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HERMANN WEYL (1885-1955)

PAR

C. CHEvALLEY et A. WEIL

« Quand Hermann Weyl et Hella annoncérent leurs fian-
cailles, I’étonnement fut général que ce jeune homme timide et
peu loquace, étranger aux cliques qui faisaient la loi dans le
monde mathématique de Gottingen, elit remporté le prix
convoité par tant d’autres. Ce n’est que peu & peu que l'on
comprit & quel point Hella avait eu raison dans son choix...1»

Peut-étre les vérités mathématiques, comme les femmes,
font-elles leur choix entre ceux qu’elles attirent. Est-ce le mieux
doué qu’elles choisissent, ou le plus séduisant ? celui qui les
désire le plus ardemment, ou celui qui les a le mieux méritées ?
Elles semblent se tromper parfois; souvent il faut du temps pour
s’apercevoir qu’elles ont eu raison. Timide, peu loquace, étranger
aux cliques, tel apparaissait donc Hermann Weyl & ses débuts;
tel i1 devait rester au fond de lui-méme, en dépit des succés
d’une brillante carriere. Comme beaucoup de timides une fois
rompues les barrieres de leur timidité, il était capable d’enthou-
siasme et d’éloquence: « Ce soir-1a, dit-il en racontant sa premiére
rencontre avec celle qu’il devait épouser 2, je déerivis I'incendie
d’une grange auquel je venais d’assister; elle me dit plus tard
qu’d m’écouter elle s’était éprise de moi aussitot. » Ses propres
confidences nous le montrent profondément influencable aussi,
Jusque dans sa pensée la plus intime: « Mon tranquille positivisme

1 Extrait des paroles prononcées par Courant aux obséques de Hella Weyl le
9 septembre 1948.

2 Cette citation, comme plusieurs autres par la suite, est tirée d’une notice inédite
consacree par Hermann Weyl 4 la mémoire de Hella Weyl. Nos autres citations pro-
viennent des publications de Weyl.
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fut ébranlé quand je m’épris d’une jeune musicienne d’esprit
trés religieux, membre d’un groupe qui s’était formé autour
d’un hégélien connu... Peu aprés, j’épousai une éléve de Husserl;
ainsi, ce fut Husserl qui, me dégageant du positivisme, m’ouvrit
Pesprit & une conception plus libre du monde. » Il avait alors
vingt-sept ans.

(’est ainsi qu’on voit se dessiner, vers I’époque de son
mariage, quelques-uns des principaux traits d’une des per-
sonnalités mathématiques les plus marquantes et attachantes
de la premiere moitié de ce siécle, mais aussi de 'une des plus
difficiles & serrer de pres. « A country lad of eighteen », un gars
de campagne de dix-huit ans, ainsi se décrit-il lui-méme a son
arrivée a Gottingen. « J’avais choisi cette université, dit-il, prin-
cipalement parce que le directeur de mon lycée était un cousin
de Hilbert et m’avait donné pour celui-ci une lettre de recom-
mandation. Mais il ne me fallut pas longtemps pour prendre la
résolution de lire et étudier tout ce que cet homme avait écrit.
Dés la fin de ma premiére année, J’emportai son Zahlbericht
sous mon bras et passail les vacances a le lire d’un bout a I'autre,
sans aucune notion préalable de théorie des nombres ni de
théorie de Galois. Ce furent les mois les plus heureux de ma
vie... 3

Un peu plus tard, ce sont les joies de la découverte: « Un
nouvel événement fut décisif pour moi: je fis une découverte
mathématique importante. Elle concernait la loi de répartition
des fréquences propres d’'un systéeme continu, membrane, corps
élastique ou éther électromagnétique. Le résultat, conjecturé
depuis longtemps par les physiciens, semblait encore bien loin
alors d’une démonstration mathématique. Tandis que j’étais
fiévreusement occupé & mettre mon idée au point, ma lampe &
pétrole avait commencé & fumer. Quand je terminai, une épaisse
pluie de flocons noirs s’était abattue sur mon papier, sur mes
mains, sur mon visage.» A ce moment, il est déja privatdozent
a Gottingen. Bientdt c’est le mariage, la chaire & Zurich, la

3 « De toute mes expériences spirituelles, écrit-il ailleurs, celles qui m’ont comblé
de la plus grande joie furent, en 1905, quand j’étais étudiant, I’étude du Zahlberichl et,
en 1922, la lecture de maitre Eckhart qui me retint fasciné pendant un splendide hiver
en Engadine. »
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guerre. Au bout d’un an de garnison a Sarrebruck (comme
simple soldat, précise-t-il), le gouvernement suisse obtient qu’il
soit rendu a son enseignement & 1'Ecole polytechnique fédérale.
« Je ne puis guére me souvenir d’un instant de joie plus intense
que le beau jour de printemps, en mai 1916, ot Hella et moi
franchimes la frontiére suisse, puis, arrivés chez nous, descen-
dimes de nouveau jusqu’au lac a travers la belle ville paisible. »

Il reprend ses travaux. Un cours professé & Zurich sur la
relativité parait en volume, en 1918; c’est le célebre Raum, Zeu,
Materie, qui connait cing éditions en cing ans et, profitant de
la vogue extraordinaire du sujet jusque parmi les profanes,
répand le nom de Weyl bien au-dela du monde des mathéma-
ticiens ou sa réputation n’était plus a faire. Les offres de chaires
viennent d’un peu partout; celle de Gottingen en 1922, ou 1l
s’agissait de la succession de Klein, fut I'occasion pour lut d’un
débat de conscience particuliérement difficile. Ayant retardé
sa décision tant qu’il pouvait, ayant encore au dernier moment
parcouru avec sa femme les rues de Zurich en pesant sa réponse,
il partit enfin au bureau de poste pour télégraphier son accepta-
tion. Arrivé devant le guichet, ce fut un refus qu’il télégraphia;
il n’avait pu se résoudre a échanger sa tranquillité zurichoise
contre les incertitudes de I’Allemagne d’apres guerre. « L.’éton-
nement de Hella, dit-il, fut sans bornes; les événements ne
tardérent pas a me donner raison. » S

Mais en 1929, quand Gottingen lui offre la succession de
Hilbert, il se laisse tenter. « Les trois années qui suivirent, dit-il,
furent les plus pénibles que Hella et moi ayons connues. » C’est
le nazisme, d’abord imperceptible nuage & I’horizon, qui grandit
a vue d’ceil, s’abat en trombe sur I’Allemagne en désarroi, y
recouvre tout de boue sanglante. Par bonheur pour Hermann
Weyl, I'Institute for Advanced Study de Princeton, nouvelle-
ment créé, offre de le sauver du désastre. Il hésite. Il accepte,
1l refuse. Il accepte de nouveau I’année suivante; c¢’est de Zurich
quil envoie sa démission a Gottingen en 1933 et qu’il part pour
P’Amérique.

Il n’eut donc pas & subir ce stage souvent long, parfois
humiliant et pénible, que les circonstances ont imposé & beau-
coup de savants réfugiés aux Etats-Unis. La chaire de I'Institute
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lui assura d’emblée le confort matériel et la situation de premier
plan dans le monde scientifique américain auxquels tout, certes,
lui donnait droit. Ce furent, dit-il, des années heureuses que
celles qu’il passa a Princeton. Sans doute ne s’accoutuma-t-il
jamais a porter aisément ce qu’il appelle «le joug d’une langue
étrangere ». Mais, grace au respect et a I'affection qui 'entou-
rerent dés I’abord, il se sentait enfin chez lui; et on sent percer
a nouveau le gars de campagne des premiers jours de Gottingen
lorsqu’il dépeint le plaisir qu’il éprouva, en 1938, & posséder son
lopin de terre et & y batir sa maison. Si la mort de sa femme,
en 1948, le déchira cruellement, un second mariage, quelque
temps apres, lul fit retrouver son équilibre. Ayant pris sa retraite
a I'Institute, 1l partagea désormais son temps entre Princeton
et Zurich. Une attaque cardiaque I’emporta a I'improviste, peu
apres les fétes de son soixante-dixiéme anniversaire.

A son arrivée en Amérique, il avait déja donné en mathéma-
tique le meilleur de lui-méme, et il le savait. Pour tout autre
que lui, la tentation elt été grande de se reposer sur ses lauriers,
de s’abandonner & un role de « pontife ». Combien n’en est-il pas
dont toute l'activité, passé un certain age, consiste a aller de
commission en commission, pour y discuter gravement des
mérites de travaux de «jeunes» qu’ils n’ont pas lus, qu’ils ne
connaissent que par oui-dire! Hermann Weyl se faisait une
bien autre et bien plus haute idée de son métier de professeur.
I1 vit que Princeton seul, a notre époque, peut étre ce qu’ont été
autrefois Paris, puis GoOttingen: un centre d’échanges, un
« clearing-house » des idées mathématiques qui circulent de par
le monde. Rappelant l'intense vie mathématique qui s’était
développée autrefois & Gottingen sous I'influence dominante de
Hilbert, il a écrit: « Les idées font boule de neige en un pareil
point de condensation de la recherche »; et il ajoute: « Nous avons
assisté & quelque chose de semblable ici & Princeton pendant les
premieres années d’existence de I’Institute for Advanced Study. »
Sl en a 6té ainsi, c’est en grande partie & lui qu’en revient le
mérite. 11 se donna pour tdche principale de se maintenir au
courant de 'actualité, de renseigner et éclairer les chercheurs,
de leur servir d’interprete, de comprendre mieux qu’eux ce
qu’ils faisaient ou essayaient de faire; il s’y consacra en toute
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modestie, conscient de faire ceuvre utile, conscient d’y étre
irremplacable. Dans sa production, qui, pendant toute cette
période, reste abondante et d’une extraordinaire variété, on
retrouve la trace de ses lectures, des séminaires et discussions
auxquels il prenait part, des problémes sur lesquels de tous cotés
on sollicitait ses avis. Parmi ces travaux, il n’en est gueére qui
n’élucide un point difficile ou ne comble une lacune facheuse.
Cette activité s’est poursuivie jusque dans ses dernieres années.
Par une supréme coquetterie peut-étre, sa derniére publication
aura été une édition rajeunie, complétement refondue, de son
premier livre, livre toujours utile, encore actuel, auquel par
cette révision il a donné une vitalité nouvelle. Qui de nous ne
serait satisfait de voir sa carriére scientifique se terminer de
meme ?

*
* *

Un Protée, qui se transforme sans cesse pour se dérober aux
prises de l’adversaire, et ne redevient lui-méme qu’apres le
triomphe final: telle est I'impression que nous laisse souvent
Hermann Weyl. N’est-il pas allé, poussé par le milieu sans doute,
par l'occasion, mais aussi par «l'inquiétude de son génie »,
jusqu’a se muer en logicien, en physicien, en philosophe ?
L’axiome Ne sutor ultra crepidam nous interdit de le suivre si
loin en ses métamorphoses. Mais, dans son ceuvre mathématique
méme, il n’est que trop fréquent qu’il vous glisse entre les mains
lorsqu’on croit le mieux le saisir; et il faut avouer que la tache
de ses lecteurs n’en est pas facilitée. Il est vrai qu’il appartient
a une période de transition dans P’histoire des mathématiques
et qu’il s’en est trouvé profondément marqué. Souvent il a pu
prendre un plaisir grisant & se laisser entrainer ou ballotter par
les courants opposés qui ont agité cette époque, stir d’ailleurs
au fond de lui-méme (comme lorsqu’il s’abandonna un moment
a I'intuitionnisme brouwérien) que son bon sens foncier le
garantirait du naufrage. Son ceuvre a grandement contribué a
ce changement de vision qui a fait passer de la mathématique
classique, fondée sur le nombre réel, 4 la mathématique moderne,
fondée sur la notion de structure. L’emploi systématique et tout
abstrait du revétement universel, la notion de variété analytique
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complexe, 'emploi courant et la popularisation, jusque parmi
les physiciens, de I'algébre vectorielle et du concept d’espace de
représentation d’un groupe, tout cela vient avant tout de lui.
Mais, s’il était trop éléve de Hilbert pour ne pas inclure parmi
ses outils la méthode axiomatique, s’il était trop mathématicien
aussi pour en dédaigner les succes (son chaleureux éloge de
Iceuvre d’Emmy Noether serait 1a, si besoin était, pour en faire
foi), ce n’était pas a elle qu’allaient ses sympathies. 1l y voyait
«le filet dans lequel nous nous efforcons d’attraper la simple,
la grande, la divine Idée »; mais, dans ce filet, il semble avoir
toujours craint que l'on n’attrapat que des cadavres. A la
dissection impitoyable sous le jour cru des projecteurs, il préfé-
rait, en bon romantique, le jeu troublant des analogies, auquel
se préte si bien le langage de la métaphysique allemande qu’il
affectionnait. Plutdot que de saisir I'idée brutalement au risque
de la meurtrir, 1l aimait bien mieux la guetter dans la pénombre,
I’accompagner dans ses évolutions, la décrire sous ses multiples
aspects, dans sa vivante complexité. Etait-ce de sa faute si ses
lecteurs, moins agiles que lui, éprouvaient parfois quelque peine

a le suivre ?

*
% *

« Le véritable principe de Dirichlet, a dit Minkowsk: dans un
passage que Weyl citait volontiers, ce fut d’attaquer les pro-
bléemes au moyen d’un minimum de calcul aveugle, d’un
maximum de réflexion lucide. » Et Weyl a écrit de son maitre
Hilbert: « Un trait caractéristique de son ceuvre, ¢’est sa méthode
d’attaque directe; s’affranchissant de tout algorithme, il revient
toujours au probleme tel qu’il se présente dans sa pureté origi-
nelle. » En deux ou trois occasions, il a atteint pleinement lui-
méme & cet idéal de perfection classique, par exemple dans son
travail de 1916 sur 1’égale répartition modulo 1, et encore dans
ses mémoires jumeaux sur les fonctions presque périodiques et
sur les représentations des groupes compacts. Comme il est
naturel, ce sont la, parmi ses travaux, ceux qu’on relit avec le
plus de plaisir, ceux dont il est le plus facile aussi de rendre
compte. Aussi est-ce par eux que nous commencerons, renon¢ant
& un ordre logique impossible & suivre lorsqu’il s’agit d’analyser
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une ceuvre aussi riche. L’origine du premier, nous dit-il, se
trouve dans un travail sur le phénomeéne de Gibbs, ou s’était
présentée incidemment une question d’approximation diophan-
tienne; il s’était agi de faire voir que tout nombre irrationnel o
peut étre approché par une suite de fractions p, /g, satisfaisant
aux conditions ¢, = o (n), | « — p,/¢, | = o (1/n). Un peu plus
tard DPattention de Weyl fut attirée par F. Bernstein sur
le probléme du mouvement moyen en mécanique céleste,
probléme qui remontait & Lagrange, et dont Bohl s’occupait
alors; il s’agit 1a de déterminer le comportement asymptotique,
pour ¢t - oo, de Pargument d’une somme finie d’exponentielles
Ya, e (A, 1), les &, étant réels 4. Ce fut I'occasion pour lut d’obser-
ver d’abord que son lemme diophantien entrainait aisément
’égale répartition modulo 1 de la suite (na) pour o irrationnel,
résultat qui fut obtenu en méme temps par Bohl et par Sier-
pinski. Mais Weyl, a I’école de Hilbert et surtout par ses propres
recherches sur les valeurs et fonctions propres, avait acquis un
sens trop juste de 'analyse harmonique pour s’en tenir la.
Convenons de désigner par M (z,), pour toute suite (z,), la
limite pour n — w0, si elle existe, de la moyenne des nombres
Ty «oy &y Dire que la suite () est également repartie modulo 1

1
équivaut a dire qu'on a M [f («,)] = f]‘(:c) dx pour certaines
0

fonctions périodiques particulieres, a savoir pour les fonctions
de période 1 qui coincident dans l'intervalle [0, 1] avec une
fonction caractéristique d’intervalle. Weyl s’apercut que, si
cette propriété est vérifiée pour les fonctions en question, elle
Iest nécessairement aussi pour toute fonction périodique de
période 1, intégrable au sens de Riemann, et en particulier pour
les caracteres e (nx) du groupe additif des réels modulo 1; réci-
proquement, si elle I’est pour ces derniéres fonctions, elle I’est
aussl, en vertu des théorémes classiques sur la série de Fourier,
pour toute fonction périodique intégrable au sens de Riemann,
de sorte que la suite («,) est également répartie modulo 1; la
démonstration de ces assertions est immeédiate. Le résultat sur
I’égale répartition modulo 1 de la suite (na) pour « irrationnel

4 Ici, comme dans tout ce qui suit, on pose e (f) = 27,
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découle de 1a aussitdt, sans aucun lemme diophantien; en rem-
placant le groupe des réels modulo 1 par un tore de dimension
quelconque, on obtient de méme, et sans calcul, la forme quan-
titative des célebres théoremes d’approximation de Kronecker.
Tout cela, si neuf a ’époque du travail de Weyl, nous parait a
présent bien simple, presque trivial. Mais aujourd’hui encore
le lecteur reste étonné de voir comme Weyl, sans reprendre
haleine, passe de la & I’égale répartition d’une suite (P (n)), ou
P est un polynome quelconque. Cela revient naturellement,
d’aprés ce qui précede, a I'évaluation des sommes d’exponen-
tielles Xe(P (n)), probléme qui avait été déja 1'objet des
recherches de Hardy et Littlewood. Plus précisément, il s’agit
de démontrer la relation

N

D e(P(n) = o)

n=0
lorsque ‘P est un polynome ou le coefficient du terme de plus
haut degré est irrationnel. Pour donner une idée de la méthode
de Weyl, qui (avec les perfectionnements qu’y ont apportés
Vinogradov et son école) est restée fondamentale en théorie
analytique des nombres, considérons le cas ou P est du second
degré. Posons donc:

N
Sy = Ee(anz—i—ﬁn),
n=0

« étant irrationnel. On écrira alors, comme dans I’évaluation
classique des sommes de Gauss:

-
s [ = sysy = > ele(m?—n?) + B(m—n))
m,n=0
+N
= Z e(wr + Br) Ee(Zarn) ,
r=—N nel,

ot on a substitué n 4 r & m, et ou I, désigne l'intersection des
deux intervalles [0, N] et [— r, N — r]. Si on désigne par o, la
derniére somme (celle qui est étendue a P'intervalle L), on a done
|5, |2 < 2|0, |. Comme o, est une somme de N + 1 termes
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au plus, on a | o, | < N 4+ 1 quel que soit r; comme d’autre
part o, est somme d’une progression géométrique de raison
e (2ar), on a aussi:

!cl !Sln Qnai)l'l-

Soit 0 < e < 1/2; en vertu de I’égale répartition des nombres
2¢r modulo 1, le nombre des entiers r de U'intervalle [— N, 4 N]
qui sont tels que 2ar soit congru modulo 1 & un nombre de I'in-
tervalle [— e, + <] est de la forme 4eN + o (N), et est donc
< 5eN dés que N est assez grand. Pour chacun de ces entiers,
onalo,| < N 4 1; pour tous les autres, on a | 5, | < 1/sin (me).
On a done, pour N assez grand:

2N+1
sin (7 €)

s¢2 < 5eN(N+1) +

Pour N assez grand, le second membre sera < 6¢N2; comme il
en est ainsi quel que soit ¢, on a bien sy = o (N). Si le degré du
polyndome P est d + 1 avec d > 1, la démonstration se fait de
méme (et non par récurrence sur d) au moyen d’un lemme sur
I’égale répartition modulo 1 d’une fonction multilinéaire de d
variables. Le résultat s’étend aux fonctions de p variables par
récurrence sur p.

Avec cet admirable mémoire, Weyl était déja tres pres des
fonctions presque périodiques. Il 8’y agissait, en effet, én premier
lieu, des sous-groupes cycliques et des sous-groupes & un para-
meétre d’un tore de dimension finie, tandis que la théorie des
fonctions presque périodiques traite, dirions-nous, des sous-
groupes a un paramétre d’un tore de dimension infinie. On peut
méme dire que cette théorie, qui suscita tant d’intérét pendant
une dizaine d’années a la suite des publications de H. Bohr en
1924, eut pour principale utilité de ménager la transition entre
le point de vue classique et le point de vue moderne au sujet des
groupes compacts et localement compacts. Au temps méme on
Weyl s’occupait & Gottingen d’égale répartition modulo 1, vers
1913, les premieres idées sur les fonctions presque périodiques y
étalent « dans ’air ». Le probleme du mouvement moyen portait
sur les sommes d’exponentielles, finies il est vrai, et Weyl en
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avait traité des cas particuliers, sans d’ailleurs approfondir la
question, qu’il ne devait résoudre complétement, toujours par
la méme méthode, que lorsqu’il 8’y trouva ramené vingt-cing ans
plus tard. Mais H. Bohr, alors éléve de Landau, s’occupait de
séries d’exponentielles en vue de 1'étude de { (s) dans le p'an
complexe, probleme auquel Weyl va bientét s’intéresser en
passant, déterminant méme par sa méthode le comportement
asymptotique de { (1 -+ if). D’autre part, les éleves de Hilbert
étaient accoutumés a considérer les termes de la série de Fourier
comme fonctions propres, et les coefficients de cette série comme
valeurs propres, d’opérateurs convenablement définis. I semble
donc que les voies fussent toutes préparées dans I’esprit de Weyl,
lorsque apparurent les premiers travaux de H. Bohr sur les
fonctions presque périodiques, pour reprendre la question du
point de vue des équations intégrales.

Mais il est rare qu'un mathématicien, qu’il s’agisse du plus
grand ou du plus humble, parcoure le plus court chemin d’un
point a un autre de sa trajectoire. Avant de revenir aux fonctions
presque périodiques a l'occasion d’une conférence de H. Bohr a
Zurich, Weyl avait mené a bien ses mémorables recherches sur
les groupes de Lie et leurs représentations, et avait congu 1’idée,
d’une audace extraordinaire pour 1’époque, de « construire » les
représentations des groupes de Lie compacts par la compléte
décomposition d’une représentation de degré infini. Blasés que
nous sommes par 'expérience des trente derniéres années, cette
idée ne nous étonne plus; mais son succes semble avoir fait effet
d’un vrai miracle & son auteur; « c’est la, répéte-t-11 & maintes
reprises, 'une des plus surprenantes applications de la méthode
des équations intégrales ». Déja 1. Schur avait étendu au groupe
orthogonal, au moyen de ’élément de volume invariant dans
I’espace de groupe, les relations d’orthogonalité entre coeflicients
des représentations que Frobenius avait découvertes pour les
groupes finis; mais il y avait loin de 1 & un théoréme d’existence.
Weyl n’hésite pas a introduire, sur un groupe de Lie compact,
I’algébre de groupe, toujours concue chez lui comme algebre
des fonctions continues par rapport au produit de convolution

h=1f*g, his)= [f(sc)g(t)adr,
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et dont il fait un espace préhilbertien au moyen de la norme
([ | 7|2 ds)%; les intégrales, naturellement, sont prises au
moyen de 1’élément de volume invariant que fournit la théorie
de Lie, et que Hurwitz avait sans doute été le premier & utiliser
systématiquement. Dans cet espace, I'opérateur f — ¢ * o * ],
ol  désigne la fonction ¢ (s) = ¢ (s7), est hermitien et comple-
tement continu; d’aprés la théorie de E. Schmidt, ses valeurs
propres forment donc un spectre discret, et & chacune correspond
un espace de fonctions propres de dimension finie, dont on
constate immédiatement qu’il est invariant par le groupe; c’est
donc un espace de représentation de celui-ci. Les théoréemes de
Schmidt fournissent alors le développement de ¢ suivant les
coefficients des représentations ainsi obtenues, développement
qui converge au sens de la norme. C’est la une généralisation
directe de la méthode de Frobenius basée sur la réduction de
la représentation réguliére d’un groupe fini; la seule différence,
comme 1’observe Weyl, ¢’est ’absence d’un élément unité dans
I'algebre d’un groupe compact; Weyl y supplée par un artifice
tiré de la théorie des séries de Fourier, & savoir 'approximation
de la masse unité placée a l'origine par une distribution de
masses & densité continue, concentrée dans un voisinage de
lorigine; la convolution avec celle-ci constitue un « opérateur
régularisant », d’emploi courant aujourd’hui, mais dont ¢’était
sans doute la premieére apparition dans le cadre de la théorie des
groupes de Lie; Weyl s’en sert pour démontrer que toute fonction
continue peut étre approchée, non seulement au sens de la
norme, mais méme uniformément, par des combinaisons linéaires
de coefficients de représentations.

Bien que le mémoire de Weyl se limitat nécessairement aux
groupes de Lie, 1l avait atteint en réalité, du premier coup, a
des résultats définitifs sur les représentations des groupes
compacts; aprés la découverte de la mesure de Haar, il n’y eut
pas un mot & ehanger a son exposé, et, chose rare en mathéma-
‘tique, 1l ne vint méme & personne I'idée de le récrire. Si, comme
nous le faisons aujourd’hui, on considére une fonction presque
périodique comme déterminant une représentation du groupe
additif des réels dans un groupe compact, et qu’on suppose
acquise pour celui-ci la notion de mesure de Haar, on déduit
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immeédiatement des résultats de Weyl exposés ci-dessus le
développement de la fonction en série d’exponentielles. Les
outils manquaient & Weyl, en 1926, pour adopter ce point de
vue; il y supplée en remplacant I'intégrale par une moyenne sur
la droite, définie comme limite pour T — -+ o de la valeur
moyenne sur intervalle [¢, ¢+ T] lorsque cette limite est
atteinte uniformément par rapport au parameétre t. En 1926, il
n’allait pas de soi que la théorie des équations intégrales s’appli-
quat a cette moyenne; Weyl est obligé de consacrer une bonne
partie de son travail & justifier cette application. Il convient
d’observer d’autre part que, sur un groupe compact, la maniére
la plus simple de construire la mesure de Haar consiste justement
a attacher a chaque fonction continue une valeur moyenne, par
un procédé directement inspiré de la théorie des fonctions
presque périodiques. Que Weyl, en revanche, ait cru voir dans
la théorie de Bohr « le premier exemple d’une théorie des repré-
sentations d’un groupe vraiment non compact » (par opposition
apparemment avec les groupes de Lie semi-simples dont les
représentations, dans son esprit, se ramenaient, par la « restric-
tion unitaire », & celles de groupes compacts), cela montre qu’il
se faisait encore quelque illusion sur le degré de difficulté des
problémes qui restaient & résoudre. Ce n’en est pas moins lui
qui a ouvert la voie & tous les progrés ultérieurs dans cette

direction.

*
* *

Sur le reste de son ceuvre d’analyste, nous serons beaucoup
plus brefs, d’autant plus qu’il a lui-méme excellemment rendu
compte d’une bonne partie de cette ceuvre dans sa Gibbs Lecture
de 1948. Débutant, il participa activement au courant de
recherches qui se proposait d’approfondir et d’appliquer & des
problémes variés d’analyse la théorie spectrale des opérateurs
symétriques. Citons particuliéerement, dans cet ordre d’idées, sa
Habilitationsschrift de 1910, ot 1l étudie un opérateur différentiel
autoadjoint L sur la demi-droite [0, + oo ]:

L = 4(r0%) — a0,
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ou p, ¢ sont a valeurs réelles et p (/) > 0. Sur tout intervalle
fini [0, 1], cet opérateur, soumis aux conditions aux limites du
type habituel, (du/dt), = hu (0), (du/dt), = A’ u(l), reléve de
la théorie de Sturm-Liouville ou, en termes modernes, de la
théorie des opérateurs complétement continus; le spectre est
réel et discret et se compose des A pour lesquels I'équation
Lu = »u a une solution satisfaisant aux conditions aux limites
imposées. Le passage a la limite [ - 4 oo fait apparaitre, non
seulement un spectre continu qui peut couvrir tout 'axe réel,
mais encore des phénomeénes imprévus dont la découverte est
due & Weyl. Les plus intéressants concernent le comportement
des solutions pour [ — + o lorsqu’on donne & A une valeur
imaginaire fixe; chose remarquable, ils sont indépendants du
choix de la valeur donnée a A. C’est ainsi que Weyl est amené
en particulier & la distinction fondamentale entre le cas du
« point limite » et le cas du « cercle limite »: I'une des propriétés
caractéristiques du premier, c’est que I'’équation Lu = du y
possede, quel que soit A imaginaire, une solution et une seule
de carré sommable sur [0, + oo ], tandis que toutes ses solutions
le sont, pour A imaginaire, dans le cas du cercle limite. Weyl
étudie aussi le passage a la limite [ - + o pour les développe-
ments de Sturm-Liouville sur [0, []; il en tire des formules inté-
grales ou apparaissent en général des intégrales de Stieltjes,
comme on pouvait s’y attendre. Le probleme des moments de
Stieltjes n’ect d’ailleurs pas autre chose que le probléme aux
différences finies, analogue & l’équation Lu = Ju sur la demi-
droite, et Hellinger fit voir par la suite que la méthode de Weyl s’y
transporte presque telle quelle. Mais Weyl put aussi la trans-
poser plus tard & un probleme différentiel ou le parameétre spectral
intervient non linéairement, ainsi qu’au probléme aux différences
finies correspondant (auquel il a donné le nom de probléme
de Pick-Nevanlinna); il apporta méme a cette occasion quelques
améliorations notables a son premier exposé. Si celui-ci a donné
lieu depuis lors & des généralisations assez variées, il ne semble
pas que la signification véritable des résultats de Weyl sur les
problemes & parametre non linéaire ait jamais été tirée au clair.

Une autre série de travaux traite de la répartition des
valeurs propres, dans divers problémes de type elliptique. Ils
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reposent principalement sur un principe qui plus tard fut
popularisé par Courant sous la forme suivante: si A est un
opérateur symétrique completement continu dans un espace
de Hilbert H, sa n-ieme valeur propre est la plus petite des
valeurs (¢« minimum maximorum ») que peut prendre la norme
de A, c’est-a-dire le nombre max (Ax, x)/(x, ), sur un sous-
espace de H de codimension n — 1. Une fois acquise la théorie
des opérateurs completement continus, la vérification de ce
principe est d’ailleurs immédiate. Mais Weyl ’adapte en virtuose
& toutes sortes de situations de physique mathématique. Quant
au comportement asymptotique des fonctions propres, il avait,
nous dit-1l en 1948, certaines conjectures: « mais, n’ayant fait
pendant plus de trente-cing ans aucune tentative sérieuse pour
les démontrer, je préfere, ajoute-t-il, les garder pour moi »; il
aura donc laissé ce probleme plus difficile en héritage & ses

successeurs.

E S
* *

(C’est en éléve de Hilbert encore, et en analyste, que Weyl dut
aborder le sujet d’un des premiers cours qu’il professa a Gottin-
gen comme jeune privatdozent, la théorie des fonctions selon
Riemann. Le cours terminé et rédigé, i1l se retrouva géometre,
et auteur d’un livre qui devait exercer une profonde influence
sur la pensée mathématique de son siecle. Peut-étre s’était-il
proposé seulement de remettre au gotit du jour, en faisant usage
des idées de Hilbert sur le principe de Dirichlet, les exposés
traditionnels dont I'ouvrage classique de C. Neumann fournissait
le modele. Mais il dut lui apparaitre bient6t que, pour substituer
aux constants appels & 'intuition de ses prédécesseurs des rai-
sonnements corrects et, comme on disait alors, « rigoureux » (et
dans P’entourage de Hilbert on n’admettait pas qu’on trichéat
la-dessus), c’étaient avant tout les fondements topologiques
qu’il fallait renouveler. Weyl n’y semblait guere préparé par
ses travaux antérieurs. Il pouvait, dans cette tache, s’appuyer
sur 'ceuvre de Poincaré, mais il en parle & peine. Il mentionne,
comme ’ayant profondément influencé, les recherches de
Brouwer, alors dans leur premiére nouveauté; en réalité, il n’en
fait aucun usage. De fréquents contacts avec Koebe, qui des lors
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s’était consacré tout entier & 'uniformisation des fonctions d’une
variable complexe, durent Iui étre d’'une grande utilité, parti-
culiérement dans la mise au point de ses propres idées. La
premiére édition du livre est dédiée a Félix Klein, qui bien
entendu, comme Weyl le dit dans sa préface, ne pouvait manquer
de s’intéresser & un travail si voisin des préoccupations de sa
jeunesse ni de donner & l'auteur des conseils inspirés de son
tempérament intuitif et de sa profonde connaissance de I’ceuvre
de Riemann. Bien qu’il n’efit jamais connu celui-ci, ¢’était Klein
qui, & Gottingen, incarnait la tradition riemannienne. Enfin,
dans 'un de ses mémoires sur les fondements de la géométrie,
Hilbert avait formulé un systéme d’axiomes fondé sur la notion
de voisinage, en soulignant qu’on trouverait la le meilleur point
de départ pour « un traitement axiomatique rigoureux de I’ana-
lysis situs ». De tous ces éléments si divers que lul fournissaient
la tradition et le milieu, Weyl tira un livre profondément original
et qui devait faire époque.

Le livre est divisé en deux chapitres, dont le premier contient
la partie qualitative de la théorie. Les notions de «surface»
(variété topologique de dimension 2 & base dénombrable) et de
¢ surface de Riemann» (variété analytique complexe a base
dénombrable, de dimension complexe 1) y sont définies au
moyen de systemes d’axiomes, inspirés naturellement de celu1
de Hilbert, mais qui cette fois (sauf une légére omission dans la
premiére édition) étaient destinés & subsister sans retouches, et
devaient servir de modele & Hausdorff pour son axiomatisation
de la topologie générale. Dans la premiere et la deuxiéme édition,
la condition de base dénombrable apparait sous forme de condi-
tion de triangulabilité; et la triangulation joue un grand roéle dans
la suite du volume; elle devait étre éliminée entiérement de la
troisiéme édition. Les questions touchant au groupe fondamental,
au revétement universel, & Porientation, sont élucidées avec
soin dans un esprit tout moderne, ainsi que les rapports entre
propriétés homologiques et périodes des intégrales simples sur
la surface. Dans la premiére et la deuxiéme éditior, I’auteur va
Jusqu’a la construction, pour les surfaces orientables compactes,
d’un systéeme de «rétrosections», c’est-a-dire essentiellement
d’une base privilégiée pour le premier groupe d’homologie;
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comme 1l le dit lui-méme, il aurait pu, au prix d’un léger effort
supplémentaire, aller jusqu’a la représentation de la surface au
moyen d’un «polygone canonique » a 4g cotés (g désignant le
genre), et & la détermination explicite du groupe fondamental,
et on peut regretter qu’il ne I’ait pas fait. Mais la construction
méme des rétrosections, nécessairement basée sur la triangula-
tion, disparait dans la troisiéme édition, au profit d’un traite-
ment plus purement homologique ou n’interviennent que des
recouvrements. En tout cas, pour tout ’essentiel, ce chapitre
constitue une mise au point a peu pres définitive des questions
qu’il traite.

Les théoremes d’existence font 'objet du deuxiéme chapitre.
Weyl vy donne du principe de Dirichlet une démonstration sim-
plifiée, basée naturellement sur I'idée de Hilbert qui consiste,
comme on sait, & opérer dans ’espace préhilbertien des fonctions
différentiables avec la norme de Dirichlet; méme dans la troi-
sieme édition, il n’a pas cru devoir suivre la variante qu’il avait
pourtant contribué a créer lui-méme, et qui consiste a opérer par
projection orthogonale dans le complété de I’espace en question,
puls & montrer aprés coup que la solution obtenue est différen-
tiable. Une fois acquis le principe de Dirichlet, ’auteur en tire
les principales propriétés des intégrales abéliennes et des fone-
tions multiplicatives, le théoréme de Riemann-Roch, puis le
théoréeme de ['uniformisation, c’est-a-dire la représentation
conforme du revétement universel de la surface de Riemann sur
une sphére, un plan ou un disque. Si on laisse de cOté les cas
de genre 0 ou 1, le résultat peut s’exprimer en disant que toute
surface de Riemann compacte, de genre > 1, peut se définir
comme quotient du plan non-euclidien par un groupe discret de
déplacements sans point fixe. « Ainsi, dit Weyl dans la préface
de la premiére édition, ainsi nous pénétrons dans le temple ou
la divinité est rendue & elle-méme, délivrée de ses incarnations
terrestres: le cristal non euclidien, ou I'archétype de la surface
de Riemann se laisse- voir dans sa pureté premiere...» Cest en
songeant sans doute & ce passage que Weyl dit plus tard de sa
préface que « plus encore que le livre lui-méme, elle trahissait
la jeunesse de son auteur». Nous dirions aujourd’hui qu’on a
construit pour la surface de Riemann un modéle qui est cano-
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nique & un déplacement prés dans le plan non euclidien; autre-
ment dit, on a associé canoniquement une structure & une autre.
Mais qui saurait mauvais gré & Weyl, aprés avoir acheve un
livre de cette valeur, d’avoir exprimé d’'une maniére peut-étre
un peu trop romantique son enthousiasme juvénile ?

*
* %

- (est en 1916, pendant la guerre, que Weyl fit paraitre en
Suisse son premier mémoire de géométrie, sur le célebre probléme
de la rigidité des surfaces convexes. Ici encore, Gottingen lul
avait fourni son point de départ. Sous la direction de Hilbert,
Weyl avait collaboré & la publication des ceuvres complétes de
Minkowski, ou la théorie des corps convexes tient tant de place.
D’autre part, Hilbert avait montré comment on peut faire
dépendre les inégalités de Brunn-Minkowski de la théorie des
opérateurs différentiels elliptiques. L’espace R? étant considéré
comme espace euclidien, et {z, y> désignant le produit scalaire
dans R3, soit V un corps convexe dans cet espace, défini au
moyen de la fonction d’appul H; cela veut dire que H satisfait
aux conditions

H(z+2) <H@) + H@), H@Mz) = 2H(z) pour » >0,

et que V est ’ensemble des points y satisfaisant a (zyy> < H (2)

quel que scit x. Si on suppose H différentiable en dehors de 0,

le volume de V est alors donné par une formule
vol (V) = [H.Q(H)da,

ou lintégrale est étendue & la sphére unité S, définie par
x, 2> = 1, ol dw désigne I’élément d’aire sur S,, et ou Q (H)
est une forme quadratique par rapport aux dérivées partielles
secondes de H. Soient F, F’ deux fonctions, différentiables en
dehors de 0, satisfaisant toutes deux & la condition d’homogénéité
F (Ar) = AF (z) pour A > 0; soit B (F, F’) la forme bilinéaire
symétrique par rapport aux dérivées partielles secondes de F
et a celles de F’ qui se déduit de la forme quadratique Q (H)
par linéarisation, c¢’est-a-dire qui est telle que Q (H) = B (H, H)

L’Enseignement mathém., t. III, fasc. 3. 12

?
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posons aussi L (F') = B (F, F’). On vérifie facilement, au
moyen de la formule de Stokes, que I'intégrale

I(F,F,F") = [ F".B(F,F)do,
So

ou F” désigne une troisiéme fonction satisfaisant aux mémes
conditions que F et F’) dépend symétriquement de F, F' et F”.
Cela revient a dire que L, considéré comme opérateur différen-
tiel sur les fonctions sur S, prolongées & R3 par homogénéité, est
un opérateur autoadjoint. S1 V', V"' sont deux corps convexes
définis par des fonctions d’appui H’, H”, les formules ci-dessus
montrent que les « volumes mixtes » associés par Minkowski
a V, V', V" ne sont autres que les nombres I (H, H, H') et
I(H, H, H”); de plus, un calcul simple montre que L, est
elliptique. Dans ces conditions, comme le fait voir Hilbert dans
ses Grundziige, application & L de la théorie des opérateurs
autoadjoints elliptiques conduit, pour le cas différentiable, &
Pinégalité de Brunn-Minkowski. Mais il se trouve que L, n’est
autre qu’'un opérateur qui se présente dans la théorie de la
déformation infinitésimale de la surface X frontiére de V; jointe
aux résultats de Hilbert, cette observation, due & Blaschke,
entrainait 'impossibilité d’une telle déformation pour X. Enfin,
Hilbert, & propos des fondements de la géométrie, avait démontré
Pimpossibilité d’appliquer isométriquement une sphére sur une
surface convexe non sphérique. D’ailleurs, des résultats analogues
sur les polyedres convexes avaient été obtenus jadis par Cauchy:
non seulement un polyedre convexe n’admet aucune déformation
infinitésimale, mais encore, s1 P et P’ sont deux polyedres
convexes admettant méme schéma combinatoire et ayant leurs
cOtés correspondants égaux, ils ne peuvent différer 'un de
Pautre que par un déplacement ou une symétrie. Tout cela
mettait & ordre du jour I’extension aux surfaces convexes du
second théoréme de Cauchy.

Mais Weyl ne s’arrétepas la. Il considére en méme temps un
probléme d’existence que, faute d’une conception claire de la
notion de variété riemannienne abstraite, personne n’avait
encore méme formulé. Il s’agit de savoir si «toute surface
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convexe fermée, donnée in abstracto, est réalisable » ou, comme
nous dirions maintenant, si toute variété riemannienne compacte,
simplement connexe, de dimension 2, & courbure partout posi-
tive, admet un plongement isométrique dans I’espace euclidien
R3; la question d’unicité, pour ce probléeme d’existence, est
alors celle méme dont Weyl était parti. Interrompu dans son
travail par sa mobilisation en 1915, il se contenta d’esquisser
son idée de démonstration, et ne la mena jamais & terme. Il
part du fait que toute « surface convexe in abstracto » peut étre
représentée conformément sur la spheére S,, donc définie par un
ds? donné sur S, sous la forme ds? = 2% do?, ou do est la lon-
gueur d’arc « naturelle » et ® une fonction différentiable sur Sy;
soit 2 (D) la « surface abstraite » ainsi définie. La condition que
2 (D) soit & courbure partout positive s’exprime par une iné-
galité différentielle K (®) > 0; on constate aussitot que ’en-
semble des @ qui y satisfont est convexe; il s’ensuit que I’en-
semble des surfaces convexes abstraites est connexe. L’idée de
Weyl est alors d’appliquer au probléme une méthode deconti-
nuité. Tout revient, I désignant 'intervalle [0, 1], & déterminer
une application ¢ de S; X I dans R® de telle sorte que Pappli-
cation x — @_(x) = o (z, 7) de S, dans R® applique isométrique-
ment % (7®) sur une surface convexe S_ = ¢_(S,), et cela pour
tout = € I. Pour cela, Weyl considére d¢/dot comme une défor-
mation infinitésimale de S_, dont la détermination se rameéne a
la solution d’une équation Au = f, o1 f est une fonction sur S,
dépendant de S_, et A est essentiellement 'opérateur elliptique
L, relatif & S_. L’application de la méthode de Hilbert a cette
équation donne donc, en principe, une équation différentielle
fonctionnelle pour ¢_; il s’agit d’en trouver une solution sur
Pintervalle I qui se réduise pour © = 0 & Papplication identique
de Sy dans R®; et on peut espérer y parvenir au moyen de I’une
quelconque des méthodes classiques de résolution des équations
différentielles. Une démonstration compléte a été obtenue
recemment par Nirenberg en suivant cette voie; les bréves
indications données ici suffiront tout au moins & faire apparaitre
Pextréme hardiesse de I'idée de Hermann Weyl.

*
* *
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Rentré & Zurich en 1916, Weyl eut, semble-t-il, quelque
velléité de revenir aux surfaces convexes; un mémoire ou il
reprend les résultats de Cauchy sur les polyédres présageait peut-
étre un mode d’attaque basé sur des méthodes moins infinitési-
males et plus directes. Mais ¢’est bientot la relativité qui attire
et accapare son attention.

L& encore, 1l était dans la tradition. Minkowski avait parti-
cipé activement au courant de recherches qui s’était développé
autour de la relativité restreinte. Hilbert suivait de pres les
travaux d’Einstein et cherchait, sans grand succeés d’ailleurs, a
éclaircir les probléemes de la physique par la méthode axioma-
tique. « IlI faut en physique un autre type d’imagination que
celle du mathématicien », constate plus tard Hermann Weyl, non
sans quelque mélancolie, dans sa notice sur Hilbert. Sans doute,
en écrivant ces mots, songeait-il aussi a sa propre expérience
et & cette « théorie de Weyl » a laquelle, disait-il vers la méme
époque, 1l ne croyait plus depuis longtemps. Mais a partir de
1917, et pendant plusieurs années, son enthousiasme est débor-
dant. En 1918, il publie son cours de ’année précédente sur la
relativité sous le titre Raum, Zeit, Materie. « A Poccasion de
ce grand sujet, écrit-il dans la préface de la premiére édition,
j’al voulu donner un exemple de cette interpénétration, qui me
tient tant & cceur, de la pensée philosophique, de la pensée
mathématique, de la pensée physique... »; mais, ajoute-t-il avec
une modestie non exempte de naiveté, « le mathématicien en
moi a pris le pas sur le philosophe »; et ce ne sont pas les mathé-
maticiens qui s’en plaindront. Son ouvrage, dans ses cinqg édi-
tions successives, fit beaucoup pour répandre parmi les mathé-
maticiens et les physiciens les connaissances géométriques et
les notions essentielles de 1'algébre et de I’analyse tensorielles.
A partir de la troisieme édition,on y trouve aussi un exposé de
la « théorie de Weyl», premier essai d’une « théorie unitaire »
englobant dans un méme schéma géométrique les phénomeénes
électromagnétiques et la gravitation. Elle était fondée, dirions-
nous a présent, sur une connexion liée au groupe des similitudes
(défini au moyen d’une forme quadratique de signature (1,3)),
au lieu qu’Einstein s’était borné a des connexions liées au groupe
de Lorentz (groupe orthogonal pour une forme de signature
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(1,3)), et plus précisément a la connexion sans torsion déduite
canoniquement (par transport parallele) d’'un ds® de signature
(1,3). Cette théorie eut du moins le mérite d’élargir le cadre de
la géométrie riemannienne traditionnelle et de préparer les voies
aux « géométries généralisées» de Cartan, c’est-a-dire a la
théorie générale des connexions liées & un groupe de Lie
arbitraire. |

Quant aux préoccupations philosophiques de Weyl pendant
cette période d’intense fermentation, elles ne tardérent pas
(heureusement, serions-nous tentés de dire) a se couler dans un
moule plus étroitement mathématique, 'amenant & chercher
une base axiomatique aussi simple que possible aux structures
géométriques sous-jacentes a la théorie d’Einstein et & la sienne;
c’est 14 ce qu’il appelle le « Raumproblem », le probleme de
I'espace; 1l y consacre plusieurs articles, un cours professé a
Barcelone et & Madrid, et un opuscule qui reproduit ces legons.
Il s’agit 14 en réalité de caractériser le groupe orthogonal (attaché
a une forme quadratique, soit complexe, soit réelle et de signa-
ture quelconque) en tant que groupe linéaire, par quelques
conditions simples au moyen desquelles on puisse rendre plau-
sible que la géométrie de '« univers » est définie localement par
un tel groupe. Bien entendu, c¢’est la théorie des groupes de Lie
et de leurs représentations qui domine la question; Weyl en
donne une esquisse dans un appendice de son livre. De son
coté, Cartan ne tarda pas & donner, du principal résultat mathé-
matique de Weyl sur ce sujet, une démonstration basée sur ses
propres méthodes.

Il n’était pas dans le tempérament de Hermann Weyl, une
fois parvenu ainsi au seuil de I’ceuvre de Cartan, de se contenter
d’y jeter un coup d’ceil rapide. D’autre part, a la suite peut-étre
d’une remarque de Study qui avait blessé aun vif, il avait com-
mence & s’intéresser aux invariants des groupes classiques.
Study, dans une préface de 1923, lui avait reproché, ainsi qu’aux
autres relativistes, d’avoir, par leur négligence & ’égard de ce
sujet, contribué a «la mise en jachére d’un riche domaine
culturel »; il entendait surtout par 1a la théorie des invariants
du groupe projectif, dans laquelle il était d’usage de faire rentrer
tant bien que mal les autres groupes & Poccasion de I’étude des



178 ‘ C. CHEVALLEY ET A. WEIL

covariants simultanés de plusieurs formes. Par une réaction bien
caractéristique, Weyl répondit a Study, avec une promptitude
extraordinaire, par un mémoire ou il reprend a la base la théorie
classique au moyen d’identités algébriques dues a Capelli et
indique aussi comment elle s’étend aux groupes orthogonaux et
symplectiques; ce qui ne I'empéche pas de protester que, «si
méme 1l avait connu aussi bien que Study lui-méme la théorie
des invariants, il n’aurait eu nulle occasion d’en faire usage dans
son livre sur la relativité: chaque chose en son lieu ! ».

La synthese entre ces deux courants de pensée — groupes
de Lie et invariants — s’opéere dans son grand mémoire de 1926,
mémoire divisé en quatre parties, dont il dit lui-méme vers la
fin de sa vie qu’il représente « en quelque sorte le sommet de sa
production mathématique ». L’étude qu’avait faite Young, vers
1900, de la décomposition des tenseurs en tenseurs irréductibles
définis par des conditions de symétrie avait abouti en substance
a la détermination de toutes les représentations «simples »,
c’est-a-dire 1irréductibles, du groupe linéaire spécial; mais,
enfermées qu’étaient ces recherches dans le cadre de la théorie
traditionnelle, il leur était impossible, par définition, d’obtenir
ce résultat sous la forme que nous venons de lui donner. De son
coté, Cartan, parti de la théorie générale des groupes de Lie,
avait déterminé toutes les représentations en question, sans
d’ailleurs, semble-t-1l, faire le lien entre ses résultats et ceux
d’Young. Désignons par G le groupe linéaire spécial, et par g
son algebre de Lie, qui se compose de toutes les matrices de
trace 0; soit ) I'ensemble des matrices diagonales contenues
dans g. Une représentation simple de G détermine une repré-
sentation simple p de g, donc une représentation de ). Cartan
montre que ’espace V de la représentation p est engendré par
des vecteurs qui sont vecteurs propres de toutes les opérations
o (H), pour H € §. Soit e I'un de ces vecteurs propres; on a
o(H).e= n(H)e, ot A est une forme linéaire sur f), qu'on
appelle le poids de e; si H est la matrice diagonale de coeffi-
cients a,, ..., a,, il est facile de voir que A (H) est de la forme
my a; + ... + m, a,, ou les m;, sont des entiers déterminés a
Paddition prés d’un méme entier. Si on ordonne lexicographique-
ment P’ensemble des systémes (m,, ..., m,) de n entiers, on
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obtient donc une relation d’ordre dans I’ensemble des poids des
représentations de G. On appelle poids fondamental d’une repré-
sentation simple le plus grand des poids de cette représentation
pour la relation d’ordre qu’on vient de définir. Cartan avait
montré que ce poids détermine complétement la représentation
(& une équivalence prés), qu’il correspond & un systéme d’entiers
(m;) tel que m; < ... < m,, et que réciproquement tout systeme
d’entiers satisfaisant & ces inégalités appartient au poids fonda-
mental d’une représentation simple de G. Soient de plus p, ¢
deux représentations simples de G, opérant respectivement sur
des espaces vectoriels V, V'; soient A, A’ leurs poids fondamen-
taux; soient e, ¢’ des vecteurs de V, V', de poids respectifs A, X"
Le produit tensoriel p ® o’ de p et o’ (dit parfois encore « produit
kroneckérien », et noté le plus souvent p X p’ par Weyl) est une
représentation opérant sur un espace V ® V' de dimension
égale au produit de celles de V et V') qui est formé de combinai-
sons linéaires d’éléments se transformant par G comme les
produits formels zx’, avec z € V, 2’ € V’; et, pour cette repré-
sentation, le vecteur e @ e’ est de poids A 4 2. Soit W le
sous-espace de V @ V'’ engendré par e ® e’ et ses transformés
par G; il découle facilement des résultats de Cartan que W ne
peut pas se décomposer en somme directe de sous-espaces inva-
riants par les opérations de G; et Cartan avait cru pouvoir
déduirs de la que W fournit la représentation simple de poids
dominant A 4+ A". Weyl observa que cette conclusion est illégi-
time tant qu’on ne sait pas a priori que les représentations de G
sont toutes semi-simples (¢’est-a-dire complétement réductibles).
A vrai dire, ce dernier résultat n’était pas indispensable pour
se convaincre du fait que la décomposition d’Young de I’espace
des tenseurs fournit toutes les représentations simples de G
Young avait en effet établi I'irréductibilité des représentations
qu’il avait construites, et il suffisait d’établir par un calcul
facile que leurs poids dominants sont tous ceux prévus par la
théorie de Cartan. Mais on n’efit obtenu ainsi que la classification
des représentations simples. Au contraire, en démontrant la
complete réductibilité de toutes les représentations de G, Weyl
en obtint du méme coup (compte tenu des résultats de Young et
Cartan) la classification définitive, qui s’exprime par le fait que
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toute «grandeur linéaire», comme il dit, se décompose en
tenseurs irréductibles.

On sait aujourd’hui démontrer le théoréme de complete
réductibilité par des méthodes algébriques; c’est 1a le point de
départ de la théorie cohomologique des algébres de Lie. Mais
c’est de considérations tout autres que Weyl tire sa démons-
tration. Il observe, comme l'avait déja fait Hurwitz dans son
mémoire sur la construction d’invariants par la méthode d’inté-
gration, que la théorie des représentations du groupe linéaire
spécial complexe G est équivalente a celle des représentations du
groupe G, formé des matrices unitaires appartenant a G; en
derniére analyse, cela tient a ce que toute identité algébrique
entre coefficients d’une matrice unitaire reste vraie pour une
matrice quelconque. Or G, posséde une propriété importante
qui n’appartient pas a G: il est compact, ce qui permet, comme
I’avait fait voir Hurwitz, de construire des invariants pour G,
et par suite pour G par intégration dans I'espace du groupe G,
au moyen de I’élément de volume invariant fourni par la théorie
de Lie. Lla méthode classique qui permet d’établir la compléte
réductibilité des représentations des groupes finis par construc-
tion d’une forme hermitienne, définie positive, invariante par
les opérations du groupe, s’étend alors d’elle-méme au groupe G,,.

Ce n’est pas seulement le théoreme de complete réductibilité
pour G que Weyl tire de la restriction au groupe unitaire G, ; il
s’en sert aussi pour calculer explicitement les caractéres et les
degrés des représentations simples de G. On voit tout de suite,
en effet, que si y est le caractére d’une représentation de G,, et
si s est une matrice diagonale unitaire de déterminant 1 et de
coefficients diagonaux e (x,), ..., e (x,), la valeur de  (s) s’exprime
comme somme de Fourier finie en z,, ..., z, et ne change pas
par une permutation quelconque des x;. Weyl montre que ces
propriétés, jointes aux relations d’orthogonalité fournies, elles
aussi, par la méthode d’intégration, suffisent déja a déterminer
complétement les caracteres et a en obtenir des expressions
explicites.

La suite du mémoire de Weyl est consacrée a I'extension des
méthodes ci-dessus aux groupes orthogonaux et symplectiques,
puis aux groupes semi-simples les plus généraux. Soit cette
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fois ¢ une algébre de Lie semi-simple complexe; pour en étudier
les représentations, Weyl va appliquer la méthode de restriction
unitaire au groupe adjoint G de g, mis sous forme matricielle
relativement & une base convenable de g. Pour qu’il y ait dans
G « assez » d’opérations unitaires, il est nécessaire que g admette
ce qu’on appelle aujourd’hui une forme compacte, ou pour mieux
dire une base telle que les combinaisons linéaires réelles des
éléments de cette base forment 1’algébre de Lie d’un groupe
compact. En examinant chaque groupe simple séparément,
Cartan avait vérifié dans chaque cas lexistence d’une forme
compacte; Weyl en donne une démonstration a priori basée sur
les propriétés des constantes de structure de g. Cela fait, il
introduit le groupe G, des opérations unitaires de G, et son
algébre de Lie g,. Le groupe G, est compact, et la théorie des
représentations de g, est équivalente a celle des représentations
de g. Mais ici se présente une difficulté nouvelle; du fait que G,
peut n’étre pas simplement connexe, la théorie des représen-
tations de g, n’est plus entiérement équivalente a celle des repré-
sentations de G,. Si on cherche & rétablir I’équivalence en rem-
placant G, par son revétement universel G, qui, lui, est simple-
ment connexe, il devient nécessaire de s’assurer que celui-ci est
compact, et aussi d’en faire un groupe, localement isomorphe
a G,. Ce dernier point, qui devait peu apres étre élucidé par
Schreier, est compléetement laissé de coté dans le mémoire de
Weyl. Mais c’est dans le premier que résidait la véritable- diffi-
culté. La question revient naturellement & faire voir que G, a un
groupe fondamental fini. Pour cela, Weyl introduit un sous-
groupe A, de G, qui joue le méme role que le groupe des matrices
diagonales dans la théorie du groupe unitaire spécial. Tout élé-
ment s de G, est conjugué a un élément de A, ; excluant certains
éléments s, dits singuliers, qui forment un ensemble ayant trois
dimensions de moins que G,, s n’est conjugué qu’a un nombre
fini d’éléments de A, ; de plus, les éléments de A, qui ne sont pas
singuliers forment dans A, un domaine simplement connexe A.
Supposons que s décrive dans G, une courbe fermée I' qui ne ren-
contre pas I’ensemble des éléments singuliers. Si s (¢) est le point
de parametre ¢ sur I', on peut déterminer par continuité une courbe
a (t) dans A, telle que, pour tout ¢, a () soit conjugué a s (z).
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Quand le point s () revient & sa position initiale s (1) = s (0),
le point a (¢) vient en un point @ (1) qui est un élément de A,
conjugué de a (0), ce qui ne laisse pour ce point qu’un nombre
fini de possibilités. Si on a a (1) = a (0), la courbe décrite par
a (t) est fermée, et par suite réductible & un point dans A; Weyl
montre que I' est alors elle-méme réductible & un point. Il en
résulte facilement que le groupe fondamental de ’ensemble des
éléments non singuliers de G, est fini. De cela, et du fait que les
éléments singuliers se répartissent sur des sous-variétés ayant
au molns trois dimensions de moins que G,, Weyl conclut (a
vral dire sans démonstration) que G, lui-méme a un groupe
fondamental fini.

Ce point établi, la voie est ouverte a la généralisation com-
pléete au cas semi-simple des résultats obtenus pour le groupe
linéaire spécial. Weyl démontre la compléte réductibilité des
représentations de g, et détermine explicitement le caractére et
le degré d’une représentation simple de poids dominant donné.
Ici encore, cette détermination résulte des relations d’orthogo-
nalité entre caracteres et des propriétés formelles de la restric-
tion y d’un caractére au groupe A, qui recouvre A, dans le
revétement simplement connexe G, de G,. Ce groupe est un
tore; y est une combinaison linéaire finie de caractéres de ce
tore, invariante par les opérations d’un certain groupe fini S
d’automorphismes du tore qui généralise le groupe des permu-
tations de z;, ..., z,, dont il a été question plus haut & propos du
groupe unitaire spécial. Le groupe S, dont les développements
ultérieurs de la théorie ont montré qu’il y joue un role fondamen-
tal, s’appelle maintenant le groupe de Weyl.

Enfin la théorie s’achéve par la démonstration de I’existence
des représentations simples de poids fondamental donné. Pour
les algébres simples, cette existence avait été établie par Cartan
par des constructions directes dans chaque cas particulier. Weyl,
lui, applique au groupe compact G>la méthode de décomposition
de la « représentation réguliére », obtenue au moyen de la théorie
des équations intégrales suivant I'idée que nous avons exposée
plus haut. Pour conclure a partir de 14, il lui faut encore un
lemme de nature plus technique, énoncé seulement dans le
mémoire de 1926, et dont Weyl n’a publié la démonstration que
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dans son cours de 1934-35 (paru & Princeton sous forme de notes
miméographiées, The siructure and representations of conitnuous

groups).
E3
* *

Beaucoup plus tard, Weyl revint sur la détermination des
représentations des groupes semi-simples dans son ouvrage
The classical groups, their invariants and representations. L’esprit
de ce livre est assez différent de celui du mémoire de 1926. L’objet
de Pauteur est maintenant d’une part de démontrer par des
méthodes purement algébriques les résultats déja obtenus au
sujet des représentations des groupes classiques (groupe linéaire
général, groupe linéaire spécial, groupe orthogonal et groupe
symplectique), et d’autre part de faire la synthese entre ces
résultats et la théorie formelle des invariants qui s’était déve-
loppée sous l'influence de Cayley et Sylvester au cours du
xixe siecle. Espérait-il cette fois se laver définitivement du
reproche de Study en ramenant & la vie cette théorie qui était
sur le point de sombrer dans 'oubli ? Il nous dit lui-méme que
la démonstration par Hilbert du théoréeme général de finitude
avait « presque tué le sujet »; on peut se demander si Weyl ne lui
aura pas, en réalité, porté le coup de grace.

La situation dans laquelle on se trouve en théorie des inva-
riants est la suivante. On a une ou plusieurs représentations
linéaires o, o', ..., d’'un groupe G, opérant sur des espaces vecto-
riels V, V', ... On considére des fonctions F (z, 2/, ...) dépendant
d’un argument z dans V, d’un argument ' dans V', etc. et s’expri-
mant comme polyndmes par rapport aux coordonnées de ces
arguments, homogénes par rapport aux coordonnées de chacun
d’eux. Une telle fonction s’appelle un invariant si, pour tout s
dans G, on a

F({s.z,s.2’, ...) =F(z,2,...).

St Jy, ..., J; sont des invariants, tout polyndome en J;, ..., J, en
est un auss1 pourvu qu’il satisfasse aux conditions d’homogénéité
imposées. Le premier probléme de.la théorie est de trouver des
invariants Jy, ..., J, tels que tout autre invariant puisse s’écrire
comme polyndme en les J;; cela fait, on se propose également
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de déterminer les relations algébriques F (J, ..., J,) = 0, dites
« syzygies », qui lient entre eux les invariants qu’on a construits.

Placons-nous plus particuliérement dans le cas ou G a été
identifié, au moyen d’une certaine représentation o,, avec un
sous-groupe du groupe linéaire & n variables, opérant sur 'espace
vectoriel V; = k™ ol k est un corps de base qu’on suppose de
caractéristique 0. Considérons d’abord le cas ou les représen-
tations p, ¢, ..., coincident toutes avec p;; on dit alors qu’on
cherche les invariants d’un certain nombre de « vecteurs » (on
entend par l1a des vecteurs de V;). Reprenant sans grand change-
ment son travail de 1924 par lequel il avait répondu a Study,
Weyl montre alors, pour un groupe G unimodulaire, que la
détermination des invariants de vecteurs en nombre quelconque
peut se ramener, au moyen des identités de Capelli, au probléme
analogue pour n — 1 vecteurs. Si G n’est pas unimodulaire, ce
résultat reste vrai pour les « invariants relatifs » (polyndémes se
multipliant par une puissance du déterminant de s quand on
transforme tous les vecteurs par s). Weyl déduit de 14 la solution
des deux problémes ci-dessus pour le groupe unimodulaire et
pour le groupe orthogonal; et il étend cette solution au cas des
invariants dépendant, non seulement d’un certain nombre de
vecteurs « cogrédients » (se transformant suivant p;), mais aussi
d’un certain nombre de vecteurs « contragrédients » (se trans-
formant comme les formes linéaires sur V;). Ensuite il passe aux
invariants dépendant de « quantités» z, z’, ... appartenant a
des espaces de représentation quelconques du groupe étudié; le
cas ou z, ', ... sont des formes homogénes par rapport aux
coordonnées d’un vecteur «contragrédient» est celur dont
traitait plus particulierement la théorie classique. Pour pouvoir
aborder la question dans ce cadre général, il faut avant tout
connaitre les représentations simples du groupe; aussi une partie
importante du livre est-elle consacrée a la détermination algé-
brique des représentations « tensorielles » des groupes classiques.
Cela fait, Weyl montre que les invariants dépendant de plusieurs
« quantités » d’espéce quelconque s’expriment comme polynomes
en un nombre fini d’entre eux; il étend ce résultat, dans une
certaine mesure, au groupe affine. Enfin, il emploie la méthode
d’intégration pour démontrer le résultat correspondant pour les
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représentations quelconques d’un groupe compact, le corps de
base étant cette fois le corps des réels.

*
* *

Pour féter son soixante-dixiéme anniversaire, les amis et
éleves de Hermann Weyl publiérent un volume de Selecia
extraits de son ceuvre. Il n’y a peut-étre pas lieu de se féliciter
de cette mode des morceaux choisis destinés a célébrer la mise
a la retraite de mathématiciens éminents. C’est trop pour les
uns; ce n’est pas assez pour les autres. Du moins le volume en
question contient-il une bibliographie complete de ’ceuvre de
Hermann Weyl, établie par ordre chronologique®, et dont
nous avons naturellement fait grand usage pour rédiger la pré-
sente notice. Pour remédier en quelque mesure aux inévitables
lacunes de celle-ci, nous donnons ci-dessous une liste des
mémoires de Weyl, classés par sujet; rien ne peut mieux,
croyons-nous, en faire ressortir I’étonnante variété. Les numeéros,
bien entendu, renvoient a la liste des Selecta.

I. Analyse.

a) Equations intégrales singuliéres: 1, 3. o

b) Problemes de valeurs propres et développements fonction-
nels associés a des équations différentielles ou aux différences
finies: 6, 7, 8, 12, 103.

¢) Répartition des valeurs propres d’opérateurs complétement
continus en physique mathématique: 13, 16, 17, 18, 19, 22.

d) Espace de Hilbert: 4, 5.

e) Phénomene de Gibbs et analogues: 10, 11, 14.

/) Equations différentielles liées & des problémes physiques:
36-37 (développements asymptotiques, apparentés au phé-
nomene de Gibbs, au voisinage d’une discontinuité dans un

5 11 convient de signaler qu’on n’a pas fait figurer dans cette bibliographie les notes
de cours, publiées sous forme miméographiée par I'Institute for Advanced Study de
Princeton, et qui reproduisent plusieurs des cours qu’il y professa.
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probleme d’électromagnétisme), 123-124-125 (étude directe
d’une équation différentielle liée & un probléme de couche
limite).

Problémes elliptiques: 121 (principe de Dirichlet traité par
la « méthode de projection » dans un espace de Hilbert), 130,
153-154-155 (probleme de type elliptique dans un domaine
non borné).

Egale répartition modulo 1 et applications: 20, 21, 23, 42,
44, 113, 114.

Développements suivant les coefficients des représentations
sur un groupe compact: 73, 98.

Fonctions presque périodiques: 71, 72, 145.
Courbes méromorphes: 112, 129.

Calcul des variations: 104.

I1. Géométrie.

Surfaces et polyedres convexes: 25, 27, 106.
Analysis situs: 24, 26, 57-58-59, 159.

Connexions, géométrie différentielle liée & la relativité: 30,
31, 34, 43, 50, 82.

Volume des tubes: 116 (contient déja, essentiellement, la
formule de Gauss-Bonnet pour les variétés plongées dans un
espace euclidien).

I11. Invariants et groupes de Lue.

« Raumproblem »: 45, 49, 53, H4.
Invariants: 60 (1r¢ partie), 63, 97, 117, 122.
Groupes de Lie et leurs représentations: 61, 62, 68, 69, 70,
74, 79, 80, 81.
IV. Relativité.

33, 35, 39, 40, 46, 47, 48, 51, 52, 55, 56, 64, 65, 66, 89, 93,
134, 135,
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V. Théorie des quania.

75, 83, 84, 85, 86, 87, 90, 91, 100, 101, 140, 141.

VI. Théorie des algebres.

a) Matrices de Riemann: 99, 107, 108.

b) Questions diverses: 96, 105 (spineurs, en commun avec
R. Brauer), 109, 110, 143. '

VII. Théorie géométrique des nombres
(d’apreés Minkowski et Siegel).

120, 126, 127, 136.
VIII. Logique.

9, 32, 41, 60 (2¢ partie), 67, 77, 78.

IX. Philosophue.

111, 118, 119, 138, 142, 156, 163.

X. Articles historiques et btographiques.

15, 88, 94, 95, 102, 131, 132, 137, 147, 149, 150, 152, 157, 160,
161, 162; et la conférence « Erkenntnis und Besinnung »,
Studia Philos., 15 (Basel, 1955) (traduction francaise dans
Rey. de Théol. et Philos., Lausanne, 1955).

XI. Varia.

2, 28, 38, 76, 92, 115, 128, 133, 139, 144, 146, 148, 151, 158,
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