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SUR LA FONCTION EXPONENTIELLE COMPLEXE

PAR

Georges Poitou, Lille

Il est remarquable que nombre de traités d'analyse, souvent
excellents, démontrent avec beaucoup de soin l'existence de la
fonction ex pour x réel, mais délaissent la fonction eix. La
raison en est, sans doute, que l'existence de cette dernière (avec
les propriétés qu'on lui connaît) équivaut à l'existence des
arguments des nombres complexes, qu'on considère plus ou moins

explicitement comme résultant du théorème de la mesure des

angles. Il y a là une tradition fâcheuse du point de vue logique,
même si le théorème de la mesure des angles a été démontré
correctement1 à partir d'un système d'axiomes de la géométrie
élémentaire, car il est difficilement admissible de faire dépendre
de ces axiomes une question d'analyse. Dans la plupart des cas,
d'ailleurs, le théorème de la mesure des angles n'est pas
correctement démontré, et, pis encore, on n'expose pas, en général,
au lycée, les principes de la géométrie de façon rigoureuse; ainsi
l'étudiant est-il victime, lors de l'introduction de la fonction Ux,

d'une véritable escroquerie. Comme il est juste, la défaillance
logique entraîne une difficulté pédagogique: Bien peu d'étudiants
pénètrent, à ce niveau, le sens de la formule dite de Moivre.

Il existe dans certains traités de quoi combler cette lacune;

par exemple, Whittaker et Watson {Modern Analysis, p. 581)

s'appuient sur la série exponentielle complexe, Ahlfors {Complex
Analysis, p. 15) prend pour point de départ l'intégrale

çx dt

i Le traité de Bourbaki (Livre III Ch. V) échappe à cette critique, son point
de vue étant différent.



SUR LA FONCTION EXPONENTIELLE COMPLEXE 217

Je voudrais montrer ici comment on peut donner, au niveau
de la première ou de la seconde année d'université, des exposés

complets des propriétés de l'exponentielle complexe, par des

méthodes très voisines de celles utilisées pour l'exponentielle
réelle. Je donnerai l'esquisse de trois exposés indépendants: le

premier n'utilise que le calcul différentiel, y compris les

propriétés de dérivabilité des fonctions convexes; pour l'exponentielle

réelle, il est souvent utilisé dans l'enseignement français
depuis quelques années; le second utilise les propriétés les plus
simples de l'intégrale, y compris la notion de convergence sur
un intervalle infini; le troisième utilise l'intégrale curviligne.
Ces exposés pourraient être modifiés de bien des façons que le

lecteur apercevra aussitôt; ils n'ont d'ailleurs d'autre prétention
que d'attirer l'attention sur une question pédagogique intéressante.

D'une façon générale, appelons jonction exponentielle une
fonction / définie pour tout nombre réel, à valeurs réelles ou
complexes, continue et non constante, vérifiant l'identité

/ {* + y) / M • / (y) (i)

Disons qu'une fonction exponentielle est réelle si ses valeurs sont
réelles, et unitaire (qu'on nous pardonne cette définition si ses

valeurs sont des nombres complexes de module 1. Il suffit
d'étudier ces deux cas, car toute autre fonction exponentielle
est manifestement le produit d'une fonction exponentielle réelle
et d'une fonction exponentielle unitaire.

On notera C l'ensemble des nombres complexes, R celui des
nombres réels, Z celui des entiers, D celui des fractions réelles
dont le dénominateur est une puissance de 2, KL et KD l'ensemble
des produits par k des éléments de Z ou de D. On sait que D est
partout dense sur R.

Premier exposé

Théorème 1. — Il existe une et une seule fonction exponentielle
réelle / telle que / (1) soit égal à un nombre positif donné
a ^ 1.

La démonstration de l'unicité de / est facile: une fonction
continue sur R est déterminée par ses valeurs sur D ; mais comme
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l'identité, déduite de (1), (/ (x))2 f (2#), entraîne, d'une part,
que les valeurs de / sont positives, d'autre part que f(x) est
nécessairement la racine carrée positive de / (2x), la fonction /
est connue sur D dès qu'elle l'est sur Z; à cet égard, si n est un
entier positif, on a nécessairement / (n) — an et / (— n) 1/f (n) ;

d'où le résultat.
La démonstration de l'existence de / se fait à l'envers; on

commence par vérifier que la fonction / définie comme
précédemment sur Z possède la propriété (1) et la propriété

f (x) >1 pour x > 0 (2)

si l'on a supposé, comme on peut le faire, a > 1.

Si l'on définit, pour x f (x) comme la racine carrée

positive de / (2x), ceci est cohérent avec la définition de / sur Z

d'après la propriété (1), et on voit aussitôt que, sur — Z, f vérifie

l lencore les propriétés (1) et (2); de même pour — Z, — Z, c'est-

à-dire enfin pour D.
Les relations (1) et (2) prouvent que / est croissante sur D;

pour prouver qu'elle est continue, il suffit, d'après (1) de prouver
que / (x) tend vers 1 lorsque x, positif, tend vers 0; or, / étant
croissante, f (x) a une limite b lorsque x, positif, tend vers 0;
et cette limite, étant aussi celle de f (2x) — (/ (x))2, vérifie
b à2, donc b 1.

Ainsi /, étant croissante et continue sur D, se prolonge en

une fonction sur R qui a les mêmes propriétés — y compris (1) —
d'après les résultats élémentaires sur les limites. Cette fonction
est notée x ax.

La formule
(ax)y axy (3)

résulte de l'unicité, car chaque membre est une fonction
exponentielle réelle de ?/, égale à ax pour y 1.

Dérivée de Vexponentielle réelle

L'inégalité de la moyenne arithmétique et de la moyenne
géométrique, jointe à (1), montre que l'on a
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x+y
a

2 < ~ (ax + ay)

d'où l'on déduit, comme l'on sait, que ax est convexe, donc déri-
vable à droite et à gauche en tout point; en fait, les formules

prouvent que j (ah — 1) a une limite q (a) lorsque h tend vers 0,

et que ax a pour dérivée ax q (a).
Or il est aisé de voir que ax prend toute valeur positive (si

ax avait une limite pour + qo ou x -> — oo, cette limite b

vérifierait encore b2 b) donc, quel que soit d > 0, il existe k
réel tel que d — ak, et par suite, d'après (3), dx akx; la dérivée
à l'origine de cette fonction de x est k q (a), donc il existe un
choix et un seul de d tel que la fonction dx ait pour dérivée 1

à l'origine; on désigne ce nombre d par e; on a eq{a) a, donc

q (a) log a si l'on désigne ainsi la fonction réciproque de

x -> ex. On a donc établi :

Théorème 2. — Il existe un nombre e et un seul tel que la fonction
ex soit sa propre dérivée; si log en est la fonction réciproque,
la dérivée de ax est ax log a.

Remarque. — La dérivée à l'origine de 2X est inférieure à

2

j
1

1, celle de ix est supérieure à y~ ^ donc on a

~2

2 < e < 4,

Cette méthode de définition de l'exponentielle réelle étant
rappelée, passons à l'exponentielle unitaire. Nous utiliserons le
fait que tout nombre complexe X + ÏY non nul a deux racines
carrées x + iy opposées, ce qui résulte facilement de la
considération du système x2 — y2 X, 2xy Y en nombres réels.
Remarquons que d'après l'identité (1) les périodes d'une fonction
exponentielle / ne sont autres que les nombres x tels que
f(x) 1.

Théorème 3. — S'il existe une fonction exponentielle unitaire
e (x), ses périodes sont les multiples entiers d'un certain
nombre positif 2p, dont la donnée détermine la fonction à
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la conjugaison près; réciproquement, si p est un nombre > 0

quelconque, il existe une fonction exponentielle unitaire
ep (x) dont les périodes sont exactement les multiples entiers
de 2p.
Désignons par c (x) et s (x) la partie réelle et la partie

imaginaire d'une fonction exponentielle unitaire e (x) (il serait vain
de dissimuler que c (x) et s (x) sont le cosinus et le sinus de

l'angle de mesure x, lorsque la mesure de l'angle plat est p;
mais, pour l'instant, l'existence et l'unicité de ces fonctions sont
encore en question) et démontrons d'abord Vunicité.

l lEn remplaçant dans (1) x et y par — (x + y) et ± (x — y),

on trouve l'identité

c(x) — c (y) 2 s * y^j s (4)

Montrons d'abord l'existence de périodes. — Si e (x) ne prenait
pas la valeur 1 pour x ^ 0, il ne prendrait pas non plus la
valeur — 1, car e {2x) (e (x))2, donc «9 (x) serait non nul pour
x 0, donc de signe constant pour x > 0, donc, d'après (4),
e (x) serait monotone sur l'intervalle (0, + qo), donc aurait une
limite pour x hn oo ; donc e (x) aurait une limite b pour
x*+*j* oo, laquelle limite serait aussi celle de e (2x) (e (x))2,
donc b b2 et, par suite, b 1 ; donc c (x) serait constamment
égal à 1, et aussi e (x), contrairement à l'hypothèse.

Les périodes de e (x) constituent un sous-groupe (additif)
fermé de R, qui est de la forme 2/?Z, avec p > 0.

Comme e (p) — — 1, e (x) ne peut être réel pour 0 < x < p,
sinon il y aurait une période positive plus petite que 2p ; donc
s (x) a un signe constant pour 0 < x < p, et on peut supposer
que c'est le signe +, quitte à remplacer la fonction par sa conjuguée

(qui est aussi son inverse); cette convention entraîne que

e (p) — i, d'où e i e (x) et par suite s [x 4- c (x).

On voit alors que les signes et la variation des fonctions c et s

sont donnés par le tableau suivant:
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x mod 2p 0 p/2 P 3p/2 2p

+ 0 — 0 +
c (x)

1 décroît — 1 croît 1

0 + 0 — 0

s (x)
— 1 croît0 croît 1 décroît 0

(5)

Le signe de s (x) se déduit de la convention, de (1) et de

e (p) — 1; le sens de variation de c (x)% de la formule (4); son

signe, de la connaissance de sa variation et de ses zéros; enfin,

le sens de variation de s (x) résulte de s (x + ^0 c (x).

Il est alors clair que la fonction e (x) est déterminée par la
valeur de p et la convention faite. En effet, il suffit de montrer
qu'elle est déterminée sur pD; mais e (x) est nécessairement
celle des deux racines carrées de e (2x) dont la partie imaginaire
a un signe conforme au tableau (5), de sorte que e (x) est
déterminée sur pD, puisqu'elle l'est sur pZ.

Démontrons maintenant Vexistence de la fonction e (x), p étant
fixé.

En posant e (2 p)1, e (p)— 1, e (J-) ^3= —

il est clair que l'identité (1) est vérifiée sur ^-Z, et que le signe

de <9 (x) est conforme au tableau (5).

Définissons alors e (x) sur |Z en stipulant que e(x) est celle

des deux racines carrées de e (2x) dont la partie imaginaire s (x)

a un signe conforme au tableau (5); de même sur ~Z, etc. Il
o

suffit de démontrer que lors du passage de pZ/2n_1 à pZj2n
l'identité (1) est conservée, car la cohérence des définitions en
résulte. Or on déduit de la définition de e (x) l'identité

s (2x) 2s (x) c (x) (6)

qui prouve que, si les signes du tableau (5) sont respectés, sur
pZ/2n, pour ^ (x), ils le sont aussi pour c (x), de sorte que e[x + ^j
et i e (x) sont égaux et non pas opposés. Posons alors

L'Enseignement mathém., t. III, fasc. 3. 15
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x /f + x' y + y' h, k£ Z 0 < 0 < y' < •

L'identité (1) vaut donc pour x et y à la condition nécessaire
et suffisante qu'elle soit valable pour x' et y' ; il suffit donc de

vérifier que s (x' + y') et s (x') c (y') + c (x') 5 (y') sont égaux,
et non pas opposés; mais ceci est clair, car les deux termes sont
positifs.

Ainsi e (x) peut être définie sur pD en respectant les signes
du tableau (5) ; et par suite aussi les sens de variation d'après (4).
De la décroissance de c (x) sur l'intervalle (0, p) résulte l'existence

d'une limite, lorsque x tend vers 0, pour c (x), donc aussi

pour e (x); mais cette limite b vérifie encore è2 6, donc est

égale à 1; donc, d'après (1), e (x) est continue sur /?D; on peut
donc, en préservant la continuité, prolonger à R la définition
de c (^), qui est monotone par intervalles, donc aussi de e (x).

Il conviendrait assurément de noter cp, cp, sp les fonctions
ainsi obtenues; mais continuons à sous-entendre l'indice p pour
l'instant.

Dérivée de Vexponentielle unitaire

D'après (1), la dérivabilité de e (x) équivaut à l'existence de

la limite, pour h tendant vers 0, de

i(eW-l)=i(cW-l) + lî^.
Il est donc nécessaire que s (h)/h ait une limite quand h tend
vers 0; c'est aussi suffisant, car

(.(»y»)

tend vers 0 si 5 (h)/h a une limite.
Or l'existence de cette limite résulte du fait que sur l'intervalle

(0, p) la fonction s est concave, puisque l'identité déduite
de (1)

s (x + y) — y (s (2 x) + s (2 y)) (s (x) —s (y)) (c (y) —c (x))

montre que le premier membre est positif sur l'intervalle (O,
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les fonctions s et c y variant en sens contraire; l'éventualité
d'une limite infinie n'est pas à retenir, car elle entraînerait que

la fonction s ait pour dérivée + oo sur l'intervalle ^0, ce Çui

contredit le fait que pour k assez grand 5 (x) — kx ne peut
croître constamment sur cet intervalle.

Remarque. — Si r est la limite de 5 (h)/h, il en résulte que la
fonction t sjc a pour dérivée r/c2, qui est une fonction croissante

sur l'intervalle ^0, ^ ; donc t est convexe sur cet intervalle,

avec la même dérivée à l'origine, r, que s ; comme e (^j — >

on a s et t 1, donc r vaut au moins — s (^j
^etauplus
Définition du nombre ix. — C'est le nombre p tel que la dérivée

à l'origine de ep (.r) soit i (c'est-à-dire r 1); on a donc
2 \/2 < Tx < 4. On pose, bien sûr, (x) elA\ e__ (x) cos .r,
s_ (x) sin .r, tn (x) tg x. On a donc établi :

Théorème 4. — Il existe un nombre tt, et une fonction exponentielle

unitaire etx dont les périodes sont les multiples entiers
de 2tc, dérivable et de dérivée i eix. Toute fonction exponentielle

unitaire est de la forme x -* elhx, avec k réel.

Deuxième exposé

En intégrant l'identité (1) par rapport à y, on voit que toute
fonction exponentielle / vérifie

/ M f f (y) dy f t {x + y) dy f f lu) du
<'a n'a t'a+x

donc est dérivable et proportionnelle à sa dérivée, d'où le lemme:
Lemme. — Toute fonction exponentielle vérifie une équation

différentielle de la forme

y' ry (7)

où r est une constante, réelle pour une fonction réelle, et
imaginaire pure pour une fonction unitaire.
Ce dernier point résulte de ce que yy 1 entraîne
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y' y + y' y o, donc r -f- r 0; réciproquement, r imaginaire
pure entraîne yy constant pour toute solution de (7).

Fonctions exponentielles réelles

Au changement près de x en rx7 elles vérifient l'équation
différentielle

y' y • (8)

Montrons que cette équation possède une solution et une seule,

prenant la valeur 1 pour x — 0.

Si une solution / (x) ne s'annule pas, et est par exemple positive,

sa dérivée aussi, donc / est strictement croissante, donc
admet une fonction réciproque x g (y) vérifiant g' (y) 1 jy.

nv dt
Inversement, posons, pour y > 0, log y — ; la fonction

«/1 t

log est strictement croissante et prend toute valeur réelle; en

effet, on a l'identité

log x + log y (9)

donc si log y avait une limite b pour y -* 0 ou pour y -» -f oo,
cette limite vérifierait b b + log x, ce qui est impossible.

Ainsi la fonction x log y admet une fonction réciproque
partout définie, positive, croissante, continue et vérifiant (1),

qu'on désignera par y — ex.

Si une fonction / (x) vérifie (8) et si / (0) 1, alors ex f (x)
a une dérivée nulle, donc est constante et égale à 1, ce qui prouve
l'unicité annoncée.

De ceci, on déduit facilement les théorèmes 1 et 2.

Remarque. — Le nombre e el est ici défini par l'égalité

f — -s 1, d'où l'on déduit facilement 2 < e < 4.
* i 1

Autre remarque. — L'application à l'équation (8) de la
méthode des approximations successives donne la série

ex \ + X + — x1 + xz +
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d'où e 1 + 1 + i -f ^ 2,7

Fonctions exponentielles unitaires

Au changement près de x en kx, elles vérifient l'équation

y' fi/ (10)

On a vu qu'une solution de cette équation ne peut s'annuler
qu'identiquement; donc s'il existe une solution e (x) égale à 1

pour x 0 (donc à valeurs de module 1), cette solution est

unique, et c'est une fonction exponentielle unitaire, car les

fonctions x — e (x + y) et x -> e (x) e (y) sont deux solutions de

(10) prenant la même valeur pour x 0, donc sont identiques.
Désignons par c (x), s (x) les parties réelles et imaginaires de

la solution éventuelle e (x), et par t (x) le quotient s (x)jc (x)

pour c (x) 0, c'est-à-dire e (x) ^ ± i; on a alors

s' c c' —s c (0) 1 s (0) 0 (11)

t' 1 + t2 t (0) 0 (12)

La fonction t est croissante, donc a une fonction réciproque x (t)
de dérivée 1 + t2.

Inversement, considérons pour t réel quelconque

a A du
Arctgt=J0T+T<13>

Cette fonction Arc tg est continue et croissante, avec une limite
finie pour t -> + oo ; en effet, pour t > 1 on a

rl du A du F du F du
TTTT^ + r+^ + 1-

Désignons cette limite par ^ ; la fonction réciproque

est donc définie (pour l'instant) sur l'intervalle (— V), et
continue et croissante; en posant

/ \ 1 + iteW VTTP ""
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on définit une solution de (10) égale à 1 pour x 0, définie sur
l'intervalle — ~), de partie réelle positive; de plus, elle

reste continue si l'on pose e ^— ^) — i et e i-

Prolongeons la définition de e (x) à R en posant e (x + tu)

— e (x): on voit aussitôt que e (x) est continue sur R; elle est
dérivable, avec dérivée vérifiant (10), sauf peut-être aux points
/ i -

k ~ k étant entier. Il est aisé de se défaire de cette restriction,

en raisonnant, par exemple, comme suit:
La fonction e x + — ie (x) est nulle, par exemple pour

x — donc étant solution de (10) pour —L. < x < 0, elle

est nulle sur cet intervalle, donc aussi, par le prolongement, pour
tout x non multiple entier de L-

; donc, étant continue, elle est

identiquement nulle; et, comme e(x + ^) est dérivable pour

x (k 4- 4)"? e anssi, avec la valeur correcte de la

dérivée.
On a donc prouvé les théorèmes 3 et 4.

Remarque. — De tg ~ 1, on déduit

- du
T =30 1 +

d'où l'on déduit immédiatement 2 < - < 4, et facilement
TT 3,1

Autre remarque. — Soit r u -j- iv un nombre complexe
quelconque, la fonction exponentielle solution de (7) n'est autre

que eux elvx. qu'on posera égal à eTX\ ceci définit, en faisant
x — i, er pour r complexe de façon compatible avec ce qui
précède, avec (1) et avec le développement en série.

Troisième exposé

- La fonction de variable complexe

1 JrZ + ~z2P-^z3 + (15)
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est partout définie et vérifie l'identité différentielle

d ez ez dz (16)

Théorème. — Pour que les nombres complexes x et y, ce dernier

non nul, vérifient y ex, il faut et il suffit qu'il existe un
chemin c d'origine 1, d'extrémité y, évitant 0, tel que

Xv— <«>

Démonstration. — « Il suffit » :

Soit u g (t) la fonction de t (0 < t < 1) définissant le

chemin c; g est supposée non nulle, continue, et par morceaux
continûment dérivable, avec g (0) 1 et g (1) y; par hypothèse,

on a

x= fdu= flqidt.
>c 11 -'o s(t)

Posons, pour 0 < t<1,

p W f 7 lïïdtet/W eV(t) '
*'o s \l!

D'après (16), on a

f (t) g(t) f (t) g' (t)

donc le rapport / (£)/g (t) est constant par morceaux, donc constant

par continuité, donc égal à 1 puisque / (0) g (0) 1 ; de

sorte qu'on a pour t 1

y g (1) / (1) eX c.q.f.d.
« Il faut »:

Pour tout x a + ib, il existe un chemin c tel que (17);
en effet, définissons c comme composé d'un chemin c' sur l'axe
réel et d'un chemin c" sur un cercle centré en 0; le choix de c'

pour que f — a est possible puisque l'intégrale / — est
«J

ç U t/ u

divergente en 0 et à l'infini; d'autre part, si on paramètre un
cercle centré à l'origine, privé de son point négatif, par

X R Y R ^ c'est-à-dire X -f iY — R ] + lt
1 + t2 1 Y t2 1 — it



228 G. POITOU

on a, sur ce cercle
{* du _ /' dtJ~üJ

/>+0° | _I_ £2

I —— est un nombre fini non nul, noté tc, et l'intégrale

sur le cercle entier vaut 2 £71; le choix de e" pour que f ~ ib

est donc toujours possible.
D'après « il suffit », l'extrémité y du chemin c tel que (17)

est ex.

Remarque. — Le chemin ainsi défini n'a pour extrémité 1

que si x est multiple entier de 2Î7t; donc ces nombres sont les

seuls tels que ex 1.

Autre remarque. — Si

n du c du C du
/ — — x / — y on a / — =* x + y

•c u 'd u «C4 exd 11

et le chemin c + ex d a pour extrémité ex ev, donc on a (1).

le 13 mars 1957.
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