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les fonctions s et ¢ y variant en sens contraire; 'éventualite
d’une limite infinie n’est pas a retenir, car elle entrainerait que

la fonction s ait pour dérivée 4 oo sur Pintervalle <O, %), ce qui

contredit le fait que pour % assez grand s (x) — Az ne peut
croitre constamment sur cet intervalle.

Remarque. — Si r est la limite de s (2)/h, il en résulte que la
fonction t = s/c a pour dérivée r/c?, qui est une fonction crois-

sante sur 'intervalle (O, %); donc ¢ est convexe sur cet intervalle,

s P _ 1+ l
avec la méme dérivée & 'origine, r, que s; comme e ik
E] -
on a s (%) o= —\—é—— et t<3> = 1, done r vaut au moins 7S <%> =
9 A /
\/ et au plus — 1 p) = .
p 4 p .
Deﬁmtwn du nombre =. — C’est le nombre p tel que la déri-

vée & l'origine de e, (r) soit ¢ (c’est-a-dire r = 1); on a donec

24/2 < ® < 4. On pose, bien str, e_(z) = e, c_ (x) = cos z,

s.(r) =snax, t_(x) =tga. Ona done établi:

Théoréme 4. — 11 existe un nombre =, et une fonction exponen-
tielle unitaire e dont les périodes sont les multiples entiers
de 2x, dérivable et de dérivée ¢ e™*. Toute fonction exponen-
tielle unitaire est de la forme z — ¢~ avec k réel.

DEUXIEME EXPOSE

En intégrant I'identité (1) par rapport & y, on voit que toute
fonction exponentielle f vérifie

b b 2bFX

f@) [(flwldy = [ fle+ydy= [ fludu
a (2o} [Ae A
donc est dérivable et proportionnelle & sa dérivée, d’on le lemme:

Lemme. — Toute fonction exponentielle vérifie une équation
différentielle de la forme

’

y = ry (7)

ou r est une constante, réelle pour une fonetion réelle, et
imaginaire pure pour une fonction unitaire.
Ce dernier point résulte de ce que yy = 1 entraine
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y'y 4+ y y=0,doncr -+ r = 0; réciproquement, r imaginaire
pure entraine yy constant pour toute solution de (7).

Fonctions exponentielles réelles

Au changement prés de z en rz, elles vérifient ’équation

différentielle
v =y. (8)

Montrons que cette équation possede une solution et une seule,
prenant la valeur 1 pour x = 0.

S1 une solution f (x) ne s’annule pas, et est par exemple posi-
tive, sa dérivée aussi, donc f est strictement croissante, done
admet une fonction réciproque z = g (y) vérifiant g’ (y) = 1/y.

Yy
Inversement, posons, pour y > 0, logy = f d—;; la fonction
1

log est strictement croissante et prend toute valeur réelle; en
effet, on a l'identité

Wdr /"ydt+ [xyd_t: {’ydt Tdt

log 2y = == =+ =
Lfl. t 12 ey ! Jy ot

= logz +logy, (9)

done si log y avait une limite b pour y — 0 ou pour y - + o,
cette limite vérifierait b = b -+ log x, ce qui est impossible.

Ainsi la fonction x = log ¥ admet une fonction réciproque
partout définie, positive, croissante, continue et vérifiant (1),
qu’on désignera par y = € .

Si une fonction f (x) vérifie (8) et s1 f (0) = 1, alors ™ f (x)
a une dérivée nulle, donc est constante et égale & 1, ce qui prouve
Punicité annoncée.

De ceci, on déduit facilement les théoremes 1 et 2.

Remarque. — Lie nombre e = ¢! est ici défini par I'égalité
["% — 1, dou 'on déduit facilement 2 < e < 4.

1
Autre remarque. — I.’application & 1'équation (8) de la mé-

“thode des approximations successives donne la série

ex:1+x+}2—x2+%x3+...
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. s r.1
d’olt e_1+1—|—2+6...-—2,7...

Foncttons exponentielles unitaires

Au changement prés de z en kz, elles vérifient I’équation
y =1y (10)

On a vu qu’une solution de cette équation ne peut s’annuler
qu’identiquement; donc §’il existe une solution e (z) égale a 1
pour x = O (donc a valeurs de module 1), cette solution est
unique, et c’est une fonction exponentielle unitaire, car les
fonctions z — e (x + y) et z — e () e (y) sont deux solutions de
(10) prenant la méme valeur pour x = 0, donc sont 1dentiques.

Désignons par ¢ (), s (x) les parties réelles et imaginaires de
la solution éventuelle e (z), et par t(z) le quotient s (z)/c (z
pour ¢ (x) #% 0, ¢’est-a-dire e (x) % -+ 1; on a alors

[
V)
=
I
<
—
—

s'=c¢ ¢ =—s c(0) =

=14 ® t(0) =

>
-
b
S——

La fonction ¢ est croissante, donc a une fonction réciproque x (¢)
de dérivée 1 4 2
Inversement, considérons pour ¢ réel quelconque

Arc tgt:({) T (13)
Cette fonction Arc tg est continue et croissante, avec une limite

finie pour ¢ — + oo ; en effet, pour ¢ > 1 on a

Lodu du du du
.[1+u2<{) + u? ./7 6
Désignons cette limite par %, la fonction réciproque ¢ = tg x
est donc définie (pour I'instant) sur Pintervalle <—— =, + >

continue et croissante; en posant

14 it
V1 F 2 4]

e(x) =
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on définit une solution de (10) égale & 1 pour x = 0, définie sur

I'intervalle | — %, - %), de partie réelle positive; de plus, elle
reste continue si I’on pose e (— %) = — et e<%> = L.

Prolongeons la définition de e () & R en posant e (z 4 =)
= — ¢ (r): on voit aussitdt que e (x) est continue sur R; elle est
dérivable, avec dérivée vérifiant (10), sauf peut-8tre aux points

(k + 5) =, k étant entier. Il est aisé de se défaire de cette restric-

/

tion, en raisonnant, par exemple, comme suit:

La fonction ez -+ %} — e (x) est nulle, par exemple pour

r = — = donc étant solution de (10) pour — = < z < 0, elle
4 - 2 !

est nulle sur cet intervalle, donc aussi, par le prolongement, pour

tout r non multiple entier de =; done, étant continue, elle est
identiquement nulle; et, comme e(x + %) est dérivable pour

, 1 ‘
r= k- —9—):, e(x) Pest aussi, avec la valeur correcte de la
dérivée.

On a donc prouvé les théoremes 3 et 4.

Remarque. — De tg% = 1, on déduit

T /'1 du
4_'0 1+ u?’

d’ou T'on déduit immédiatement 2 < = < 4, et facilement
~ =31 ..

Autre remarque. — Soit r = u + tv un nombre complexe
quelconque, la fonction exponentielle solution de (7) n’est autre
que €™ ™, qu'on posera égal a e™; ceci définit, en faisant
r = 1, ¢ pour r complexe de facon compatible avec ce qui
précede, avec (1) et avec le développement en série.

TROISIEME EXPOSE

~ La fonction de variable complexe

1

1
— z2 — 73
il (15)
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