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232 W. FELLER

4. The number of zeros.

Theorem 2. For n > 1 let zk n
be the probability that

exactly k among the n partial sums Sl7 Sn vanish. For n 0

put

(4.1) 20j0 l
Then

(4'2> \Zn ~ ,2
2 n — k

2 zn y n

Proof. By definition

(4.3) zQ^n p2n — u2n (n > 0)

To evaluate ^ 2n denote by Br the event that among the

partial sums Sx, S2n exactly one vanishes and its index
equals 2r. Then for r < n

Br { B1 ^ 05 S2M ^ 0, S2r 0, S2r+1 7^ 0, S2n #0 }

{Si ^ o,..., s2r_i o, s2r — o} n {s2r>+1 s,v o,s2n s2r7^o}.

Since the two events on the right are stochastically independent
and the Br are mutually exclusive we conclude that

n n
(4'5) zi, 2n ~ 2 P 2 hrz0,Qn-2r * -

7" — 1 r=l

Now by Theorem 1 the last event on the right in (4.4) has the
same probability as the event { S2n — S2r 0 } and hence we
have for r < n

(4.6) P { Br } - P { Si ^ 0, S2M 0, S2r 0, S2n « 0 } •

The events appearing on the right side are mutually exclusive
and their union is the event { S2n 0 } ; hence

n
(4.7) E P { Br } P { S2n 0 } «2n
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Comparing (4.5) and (4.7) we see that
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(4.8) 2l,2n U2n — *0,2n for n > 1

In like manner we can calculate z2j 2n, h, 2m -• from the recursion

formula

which is proved exactly as (4.5). For k > 2 the right side

differs from the right side in (4.5) only in that the term r n

is absent, and therefore

(4.10) zk,2n ~ *1,2ti hn 2*1,2ti ~~ *0,2n-2 ' n —
1 *

From the last two relations we see directly by induction that
for k >2 and n > i we have the recursion formula

t4*11) zk,2n 2 zk-\, 2n zh-2,2n-2

If we write zk)2n — 2k~2n ak^2n then (4.11) reduces to

(4-42) afe-l,27i ~ ak,2n + ak-2, 2n-2

which is the well-known addition relation for binomial
coefficients, and thus (4.2) holds.

This theorem has the following surprising

Corollary. For each n > I we have

(4-13) *0,271 *1,277 > *2,277 > *3,277 > •" > *77,277

Thus, independently of the number n of steps, the most probable
number of zeros is 0, and the smaller the number, the more
probable it is.

k > 2, n > 1

5. The numrer of changes of sign.

We say that in the sequence Sx,..., S2n a change of sign occurs
at the place / if and S?+1 are of opposite signs. This requires
that Sj 0, and so / must be even. Given the first 2n terms
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