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234 ‘ W. FELLER

of the sequence we can speak of changes of sign only at the
places j < 2n — 2.

Tueorem 3. Let ¢, o, denote the probability that there exist
exactly r indices j such that

(5.1) Si4 S <0, 1<j<2n—1.
Then
1 2n —1

19:2) “ran = a2 (n —1 — r) '

Proof. Let us say that two sequences Sy, ..., S and S, ...,
S,, are similar if | S;| = |S; | for j =1, 2, ..., m. Obviously
— S, — Sgy «.., — Sy, represents the only sequence similar to
S1, --+y So,, and such that changes of sign occur at the same places.

On the other hand, if exactly £ among the terms S;, ..., Sy,
vanish, there exist exactly 2**! sequences similar to the sequence
Syy -y Sg.. Out of k places we may choose r places in (%) diffe-
rent ways, and it is therefore seen that

n-1 i
—(k+1
(5.3) Crom = 2 (,) 2 2, one
h=r
n-1 .
—_ 22’)1-‘2 L1\ p n—1 )
kR=r

A well-known formula for binomial coefficients 3 which can be
proved by induction now shows that (5.2) is true.

In (5.2) we recognize the binomial distribution and we have
the obvious.

COROLLARY:

(5.4) €o,2n = C1,2n = %220 = - = Cng,2n

6. THE EXPECTATIONS.

"THEOREM 4. Let Z,, and C,, denote, respectively, the number
of zeros and the number of changes of sign among the terms Sy, ...,

3 See, for example, formula (9.11) of Chapter 2 of the book quoted above.
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S,. .. For the expectations of these random variables we have

and thus
1]
£y 1
(6.2) 2B (Gop) = B (Zgp) (;) (2n)*  as n—> o .

(These formulas shows that the density of the zeros and of
changes of sign decreses at a fast rate.)

Proof. Define new random variables by Y; = 1 if X; = 0,
and Y, = 01f X; # 0. Then

2n—1

n-1
(6.3) 2B (Cop) = B (Zg,) = >, E(Yy) = Dty -
j=1 r=1

and (6.1) follows by induction.

7. LATER RETURNS TO THE ORIGIN.

As a further application of the present elementary approach
let us prove an important formula half of which has been proved
by rather involved analytical methods 4.

Turorem 5. Let f, 5, denote the probability that the k-th
return to the origin takes place at the 2n-th step (that s, f, 5, is
the probability that Sy, = 0 and exactly r — 1 among the S; with
1 <j< 2n vanish). Then

2k ron — k k
(7.1) froan = Fn,on = Fat,on = 2_2—7{( n > 2n — k

Proof. 1t 1s clear that f, ,, = f,,, and that the f, 5, satisfy
the recurrence relation (4.9) and hence also (4.11). If we define
fo,on = 0 for n 1 and f; = 1, then (7.1) is true for & = 0,1
and therefore for all & > 0.

Recu le 17 mai 1957.

4 See, for example, ibid., formula (6.15) of Chapter 12.
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