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les fonctions s et c y variant en sens contraire; l'éventualité
d'une limite infinie n'est pas à retenir, car elle entraînerait que

la fonction s ait pour dérivée + oo sur l'intervalle ^0, ce Çui

contredit le fait que pour k assez grand 5 (x) — kx ne peut
croître constamment sur cet intervalle.

Remarque. — Si r est la limite de 5 (h)/h, il en résulte que la
fonction t sjc a pour dérivée r/c2, qui est une fonction croissante

sur l'intervalle ^0, ^ ; donc t est convexe sur cet intervalle,

avec la même dérivée à l'origine, r, que s ; comme e (^j — >

on a s et t 1, donc r vaut au moins — s (^j
^etauplus
Définition du nombre ix. — C'est le nombre p tel que la dérivée

à l'origine de ep (.r) soit i (c'est-à-dire r 1); on a donc
2 \/2 < Tx < 4. On pose, bien sûr, (x) elA\ e__ (x) cos .r,
s_ (x) sin .r, tn (x) tg x. On a donc établi :

Théorème 4. — Il existe un nombre tt, et une fonction exponentielle

unitaire etx dont les périodes sont les multiples entiers
de 2tc, dérivable et de dérivée i eix. Toute fonction exponentielle

unitaire est de la forme x -* elhx, avec k réel.

Deuxième exposé

En intégrant l'identité (1) par rapport à y, on voit que toute
fonction exponentielle / vérifie

/ M f f (y) dy f t {x + y) dy f f lu) du
<'a n'a t'a+x

donc est dérivable et proportionnelle à sa dérivée, d'où le lemme:
Lemme. — Toute fonction exponentielle vérifie une équation

différentielle de la forme

y' ry (7)

où r est une constante, réelle pour une fonction réelle, et
imaginaire pure pour une fonction unitaire.
Ce dernier point résulte de ce que yy 1 entraîne
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y' y + y' y o, donc r -f- r 0; réciproquement, r imaginaire
pure entraîne yy constant pour toute solution de (7).

Fonctions exponentielles réelles

Au changement près de x en rx7 elles vérifient l'équation
différentielle

y' y • (8)

Montrons que cette équation possède une solution et une seule,

prenant la valeur 1 pour x — 0.

Si une solution / (x) ne s'annule pas, et est par exemple positive,

sa dérivée aussi, donc / est strictement croissante, donc
admet une fonction réciproque x g (y) vérifiant g' (y) 1 jy.

nv dt
Inversement, posons, pour y > 0, log y — ; la fonction

«/1 t

log est strictement croissante et prend toute valeur réelle; en

effet, on a l'identité

log x + log y (9)

donc si log y avait une limite b pour y -* 0 ou pour y -» -f oo,
cette limite vérifierait b b + log x, ce qui est impossible.

Ainsi la fonction x log y admet une fonction réciproque
partout définie, positive, croissante, continue et vérifiant (1),

qu'on désignera par y — ex.

Si une fonction / (x) vérifie (8) et si / (0) 1, alors ex f (x)
a une dérivée nulle, donc est constante et égale à 1, ce qui prouve
l'unicité annoncée.

De ceci, on déduit facilement les théorèmes 1 et 2.

Remarque. — Le nombre e el est ici défini par l'égalité

f — -s 1, d'où l'on déduit facilement 2 < e < 4.
* i 1

Autre remarque. — L'application à l'équation (8) de la
méthode des approximations successives donne la série

ex \ + X + — x1 + xz +
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d'où e 1 + 1 + i -f ^ 2,7

Fonctions exponentielles unitaires

Au changement près de x en kx, elles vérifient l'équation

y' fi/ (10)

On a vu qu'une solution de cette équation ne peut s'annuler
qu'identiquement; donc s'il existe une solution e (x) égale à 1

pour x 0 (donc à valeurs de module 1), cette solution est

unique, et c'est une fonction exponentielle unitaire, car les

fonctions x — e (x + y) et x -> e (x) e (y) sont deux solutions de

(10) prenant la même valeur pour x 0, donc sont identiques.
Désignons par c (x), s (x) les parties réelles et imaginaires de

la solution éventuelle e (x), et par t (x) le quotient s (x)jc (x)

pour c (x) 0, c'est-à-dire e (x) ^ ± i; on a alors

s' c c' —s c (0) 1 s (0) 0 (11)

t' 1 + t2 t (0) 0 (12)

La fonction t est croissante, donc a une fonction réciproque x (t)
de dérivée 1 + t2.

Inversement, considérons pour t réel quelconque

a A du
Arctgt=J0T+T<13>

Cette fonction Arc tg est continue et croissante, avec une limite
finie pour t -> + oo ; en effet, pour t > 1 on a

rl du A du F du F du
TTTT^ + r+^ + 1-

Désignons cette limite par ^ ; la fonction réciproque

est donc définie (pour l'instant) sur l'intervalle (— V), et
continue et croissante; en posant

/ \ 1 + iteW VTTP ""
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on définit une solution de (10) égale à 1 pour x 0, définie sur
l'intervalle — ~), de partie réelle positive; de plus, elle

reste continue si l'on pose e ^— ^) — i et e i-

Prolongeons la définition de e (x) à R en posant e (x + tu)

— e (x): on voit aussitôt que e (x) est continue sur R; elle est
dérivable, avec dérivée vérifiant (10), sauf peut-être aux points
/ i -

k ~ k étant entier. Il est aisé de se défaire de cette restriction,

en raisonnant, par exemple, comme suit:
La fonction e x + — ie (x) est nulle, par exemple pour

x — donc étant solution de (10) pour —L. < x < 0, elle

est nulle sur cet intervalle, donc aussi, par le prolongement, pour
tout x non multiple entier de L-

; donc, étant continue, elle est

identiquement nulle; et, comme e(x + ^) est dérivable pour

x (k 4- 4)"? e anssi, avec la valeur correcte de la

dérivée.
On a donc prouvé les théorèmes 3 et 4.

Remarque. — De tg ~ 1, on déduit

- du
T =30 1 +

d'où l'on déduit immédiatement 2 < - < 4, et facilement
TT 3,1

Autre remarque. — Soit r u -j- iv un nombre complexe
quelconque, la fonction exponentielle solution de (7) n'est autre

que eux elvx. qu'on posera égal à eTX\ ceci définit, en faisant
x — i, er pour r complexe de façon compatible avec ce qui
précède, avec (1) et avec le développement en série.

Troisième exposé

- La fonction de variable complexe

1 JrZ + ~z2P-^z3 + (15)
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