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226 G. POITOU

on définit une solution de (10) égale à 1 pour x 0, définie sur
l'intervalle — ~), de partie réelle positive; de plus, elle

reste continue si l'on pose e ^— ^) — i et e i-

Prolongeons la définition de e (x) à R en posant e (x + tu)

— e (x): on voit aussitôt que e (x) est continue sur R; elle est
dérivable, avec dérivée vérifiant (10), sauf peut-être aux points
/ i -

k ~ k étant entier. Il est aisé de se défaire de cette restriction,

en raisonnant, par exemple, comme suit:
La fonction e x + — ie (x) est nulle, par exemple pour

x — donc étant solution de (10) pour —L. < x < 0, elle

est nulle sur cet intervalle, donc aussi, par le prolongement, pour
tout x non multiple entier de L-

; donc, étant continue, elle est

identiquement nulle; et, comme e(x + ^) est dérivable pour

x (k 4- 4)"? e anssi, avec la valeur correcte de la

dérivée.
On a donc prouvé les théorèmes 3 et 4.

Remarque. — De tg ~ 1, on déduit

- du
T =30 1 +

d'où l'on déduit immédiatement 2 < - < 4, et facilement
TT 3,1

Autre remarque. — Soit r u -j- iv un nombre complexe
quelconque, la fonction exponentielle solution de (7) n'est autre

que eux elvx. qu'on posera égal à eTX\ ceci définit, en faisant
x — i, er pour r complexe de façon compatible avec ce qui
précède, avec (1) et avec le développement en série.

Troisième exposé

- La fonction de variable complexe

1 JrZ + ~z2P-^z3 + (15)
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est partout définie et vérifie l'identité différentielle

d ez ez dz (16)

Théorème. — Pour que les nombres complexes x et y, ce dernier

non nul, vérifient y ex, il faut et il suffit qu'il existe un
chemin c d'origine 1, d'extrémité y, évitant 0, tel que

Xv— <«>

Démonstration. — « Il suffit » :

Soit u g (t) la fonction de t (0 < t < 1) définissant le

chemin c; g est supposée non nulle, continue, et par morceaux
continûment dérivable, avec g (0) 1 et g (1) y; par hypothèse,

on a

x= fdu= flqidt.
>c 11 -'o s(t)

Posons, pour 0 < t<1,

p W f 7 lïïdtet/W eV(t) '
*'o s \l!

D'après (16), on a

f (t) g(t) f (t) g' (t)

donc le rapport / (£)/g (t) est constant par morceaux, donc constant

par continuité, donc égal à 1 puisque / (0) g (0) 1 ; de

sorte qu'on a pour t 1

y g (1) / (1) eX c.q.f.d.
« Il faut »:

Pour tout x a + ib, il existe un chemin c tel que (17);
en effet, définissons c comme composé d'un chemin c' sur l'axe
réel et d'un chemin c" sur un cercle centré en 0; le choix de c'

pour que f — a est possible puisque l'intégrale / — est
«J

ç U t/ u

divergente en 0 et à l'infini; d'autre part, si on paramètre un
cercle centré à l'origine, privé de son point négatif, par

X R Y R ^ c'est-à-dire X -f iY — R ] + lt
1 + t2 1 Y t2 1 — it
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on a, sur ce cercle
{* du _ /' dtJ~üJ

/>+0° | _I_ £2

I —— est un nombre fini non nul, noté tc, et l'intégrale

sur le cercle entier vaut 2 £71; le choix de e" pour que f ~ ib

est donc toujours possible.
D'après « il suffit », l'extrémité y du chemin c tel que (17)

est ex.

Remarque. — Le chemin ainsi défini n'a pour extrémité 1

que si x est multiple entier de 2Î7t; donc ces nombres sont les

seuls tels que ex 1.

Autre remarque. — Si

n du c du C du
/ — — x / — y on a / — =* x + y

•c u 'd u «C4 exd 11

et le chemin c + ex d a pour extrémité ex ev, donc on a (1).

le 13 mars 1957.
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