — 0) et Bx (£. + 0) n'ont pas
le même signe (figure 3, k 2). D'autre part, d'après (2, 8), et
en tenant compte du fait que tous les Bn sont nuls jusqu'à
n 2k — 1, on a:

L'Enseignement rnathém., t. III, fasc. 4. 3
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—
X _

Bn W *= n J Bn-1 W dt {n < 2k ~ 1)
0

les fonctions Bn(x) étant continues pour n > 1, un dessin grossier

est facile à tracer; en particulier on voit que B2(x) présente
au plus (2k — 2) changements de signe, que B3 (x) en a, au plus,

(2k — 3), et ainsi de suite jusqu'à B^^ (x) qui présente au plus
un changement de signe dans (0,1), mais en a nécessairement un

puisque sa valeur moyenne est nulle3; B2ft_4 (x) a donc un dessin

analogue à celui de B2k_{ (x), à une symétrie près par rapport à

Ox. Il s'ensuit que, pour n > 2k — 1, les dessins des Bn (x) sont

analogues à ceux des Bn (x) (toujours à une symétrie près par
rapport à Ox); en particulier: [B2fe (x) — B2ft] garde un signe
constant; par (2, 9'), on a donc:

1 h 1

[/ (x) dx2 f(50+ ^ f/(2ft) [Bffl - B2k]dx
*0 1 0

L'erreur de la formule de quadrature de Gauss est donc, en

supposant f2k)(x) continue:

3 Ce raisonnement peut être généralisé lorsque, comme c'est le cas le plus fréquent,
les m{ sont tous positifs.
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0

La quantité B2fe se calcule facilement en prenant pour / (x)

le polynôme [Qft (#)]2, de degré 2k, qui s'annule aux points
et on trouve:

r i rt*-')2]2
M ~~ (2* + 1) [(2 k) !j

Les nombres suivants, B2fe+2, B2ft+4î qui sont rationnels,

peuvent se calculer de proche en proche, mais la formule générale

donnant B2Ä+2 est déjà fort compliquée, il n'y a pas intérêt à

Técrire dans le cas général.
Par contre, pour k 1, tenant compte de la valeur de

ona:
1

J'f(x)dx=/(!) + Y [/'(!)-/' (0)] +
0

+ £Ayî B« (' - ^Î) t'w> «> ~ f"n («il +

0

Par combinaison de cette formule avec celle des trapèzes,
on en tire la formule de Simpson; pour p donné quelconque,
on peut aussi, par combinaison, annuler le terme en B2p; la
formule qui consiste à annuler B4 m'a été signalée par M. J. Ka-
ramata.

6. — Il y a bien des moyens de varier les formules de quadrature

(2, 9 et 9'); c'est ainsi que G. Kowalewski dans son livre
(Interpolation und genäherte Quadratur, Berlin-Leipzig, 1932)r
considérant un ensemble donné { ^ } et posant:

î

J P' (ïj) (XÇ;)
dx ' II k) '

de sorte que la formule soit sans reste pour les polynômes de

degré inférieur à k, trouve:
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(x) t= (x — i)k -f k 2 mi (x —
Zi>x

Partant de la formule (2,7), on peut aussi ajouter à (x)
une constante, puis intégrer par parties en introduisant d'autres

primitives que les Bn (x), ce qui revient à ajouter à Bn (x) un
polynôme quelconque Pn (x) de degré inférieur à w, et nous
avons la formule:

î k

(6,1) J / (x)dx2 f(^)+ (s) [/ (1) - (0)] -
+

0

1

_ + p^_2^ ^ ^
+ ^(*) + p^_3) ^

+ (_ + Pn (s))/^1'(X)
o

+ (- 1)" //<»> H + Pn (*))*:.
0

Cette variante a été utilisée de bien des façons, la plus connue
est la variante permettant l'obtenir la formule de Taylor; une
autre due à Petr 4, est obtenue à partir de la formule des trapèzes,
lorsque n — 2p est un nombre pair; son calcul revient à poser:

B2p M
p [\_a? — lp

(2p)!+^W (2p>!

Les dérivées d'ordre p, p + 1, (2 — 1) ne figurent pas dans
le second membre de (6,1). Quant aux dérivées d'ordre q < p,
elles figurent sous la forme

A»[/W(0) + (-1 )«/<« (1)]

fac

1lP/(2p)(0 (P Q3
1 l>

(2 p) I 1)!

où A" est un nombre facile à calculer; l'erreur est:

A partir de la formule de Gauss, avec 1, comme

B2p (x) B2p x— 1), en posant:

4 K. Petr (Casopis, t. 44, 1915, pp.454-55); G-. N. Watson (Casopis, t. 65, 1935,

pp. 1-7); G-. Ricci (Annali di Mat., IV, t. 15, 1936-37, pp. 187-196). Je dois ces
indications bibliographiques à M. J. Karamata.
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|B2p(s) xv — l)p|
F{X] ~ l (2p)\ (2 p)\ I

_2_ B2p <2 *) (2 (2 a — 1)?

^ (2 p) (2 p)

on obtiendra une formule analogue à celle de Petr qui, par
combinaison avec la précédente, permettra d en obtenir une

autre ayant la formule de Simpson pour point de départ.
Une autre variante consiste à itérer le procédé qui a conduit

à la formule (2,9) en écrivant:

il vient alors:

1 h

f f (x)dx 2 — h
2 I

1

im, ne,l-fïj
1 " * J

0

~ h

1
° 1 J

0

•) dx +

i

+ (fî ~ (T^) J/IY (x) dx +
0

1

et on continue en évaluant de la même façon J /'" {x) dx.
o

Dans le cas de la formule des trapèzes, par exemple, cela

revient à l'addition du polynôme d'Euler E?l (;r) tel que:

K M + En (* + 1) ^ '

Pour la formule de Gauss, avec k 1, il s'agit alors seulement

de l'addition de deux séries de Taylor.

7. — Plus généralement, on peut se proposer d'approcher des

intégrales de la forme:
i
J / (z) dg
0

où g est une fonction à variation bornée, par des expressions de
k

la forme: 2 appelant alors h(x) la fonction à variation
i

bornée constante partout, sauf aux points %i oû elle présente
un saut une intégration par parties donne, en supposant la
formule sans reste pour les constantes:
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1 k 1

J f (x)dg 2 f i^i) ~ J f W W ~~ A ^
0 1 0

et on peut alors continuer le développement comme ci-dessus 5.

En calcul numérique, on est conduit à de telles considérations
lorsqu'il s'agit de l'application, aux panneaux de tête ou de

queue, d'une formule de quadrature à une fonction tabulée:
on fait alors intervenir des valeurs ^ extérieures à l'intervalle
d'intégration.

Voyons un seul exemple, relatif à la formule de Simpson;
î

changeant les notations, pour calculer J f (x) dx, nous ferons
o

intervenir / (2) en remplaçant / (x) par le polynôme d'interpolation,

du second degré, prenant les mêmes valeurs que f (x) pour
x — 0, 1, 2. On voit facilement qu'on a alors:

ft M dx 5/(0) + 8/(1) -/(2)
12 -f 91 M /' M dx

avec:

Pi M
# — — pour 0 < x < 1

— T7T pour 1 < x < 2
12

Posant ensuite (figure 4):

5

2
<?2 M

12
x pour 0 < x < 1

93 (x)

— — (x — 2) pour 1 < x

x3 5
n— 7T7 x pour 0 < X <

6 24

—
24

— 2)2 Pour 1

il vient:

j, w «,« _ wr w

5 M. S. Aljancic a montré que ce développement est, en général, divergent (Sur
une formule sommatoire généralisée, Publications de l'Institut math, de l'Acad. serbe

t. 2, 1948, pp. 263-269).
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2

Gomme <p3x)< 0, et que: f <p3 (x) dx — l'erreur de la
0

////f E)

formule de quadrature est de la forme:
24 lorsque /"' est

7

o

5;
12

?2m

Fig. 4

continue (0 < Ç < 2). On peut aussi retrancher de cp3 sa valeur

moyenne (mais alors les dérivées secondes de /, en 0 et 2,

interviennent) et continuer le développement comme précédemment.
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