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THE NUMBERS OF ZEROS AND OF CHANGES OF SIGN
IN A SYMMETRIC RANDOM WALK*

BY

William FELLER, Princeton University

1. INTRODUCTION.

After a very long period of oblivion, the theory of the sym-
metric random walk once more attracts widespread attention.
Curious and totally unexpected fluctuation phenomena have been
discovered and described in the arc sine law and other equally
preposterous theorems®. As E. Sparre Andersen has shown 2,
these laws apply to an exceedingly large class of chance processes
and they have completely revolutionized our notions concerning
chance fluctuations when cumulative effects are involved.

Most of these newly discovered theorems are related to the
consecutive returns to the origin. The present paper has the
modest purpose of deriving explicit formulas for the probability
distributions of the number of returns to the origin, the number of
changes of sign, etc. during the first n steps of a symmetric
random walk in one dimension. The limiting form of these
distributions as n —> oo are known, and therefore no special
mmportance can be ascribed to the knowledge of the explicit
formulas. However, they are pleasing and surprisingly simple.

* This research was done while the author was on sabbatical leave of absence with
the support of the United States Air Force through the Air Force Office of Scientific
Research and Development Command under Contract No. AF18 (603)-24 with
Princeton University.

1 See, for example, An Introduction to Probability Theory and its Applications by
William FELLER, New York, 1950, Chapter 12. A more exhaustive treatment will be
contained in Chapter III of the second edition of this book.

2 On the fluctuations of sums of random variables I and 1I, Mathematica Scandi-
navica, vol. 1 (1953), pp. 263-285 and vol. 2 (1954), pp. 195-223.
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Furthermore, the derivation is of a quite elementary nature and
therefore of some independent interest. In fact, we shall start
from the simple combinatorial formula (2.4) and from it derive
all results by a direct procedure without presupposing any
knowledge concerning random walks and without using any
analytical tools.

2. PREPARATIONS.

Let X;, X,, ... denote an infinite sequence of mutually
independent random variables each assuming the values + 1

with probabilitY% . Put
(21) S, = 1, S, =X, + X, + .. + X, (n > 1)

Then S, is to be interpreted as the coordinate, at time n (or
after n steps), in a one-dimensional symmetric random walk
starting from the origin. A return to the origin occurs at time n
if S, = 0. Obviously » must be even. For the probability of
such a return we write

(2.2) w, =P{8, =0}, uy = 1
Clearly

1 /2
(2.3) on = o7 (n”) : T

All our considerations will depend on the following simple
and well known LeEMMA:

n
(2.4) :E] Uor Uop—gr = 1.
r=0

Proof. We introduce the generating function
0 0 1 . _'L
(2.5)  Ufs) = D) g, s = > (‘" ”2“) s = (1 —s2) 2 .
n=0 n=0 n
It is then clear that the left side on (2.4) equals the coefficient
of s in U2(s) = (1 — s?)!, and thus (2.4) is true.
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