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SYMMETRIC RANDOM WALK

Comparing (4.5) and (4.7) we see that
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(4.8) 2l,2n U2n — *0,2n for n > 1

In like manner we can calculate z2j 2n, h, 2m -• from the recursion

formula

which is proved exactly as (4.5). For k > 2 the right side

differs from the right side in (4.5) only in that the term r n

is absent, and therefore

(4.10) zk,2n ~ *1,2ti hn 2*1,2ti ~~ *0,2n-2 ' n —
1 *

From the last two relations we see directly by induction that
for k >2 and n > i we have the recursion formula

t4*11) zk,2n 2 zk-\, 2n zh-2,2n-2

If we write zk)2n — 2k~2n ak^2n then (4.11) reduces to

(4-42) afe-l,27i ~ ak,2n + ak-2, 2n-2

which is the well-known addition relation for binomial
coefficients, and thus (4.2) holds.

This theorem has the following surprising

Corollary. For each n > I we have

(4-13) *0,271 *1,277 > *2,277 > *3,277 > •" > *77,277

Thus, independently of the number n of steps, the most probable
number of zeros is 0, and the smaller the number, the more
probable it is.

k > 2, n > 1

5. The numrer of changes of sign.

We say that in the sequence Sx,..., S2n a change of sign occurs
at the place / if and S?+1 are of opposite signs. This requires
that Sj 0, and so / must be even. Given the first 2n terms
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of the sequence we can speak of changes of sign only at the
places j <2n — 2.

Theorem 3. Let cr 2n denote the probability that there exist
exactly r indices j such that

(5.1) SH Sj+1 <0, 1 < j < 2n — 1.

Then

v
1 / 2» — 1 \

<5'2) °r,2n — 22n-2 _ 1 — r) '

Proof. Let us say that two sequences Slt Sm and S^,

are similar if j S3- | | S3- | for / 1, 2, m. Obviously
— S1? — S2, — S2n represents the only sequence similar to
St, S2n and such that changes of sign occur at the same places.
On the other hand, if exactly k among the terms S2, S2n_2

vanish, there exist exactly 2fe+1 sequences similar to the sequence
S2n. Out of k places we may choose r places in (*) different

ways, and it is therefore seen that

(5-3) cr.2n 2 2 (r) 2 (;?+1)
Zk,2n-2

h=r X

1 y (k\ (2n — 2 — k\- 22n-2 2j [r [ n __ 1 j '

h=r

A well-known formula for binomial coefficients 3 which can be

proved by induction now shows that (5.2) is true.
In (5.2) we recognize the binomial distribution and we have

the obvious.

Corollary:
(5-4) c0,2n > cl,2n > c2,2n > > cn-i,2n '

6. The expectations.

Theorem 4. Let Z2n and C2n denote, respectively, the number

of zeros and the number of changes of sign among the terms Sx,

3 See, for example, formula (9.11) of Chapter 2 of the book quoted above.
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