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SUR LA FONCTION EXPONENTIELLE COMPLEXE

PAR

Georges Poirou, Lille

Il est remarquable que nombre de traités d’analyse, souvent
excellents, démontrent avec beaucoup de soin I'existence de la
fonction €® pour x réel, mais délaissent la fonction €. La
raison en est, sans doute, que 'existence de cette derniére (avec
les propriétés qu’on lui connait) équivaut a 'existence des argu-
ments des nombres complexes, qu’on considére plus ou moins
explicitement comme résultant du théoréme de la mesure des
angles. Il y a 14 une tradition facheuse du point de vue logique,
méme si le théoreme de la mesure des angles a été démontré
correctement ! a partir d’un systéme d’axiomes de la géométrie
élémentaire, car il est difficilement admissible de faire dépendre
de ces axiomes une question d’analyse. Dans la plupart des cas,
d’ailleurs, le théoréme de la mesure des angles n’est pas correc-
tement démontré, et, pis encore, on n’expose pas, en général,
au lycée, les principes de la géométrie de facon rigoureuse; ainsi
Pétudiant est-il victime, lors de 'introduction de la fonction ¥,
d’une véritable escroquerie. Comme il est juste, la défaillance
logique entraine une difficulté pédagogique: Bien peu d’étudiants
péneétrent, & ce niveau, le sens de la formule dite de Moivre.

Il existe dans certains traités de quoi combler cette lacune;
par exemple, Whittaker et Watson (Modern Analysis, p. 581)
s’appuient sur la série exponentielle complexe, Ahlfors (Complex
Analysis, p. 15) prend pour point de départ 'intégrale

o

!/’{ \/1__t2.

1 Le traité de Boursaxkl (Livre III Ch. V) échappe & cette critique, son point
de vue étant différent.
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Je voudrais montrer ici comment on peut donner, au niveau
de la premiére ou de la seconde année d’université, des exposés
complets des propriétés de I’exponentielle complexe, par des
méthodes trés voisines de celles utilisées pour P'exponentielle
réelle. Je donnerai I’esquisse de trois exposés indépendants: le
premier n’utilise que le calcul différentiel, y compris les pro-
priétés de dérivabilité des fonctions convexes; pour I'exponen-
tielle réelle, il est souvent utilisé dans I’enseignement francais
depuis quelques années; le second utilise les propriétés les plus
simples de I'intégrale, y compris la notion de convergence sur
un intervalle infini; le troisiéme utilise I'intégrale curviligne.
Ces exposés pourraient étre modifiés de bien des facons que le
lecteur apercevra aussitdt; ils n’ont d’ailleurs d’autre prétention
que d’attirer ’attention sur une question pédagogique intéres-
sante.

D’une facon générale, appelons fonciion exponentielle une
fonction f définie pour tout nombre réel, & valeurs réelles ou
complexes, continue et non constante, vérifiant 1'identité

fle+y)=1flz).fy) (1)

Disons qu’une fonction exponentielle est réelle si ses valeurs sont
réelles, et unitaire (qu'on nous pardonne cette définition !) si ses
valeurs sont des nombres complexes de module 1. Il suffit
d’étudier ces deux cas, car toute autre fonction exponentielle
est manifestement le produit d’une fonction exponentielle réelle
et d’une fonction exponentielle unitaire.

On notera C P'ensemble des nombres complexes, R celui des
nombres réels, Z celui des entiers, D celui des fractions réelles
dont le dénominateur est une puissance de 2, kZ et kD 1’ensemble
des produits par £ des éléments de Z ou de D. On sait que D est
partout dense sur R.

PREMIER EXPOSE

Théoréme 1. — 11 existe une et une seule fonction exponentielle
réelle f telle que f (1) soit égal & un nombre positif donné
a #+ 1.
La démonstration de I'unicité de f est facile: une fonction
continue sur R est déterminée par ses valeurs sur D ; mais comme
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I'identité, déduite de (1), (f (x))?2 = f (2x), entraine, d’une part,
que les valeurs de f sont positives, d’autre part que f(x) est
necessairement la racine carrée positive de f (2x), la fonction f
est connue sur D des qu’elle 'est sur Z; a cet égard, si n est un
entier positif, on a nécessairement f (n) = a" et f (— n) = 1/f (n);
d’ou le résultat. ‘

La démonstration de I'existence de f se fait & ’envers; on
commence par vérifier que la fonction f définie comme précé-
demment sur Z possede la propriété (1) et la propriété

f(x) >1 pour x>0 (2)

si 'on a supposé, comme on peut le faire, a > 1.
Si Pon définit, pour z E%Z, f (r) comme la racine carrée
positive de f (2z), ceci est cohérent avec la définition de f sur Z

d’apres la propriété (1), et on voit aussitdot que, sur %Z, f vérifie

encore les propriétés (1) et (2); de méme pour—j;Z, %Z, ..y C'est-
a-dire enfin pour D.

Les relations (1) et (2) prouvent que f est croissante sur D;
pour prouver qu’elle est continue, 1l suffit, d’apreés (1) de prouver
que f (x) tend vers 1 lorsque z, positif, tend vers O; or, f étant
croissante, f (x) a une limite b lorsque z, positif, tend vers O;
et cette limite, étant aussi celle de f(2z) = (f (z))?, vérifie
b = b2 donc b = 1.

Ainsi f, étant croissante et continue sur D, se prolonge en
une fonction sur R qui a les mémes propriétés — y compris (1) —
d’apres les résultats élémentaires sur les limites. Cette fonction
est notée z — a”.

La formule

(a*)¥ = o™V (3)

résulte de I'unicité, car chaque membre est une fonction expo-
nentielle réelle de y, égale & a* pour y = 1.

Dérivée de Uexponentielle réelle

L’inégalité de la moyenne arithmétique et de la moyenne
géométrique, jointe & (1), montre que I'on a
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X+
[5)
a - <

%(a’C + oY)
d’ou 'on déduit, comme I’on sait, que a* est convexe, donc déri-
vable 4 droite et & gauche en tout point; en fait, les formules

(gt _ g — ax<1( h_1)>, A gh—) = a"h<71;( h_1)>

h h —h

prouvent que —1}; (a" — 1) a une limite ¢ (a) lorsque % tend vers 0,

et que a® a pour dérivée a* q (a).
Or il est aisé de voir que «* prend toute valeur positive (sl
a* avait une limite pour -~ + o ou - — oo, cette limite b
vérifierait encore b2 = b) donc, quel que soit d > 0, il existe &
réel tel que d = a*, et par suite, d’aprés (3), d* = a™*; la dérivée
a Dorigine de cette fonction de z est k¢ (a), donc 1l existe un
choix et un seul de d tel que la fonction d* ait pour dérivée 1
a Porigine; on désigne ce nombre d par e; on a e?® = a, done
g (a) = log a si I'on désigne ainsi la fonction réciproque de
x—¢e*. On a donc établi:
Théoréme 2. — 11 existe un nombre e et un seul tel que la fonction
e* soit sa propre dérivée; si log en est la fonction réciproque,
la dérivée de a* est a* log a.

Remarque. — La dérivée a l'origine de 2% est inférieure a
1
21— 1 . ek T
T = 1, celle de 4% est supérieure a = 1, donc on a
- E
2 <e <4

Cette méthode de définition de I'exponentielle réelle étant
rappelée, passons a ’exponentielle unitaire. Nous utiliserons le
fait que tout nombre complexe X + 7Y non nul a deux racines
carrées x -+ 1y opposées, ce qui résulte facilement de la consi-
dération du systeme 2?2 — y2 = X, 22y = Y en nombres réels.
Remarquons que d’apreés 'identité (1) les périodes d’une fonction
exponentielle f ne sont autres que les nombres z tels que
f(z) = 1.

Théoréeme 3. — §’il existe une fonction exponentielle unitaire

e (z), ses périodes sont les multiples entiers d’un certain

nombre positif 2p, dont la donnée détermine la fonection a
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la conjugaison pres; réciproquement, si p est un nombre > 0

quelconque, 1l existe une fonction exponentielle unitaire

e, (x) dont les périodes sont exactement les multiples entiers

de 2p.

Désignons par ¢ (x) et s (z) la partie réelle et la partie ima-
ginaire d’une fonction exponentielle unitaire e (x) (il serait vain
de dissimuler que c¢ (z) et s (x) sont le cosinus et le sinus de
I’angle de mesure z, lorsque la mesure de ’angle plat est p;
mais, pour I'instant, existence et 'unicité de ces fonctions sont
encore en question) et démontrons d’abord I'unicité.

En remplagant dans (1) x et y par %(x + y) et £ %(x — ),

on trouve 'identité
c(x)—c(y):zs(”;y)s(y_;f) (4)

Montrons d’abord Uexistence de périodes. — Si e (x) ne prenait
pas la valeur 1 pour z # 0, i1l ne prendrait pas non plus la
valeur — 1, car e (2x) = (e (x))?, donc s (x) serait non nul pour
x # 0, donc de signe constant pour z > 0, donc, d’aprés (4),
¢ (x) serait monotone sur 'intervalle (0, 4+ oo ), donc aurait une
limite pour x — + oo ; donc e (x) aurait une limite b pour
x— + oo, laquelle limite serait aussi celle de e (2z) = (e ())?
donc b = b2 et, par suite, b = 1; done ¢ () serait constamment
égal & 1, et aussi e (x), contrairement a I’hypothése.

Les périodes de e (x) constituent un sous-groupe (additif)
fermé de R, qui est de la forme 2pZ, avec p > 0.

Comme e (p) = — 1, e (x) ne peut étre réel pour 0 <z < p,
sinon il y aurait une période positive plus petite que 2p; donc
s (x) a un signe constant pour 0 < x << p, et on peut supposer
que c’est le signe +, quitte & remplacer la fonction par sa conju-
guée (qui est aussi son inverse); cette convention entraine que

e(p) = i,dou e<x + %) = te(x) et par suite s (x + %) = @ (%).
On voit alors que les signes et la variation des fonctions ¢ et s
sont donnés par le tableau suivant:




o
o
o
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2 mod 2p 0 p/2 p 3p/2 2p
+ 0 — 0 +
¢ (x)
1 décroit — 1 croit 1 (5)
0 + 0 — 0
s (x)
0 croit 1 décroit — 1 croit 0

Le signe de s (z) se déduit de la convention, de (1) et de
e (p) = — 1; le sens de variation de ¢ (x), de la formule (4); son
signe, de la connaissance de sa variation et de ses zéros; enfin,

le sens de variation de s (x) résulte de s <:c 4 %) = ¢ (x).

Il est alors clair que la fonction e (x) est déterminée par la
valeur de p et la convention faite. En effet, il suffit de montrer
qu’elle est déterminée sur pD; mais e (z) est nécessairement
celle des deux racines carrées de e (2z) dont la partie imaginaire
a un signe conforme au tableau (5), de sorte que e (z) est déter-
minée sur pD, puisqu’elle 'est sur pZ.

Démontrons maintenant U'existence de la fonction e (z), p étant
fixé.

En posant e (2p) =1, e(p) = — 1, e(%) = 1, e<3p—§> = — 1,
il est clair que l'identité (1) est vérifiée sur %Z, et que le signe
de s (x) est conforme au tableau (5).

Définissons alors e (x) sur %Z en stipulant que e (z) est celle
des deux racines carrées de e (2x) dont la partie imaginaire s (x)
a un signe conforme au tableau (5); de méme sur %Z, ete. 11

suffit de démontrer que lors du passage de pZ/2"! a pZ/2"
I'identité (1) est conservée, car la cohérence des définitions en
résulte. Or on déduit de la définition de e (x) I'identité

s (2z) = 2s (z) ¢ (z) | (6)

qui prouve que, si les signes du tableau (5) sont respectés, sur
pZ[2", pour s (x), ils le sont aussi pour ¢ (), de sorte que e <x + %)
et e () sont égaux et non pas opposés. Posons alors

L’Enseignement mathém., t. III, fasc. 3. 15
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x=hkz+2 y=~nh

% %—I—y’ h, kEZ O<x’<% O<y’<%-
L’identité (1) vaut donc pour z et y & la condition nécessaire
et suffisante qu’elle soit valable pour z' et y’; il suffit donc de
vérifier que s (2" + y') et s(z') ¢ (y') + ¢ (2') s (¥') sont égaux,
et non pas opposés; mais ceci est clair, car les deux termes sont
positifs.

Ainsi e (x) peut étre définie sur pD en respectant les signes
du tableau (b); et par suite aussi les sens de variation d’apres (4).
De la décroissance de ¢ (x) sur 'intervalle (0, p) résulte I'exis-
tence d’une limite, lorsque x tend vers 0, pour ¢ (z), donc aussi
pour e (x); mais cette limite b vérifie encore b = b, donc est
égdle a 1; done, d’apres (1), e (x) est continue sur pD; on peut
donc, en préservant la continuité, prolonger & R la définition
de ¢ (x), qui est monotone par intervalles, donc aussi de e ().

Il conviendrait assurément de noter e, c,, s, les fonctions
ainsi obtenues; mais continuons a sous-entendre 'indice p pour
I'instant.

Dérivée de Uexponentielle unitaire

D’apres (1), la dérivabilité de e (x) équivaut a I'existence de
la limite, pour k tendant vers O, de
1 s

(e(r) —1) = 5-(c(h) —1) + 1—

> =

Il est donc nécessaire que s (k)/h ait une limite quand % tend
vers 0; c’est aussi suffisant, car

wem—n=—3(s(g)) = —(3)(-(3)/3)

tend vers O si s (h)/h a une limite.

Or Texistence de cette limite résulte du fait que sur l'inter-
valle (0, p) la fonction s est concave, puisque I'identité déduite
de (1)

s (x + y)—%(S(Qx) + s (2y)) = (s (&) — s (y)) (¢ (y) — c(2)

montre que le premier membre est positif sur I'intervalle (O, %)
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les fonctions s et ¢ y variant en sens contraire; 'éventualite
d’une limite infinie n’est pas a retenir, car elle entrainerait que

la fonction s ait pour dérivée 4 oo sur Pintervalle <O, %), ce qui

contredit le fait que pour % assez grand s (x) — Az ne peut
croitre constamment sur cet intervalle.

Remarque. — Si r est la limite de s (2)/h, il en résulte que la
fonction t = s/c a pour dérivée r/c?, qui est une fonction crois-

sante sur 'intervalle (O, %); donc ¢ est convexe sur cet intervalle,

s P _ 1+ l
avec la méme dérivée & 'origine, r, que s; comme e ik
E] -
on a s (%) o= —\—é—— et t<3> = 1, done r vaut au moins 7S <%> =
9 A /
\/ et au plus — 1 p) = .
p 4 p .
Deﬁmtwn du nombre =. — C’est le nombre p tel que la déri-

vée & l'origine de e, (r) soit ¢ (c’est-a-dire r = 1); on a donec

24/2 < ® < 4. On pose, bien str, e_(z) = e, c_ (x) = cos z,

s.(r) =snax, t_(x) =tga. Ona done établi:

Théoréme 4. — 11 existe un nombre =, et une fonction exponen-
tielle unitaire e dont les périodes sont les multiples entiers
de 2x, dérivable et de dérivée ¢ e™*. Toute fonction exponen-
tielle unitaire est de la forme z — ¢~ avec k réel.

DEUXIEME EXPOSE

En intégrant I'identité (1) par rapport & y, on voit que toute
fonction exponentielle f vérifie

b b 2bFX

f@) [(flwldy = [ fle+ydy= [ fludu
a (2o} [Ae A
donc est dérivable et proportionnelle & sa dérivée, d’on le lemme:

Lemme. — Toute fonction exponentielle vérifie une équation
différentielle de la forme

’

y = ry (7)

ou r est une constante, réelle pour une fonetion réelle, et
imaginaire pure pour une fonction unitaire.
Ce dernier point résulte de ce que yy = 1 entraine
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y'y 4+ y y=0,doncr -+ r = 0; réciproquement, r imaginaire
pure entraine yy constant pour toute solution de (7).

Fonctions exponentielles réelles

Au changement prés de z en rz, elles vérifient ’équation

différentielle
v =y. (8)

Montrons que cette équation possede une solution et une seule,
prenant la valeur 1 pour x = 0.

S1 une solution f (x) ne s’annule pas, et est par exemple posi-
tive, sa dérivée aussi, donc f est strictement croissante, done
admet une fonction réciproque z = g (y) vérifiant g’ (y) = 1/y.

Yy
Inversement, posons, pour y > 0, logy = f d—;; la fonction
1

log est strictement croissante et prend toute valeur réelle; en
effet, on a l'identité

Wdr /"ydt+ [xyd_t: {’ydt Tdt

log 2y = == =+ =
Lfl. t 12 ey ! Jy ot

= logz +logy, (9)

done si log y avait une limite b pour y — 0 ou pour y - + o,
cette limite vérifierait b = b -+ log x, ce qui est impossible.

Ainsi la fonction x = log ¥ admet une fonction réciproque
partout définie, positive, croissante, continue et vérifiant (1),
qu’on désignera par y = € .

Si une fonction f (x) vérifie (8) et s1 f (0) = 1, alors ™ f (x)
a une dérivée nulle, donc est constante et égale & 1, ce qui prouve
Punicité annoncée.

De ceci, on déduit facilement les théoremes 1 et 2.

Remarque. — Lie nombre e = ¢! est ici défini par I'égalité
["% — 1, dou 'on déduit facilement 2 < e < 4.

1
Autre remarque. — I.’application & 1'équation (8) de la mé-

“thode des approximations successives donne la série

ex:1+x+}2—x2+%x3+...
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. s r.1
d’olt e_1+1—|—2+6...-—2,7...

Foncttons exponentielles unitaires

Au changement prés de z en kz, elles vérifient I’équation
y =1y (10)

On a vu qu’une solution de cette équation ne peut s’annuler
qu’identiquement; donc §’il existe une solution e (z) égale a 1
pour x = O (donc a valeurs de module 1), cette solution est
unique, et c’est une fonction exponentielle unitaire, car les
fonctions z — e (x + y) et z — e () e (y) sont deux solutions de
(10) prenant la méme valeur pour x = 0, donc sont 1dentiques.

Désignons par ¢ (), s (x) les parties réelles et imaginaires de
la solution éventuelle e (z), et par t(z) le quotient s (z)/c (z
pour ¢ (x) #% 0, ¢’est-a-dire e (x) % -+ 1; on a alors

[
V)
=
I
<
—
—

s'=c¢ ¢ =—s c(0) =

=14 ® t(0) =

>
-
b
S——

La fonction ¢ est croissante, donc a une fonction réciproque x (¢)
de dérivée 1 4 2
Inversement, considérons pour ¢ réel quelconque

Arc tgt:({) T (13)
Cette fonction Arc tg est continue et croissante, avec une limite

finie pour ¢ — + oo ; en effet, pour ¢ > 1 on a

Lodu du du du
.[1+u2<{) + u? ./7 6
Désignons cette limite par %, la fonction réciproque ¢ = tg x
est donc définie (pour I'instant) sur Pintervalle <—— =, + >

continue et croissante; en posant

14 it
V1 F 2 4]

e(x) =
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on définit une solution de (10) égale & 1 pour x = 0, définie sur

I'intervalle | — %, - %), de partie réelle positive; de plus, elle
reste continue si I’on pose e (— %) = — et e<%> = L.

Prolongeons la définition de e () & R en posant e (z 4 =)
= — ¢ (r): on voit aussitdt que e (x) est continue sur R; elle est
dérivable, avec dérivée vérifiant (10), sauf peut-8tre aux points

(k + 5) =, k étant entier. Il est aisé de se défaire de cette restric-

/

tion, en raisonnant, par exemple, comme suit:

La fonction ez -+ %} — e (x) est nulle, par exemple pour

r = — = donc étant solution de (10) pour — = < z < 0, elle
4 - 2 !

est nulle sur cet intervalle, donc aussi, par le prolongement, pour

tout r non multiple entier de =; done, étant continue, elle est
identiquement nulle; et, comme e(x + %) est dérivable pour

, 1 ‘
r= k- —9—):, e(x) Pest aussi, avec la valeur correcte de la
dérivée.

On a donc prouvé les théoremes 3 et 4.

Remarque. — De tg% = 1, on déduit

T /'1 du
4_'0 1+ u?’

d’ou T'on déduit immédiatement 2 < = < 4, et facilement
~ =31 ..

Autre remarque. — Soit r = u + tv un nombre complexe
quelconque, la fonction exponentielle solution de (7) n’est autre
que €™ ™, qu'on posera égal a e™; ceci définit, en faisant
r = 1, ¢ pour r complexe de facon compatible avec ce qui
précede, avec (1) et avec le développement en série.

TROISIEME EXPOSE

~ La fonction de variable complexe

1

1
— z2 — 73
il (15)
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est partout définie et vérifie I'identité différentielle

de* = é*dz (16)
Théoréme. — Pour que les nombres complexes z et y, ce dernier
non nul, vérifient y = ¢, il faut et il suffit qu’il existe un
chemin ¢ d’origine 1, d’extrémité y, évitant 0, tel que
d -
[5= (17)
Démonstration. — « I1 suffit »:

Soit u = g (t) la fonction de ¢(0 < ¢ < 1) définissant le
chemin ¢; g est supposée non nulle, continue, et par morceaux
continfiment dérivable, avec g (0) = 1 et g (1) = y; par hypo-
thése, on a

du g ()
/C’i[*./ g

D’apres (16), on a
f () g(t)=71()g (1)

donc le rapport f (t)/g (t) est constant par morceaux, donc cons-
tant par continuité, donc égal a 1 puisque f (0) = g (0) = 1; de
sorte qu'on a pour t = 1

y =g(1) =f(1) = ¢€° c.q.f.d.
« Il faut »:
Pour tout = a + b, 1l existe un chemin ¢ tel que (17);
en effet, définissons ¢ comme composé d’un chemin ¢’ sur ’axe
réel et d’'un chemin ¢"’ sur un cercle centré en 0; le choix de ¢’

pour que f ‘—i—: = @ est possible puisque l’intégrale /d—; est
“c

divergente en 0 et & l'infini; d’autre part, si on parameétre un
cercle centré & I'origine, privé de son point négatif, par

1 — ¢2 2% ... . 1+
— —_— — ? A : _—
X—R1 z SE_—R1 s c’est-a-dire X—I—LY_R1 -
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on a, sur ce cercle
*du .2 dt
[ =2
u 1+ 2

4+ : ;
1 4 2 . . < 4z
f Zz = est un nombre fini non nul, noté =, et I'intégrale

. . . du r
sur le cercle entier vaut 2ir; le choix de ¢’’ pour que f — = b
t cll
est donc toujours possible.

D’apreés «il suffit », extrémité y du chemin ¢ tel que (17)
est e*.

Remarque. — Le chemin ainsi défini n’a pour extrémité 1
que si x est multiple entier de 2iw; donc ces nombres sont les
seuls tels que e = 1.

Autre remarque. — Si
> du du du
/ — =, —_— =Y, on a [ -_ = X + Yy,
t c u € d u L] C+exd u

et le chemin ¢ + ¢*d a pour extrémité e* eV, donc on a (1).

Regu le 13 mars 1957.
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