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226 G. POITOU

on définit une solution de (10) égale & 1 pour x = 0, définie sur

I'intervalle | — %, - %), de partie réelle positive; de plus, elle
reste continue si I’on pose e (— %) = — et e<%> = L.

Prolongeons la définition de e () & R en posant e (z 4 =)
= — ¢ (r): on voit aussitdt que e (x) est continue sur R; elle est
dérivable, avec dérivée vérifiant (10), sauf peut-8tre aux points

(k + 5) =, k étant entier. Il est aisé de se défaire de cette restric-

/

tion, en raisonnant, par exemple, comme suit:

La fonction ez -+ %} — e (x) est nulle, par exemple pour

r = — = donc étant solution de (10) pour — = < z < 0, elle
4 - 2 !

est nulle sur cet intervalle, donc aussi, par le prolongement, pour

tout r non multiple entier de =; done, étant continue, elle est
identiquement nulle; et, comme e(x + %) est dérivable pour

, 1 ‘
r= k- —9—):, e(x) Pest aussi, avec la valeur correcte de la
dérivée.

On a donc prouvé les théoremes 3 et 4.

Remarque. — De tg% = 1, on déduit

T /'1 du
4_'0 1+ u?’

d’ou T'on déduit immédiatement 2 < = < 4, et facilement
~ =31 ..

Autre remarque. — Soit r = u + tv un nombre complexe
quelconque, la fonction exponentielle solution de (7) n’est autre
que €™ ™, qu'on posera égal a e™; ceci définit, en faisant
r = 1, ¢ pour r complexe de facon compatible avec ce qui
précede, avec (1) et avec le développement en série.
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~ La fonction de variable complexe

1

1
— z2 — 73
il (15)
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est partout définie et vérifie I'identité différentielle

de* = é*dz (16)
Théoréme. — Pour que les nombres complexes z et y, ce dernier
non nul, vérifient y = ¢, il faut et il suffit qu’il existe un
chemin ¢ d’origine 1, d’extrémité y, évitant 0, tel que
d -
[5= (17)
Démonstration. — « I1 suffit »:

Soit u = g (t) la fonction de ¢(0 < ¢ < 1) définissant le
chemin ¢; g est supposée non nulle, continue, et par morceaux
continfiment dérivable, avec g (0) = 1 et g (1) = y; par hypo-
thése, on a

du g ()
/C’i[*./ g

D’apres (16), on a
f () g(t)=71()g (1)

donc le rapport f (t)/g (t) est constant par morceaux, donc cons-
tant par continuité, donc égal a 1 puisque f (0) = g (0) = 1; de
sorte qu'on a pour t = 1

y =g(1) =f(1) = ¢€° c.q.f.d.
« Il faut »:
Pour tout = a + b, 1l existe un chemin ¢ tel que (17);
en effet, définissons ¢ comme composé d’un chemin ¢’ sur ’axe
réel et d’'un chemin ¢"’ sur un cercle centré en 0; le choix de ¢’

pour que f ‘—i—: = @ est possible puisque l’intégrale /d—; est
“c

divergente en 0 et & l'infini; d’autre part, si on parameétre un
cercle centré & I'origine, privé de son point négatif, par

1 — ¢2 2% ... . 1+
— —_— — ? A : _—
X—R1 z SE_—R1 s c’est-a-dire X—I—LY_R1 -
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on a, sur ce cercle
*du .2 dt
[ =2
u 1+ 2

4+ : ;
1 4 2 . . < 4z
f Zz = est un nombre fini non nul, noté =, et I'intégrale

. . . du r
sur le cercle entier vaut 2ir; le choix de ¢’’ pour que f — = b
t cll
est donc toujours possible.

D’apreés «il suffit », extrémité y du chemin ¢ tel que (17)
est e*.

Remarque. — Le chemin ainsi défini n’a pour extrémité 1
que si x est multiple entier de 2iw; donc ces nombres sont les
seuls tels que e = 1.

Autre remarque. — Si
> du du du
/ — =, —_— =Y, on a [ -_ = X + Yy,
t c u € d u L] C+exd u

et le chemin ¢ + ¢*d a pour extrémité e* eV, donc on a (1).

Regu le 13 mars 1957.
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