Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 3 (1957)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROPOS DU TRANCHET D'ARCHIMÈDE

Autor: Thébault, Victor

DOI: https://doi.org/10.5169/seals-33742

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

A PROPOS DU TRANCHET D'ARCHIMÈDE

PAR

Victor Thébault, Tennie (France)

Ce sujet d'étude auquel nous avons déjà consacré plusieurs articles ¹, montre clairement les avantages que peut offrir la méthode de l'inversion en tant que moyen de démonstration. Il est évident que du choix judicieux du pôle et du module d'une telle transformation, dépendent la simplicité et la précision des développements. A titre d'exemple, nous généralisons et complétons une précédente note ².

1. Aux extrémités A et B d'une corde fixe d'un cercle (O), de rayon R, on trace, d'abord, deux cercles (O_1) , (O_2) , de rayons R_1 , R_2 , tangents au cercle (O) en A et B et se coupant en un point C sur la droite AB; ensuite, les cercles (ω_1) , (ω_2) , (ω_3) , ..., (ω_n) , de rayons ρ_1 , ρ_2 , ρ_3 , ..., ρ_n , tangents entre eux de proche en proche et tangents aux cercles (O), (O_1) . Il y a deux chaînes (C_1) , (C_2) de cercles (ω_1) , (ω_2) ..., (ω_n) tangents au cercle (O_1) , au-dessus et au-dessous de AB, et deux autres chaînes (γ_1) , (γ_2) de cercles tangents au cercle (O_2) , au-dessus et au-dessous de AB. Les propriétés fondamentales de ces chaînes étant analogues, nous examinerons celles de (C_1) et (C_2) .

Pour tout ce qui suit, le point C varie sur la droite AB. Dans cette hypothèse, il est clair que les cercles (O_1) , (O_2) se rencontrent sous l'angle constant 2 (AB, AO) = 2θ .

D'autre part, une inversion $i \equiv (A, AB^2)$, de pôle A, de module AB^2 , transforme le cercle (O) en la droite By perpendiculaire à AO, le cercle (O₁) en une autre droite C₀ x_0 , parallèle à By, et passant par le transformé C₀ de C; enfin, (O₂) devient

² Ibid., vol. 1951-1954, pp. 62-69.

¹ L'Ens. math., vol. 33, 1934, pp. 349-359; 1935, vol. 35, pp. 309-324.

un cercle (O'_2) qui passe par C_0 et coupe la droite $C_0 x_0$ sous l'angle 2θ . Dans cette transformation, les cercles (ω_1) , (ω_2) , ..., (ω_n) deviennent les cercles (ω'_1) , (ω'_2) , ..., (ω'_n) , égaux entre eux, de rayons ρ , tangents aux droites By, $C_0 x_0$ et, de proche en proche, aux cercles (O'_2) , (ω'_1) , ..., (ω'_{n-1}) .

Enveloppe du cercle (ω_n) , d'indice donné n, de la chaîne (C_1) . — Soient D_1 , D_2 , ..., D_n les points de contact, sur la droite By, des cercles (ω_1') , (ω_2') ..., (ω_n') relatifs à une position arbitraire du point C sur la droite AB. Puisque la droite $C_0 x_0$ coupe le cercle (O_2') , de rayon C_2' , sous l'angle C_2 0,

D'autre part, si N désigne le point de contact des cercles (O'_2) et (ω'_1) , M le milieu de D_1 B, on obtient, d'abord,

$$D_1 B = 2 MN = 2 \sqrt{R_2' \cdot \rho},$$

ensuite, d'après (1),

(2)
$$\frac{D_1 B}{D_1 \omega_1'} = \frac{D_1 B}{\rho} = \frac{2}{\sqrt{\frac{1 + \cos 2\theta}{2}}} = \frac{2}{\cos \theta} .$$

De même,

(3)
$$\frac{D_2 B}{D_2 \omega_2'} = \frac{D_2 B}{\rho} = \frac{2\rho + D_1 B}{\rho} = 2 + \frac{2}{\cos \theta} = \frac{2}{\cos \theta} (1 + \cos \theta)$$
,

$$\frac{D_3\,B}{D_3\,\omega_3'} = \frac{2}{\cos\,\theta} \cdot (1\,+\,2\,\cos\,\theta)\;, \quad \frac{D_4\,B}{D_4\,\omega_4'} = \frac{2}{\cos\,\theta}\,(1\,+\,3\,\cos\,\theta)\;,\;...\;\;,$$

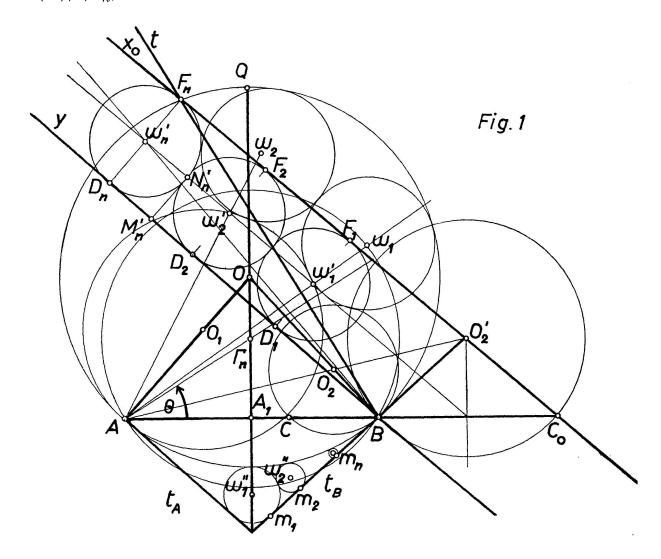
et finalement

(4)
$$\frac{D_n B}{D_n \omega'_n} = \frac{2}{\cos \theta} [1 + (n-1) \cos \theta].$$

Par suite, quelle que soit la position de C sur AB, l'indice n étant donné, la cotangente (4) de l'angle $(B\omega'_n, By)$ reste constante. La droite $B\omega'_n$, ainsi que la seconde tangente Bt au cercle

 (ω'_n) , symétrique de By par rapport à $B\omega'_n$, sont deux droites fixes comme By.

Conséquence. — L'inversion i transforme la droite Bt en un cercle (Γ_n) , de centre Γ_n , passant par A et B, et tangent extérieurement au cercle (ω_n) transformé de (ω'_n) . Les cercles fixes (O), (Γ_n) constituent l'enveloppe de (ω_n) .



LIEU DU CENTRE ω_n DU CERCLE (ω_n) . — Il est clair que le point ω_n décrit un arc de l'ellipse (E_n) , de foyers O et Γ_n , passant par A et B et au-dessus de AB.

N.B. — Mêmes conclusions pour la chaîne C_2 lorsque le point C se déplace sur la droite AB. Le cercle (ω_n) , d'indice donné n, de cette chaîne, enveloppe (O) et un cercle (Γ'_n) , passant en A et B et au-dessous de AB. Le point ω_n décrit un arc de l'ellipse (E'_n) , de foyers O, Γ'_n , passant par A et B et au-dessous de AB. Mêmes conclusions aussi avec les chaînes (γ_1) , (γ_2) . En résumé, les enveloppes de quatre cercles (ω_n) de ces chaînes se

composent du cercle (O) associé à quatre autres cercles, et les lieux des centres ω_n , des arcs de quatre ellipses passant en A et B, et ayant un foyer commun O.

2. L'ellipse (E_n) est déterminée par ses foyers O et Γ_n et ses points A et B. Cependant, on peut préciser son excentricité e_n et la position de sa directrice Δ_n relative au foyer O. Soient un cercle (ω_n) , de rayon ρ_n , dont le centre ω_n est sur (E_n) , au-dessus de la droite AB; y_n l'ordonnée de ce point par rapport à AB. L'excentricité

(5)
$$e_n = \frac{\omega_n O}{\omega_n X} = \frac{R - \rho_n}{\frac{R}{e_n} - y_n} = \frac{\rho_n}{y_n} ,$$

X désignant la projection orthogonale de ω_n sur Δ_n ; car B étant sur (E_n) ,

$$X \omega_n + y_n = \frac{R}{e_n}$$

Introduisons maintenant l'inversion $j \equiv (C, \overline{CA}, \overline{CB})$, de pôle C, qui conserve (O) et transforme les cercles (O_1) , O_2) en les tangentes t_B , t_A au cercle (O) en B, A, puis les cercles (ω_1) , (ω_2) , ..., (ω_n) , de rayons ρ_1 , ρ_2 , ..., ρ_n , en ceux de la chaîne (ω_1) , (ω_2) , ..., (ω_n) , de rayons $r_1, r_2, ..., r_n$ tangents à (O) et à t_B en $m_1, m_2, ..., m_n$. Il est clair que

$$\mathrm{B} m_1 = 2 \sqrt{\mathrm{R}_{\cdot \cdot r_1}} \;,\; \ldots \;,\; m_{n+1} \; m_n = 2 \sqrt{r_n \; \cdot \; r_{n+1}} \;\;, \label{eq:Bm1}$$

ce qui donne

(6)
$$\sqrt{\overline{R} \cdot r_1} = \sqrt{\overline{R} \cdot r_2} + \sqrt{r_1 \cdot r_2}, \quad \frac{1}{\sqrt{r_2}} = \frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{\overline{R}}}, \dots$$

et ainsi de suite, puis

$$\frac{1}{\sqrt{r_n}} = \frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{\overline{R}}}.$$

D'autre part, puisque (ω_1'') , tangent à (O), t_A , t_B , est indépendant de la position de C sur AB, il en est de même pour les cercles (ω_2'') , ..., (ω_n'') . L'indice n étant donné, les rapports (5) sont donc

constants pour le centre du cercle (ω_n) , et, pour cause d'homothétie, il suffit d'évaluer le rapport $\frac{r_n}{y_n'} = e_n$, y_n' étant l'ordonnée de ω_n'' pour la droite AB. Or, d'après (6), (7), on obtient, de proche en proche,

$$\begin{split} r_1 &= \frac{1 + \sin \theta}{1 - \sin \theta} \cdot \mathbf{R} = \left(\frac{1 + \sin \theta}{\cos \theta}\right)^2 \cdot \mathbf{R} \ , \\ \frac{1}{\sqrt{r_n}} &= \left[\frac{\cos \theta}{1 + \sin \theta} + n - 1\right] \cdot \frac{1}{\sqrt{\mathbf{R}}} \ , \quad mm_n = 2 \sqrt{\mathbf{R} \cdot r_n} \ , \end{split}$$

et enfin, d'une part 3,

$$(8) \qquad e_n = \frac{1}{2\sqrt{\frac{\overline{R}}{\rho_n}\cos\theta + \sin\theta}} =$$

$$= \frac{1}{2(n-1)\cos\theta - \sin\theta + 2}, \quad \left(-\frac{\pi}{2} < \theta < \frac{\pi}{2}, \quad 0 < e_n < 1\right);$$

d'autre part, la distance

(9)
$$\frac{\mathbf{R}}{e_n} = [2 (n-1) \cos \theta - \sin \theta + 2] . \mathbf{R}$$

de AB à la directrice Δ_n . Puisque les relations (9), (10) ne dépendent que de l'indice n, ces formules s'appliquent à l'ellipse (E'_n) pour laquelle $e'_n = e_n$ dont la directrice relative au foyer O, est symétrique de Δ_n par rapport à AB, et aux ellipses analogues associées aux chaînes (γ_1), (γ_2) de cercles.

Problème. — L'indice n étant donné, construire le point C de manière que le cercle (ω_n) soit le plus grand.

D'après ce qui précède, le centre ω_n du plus grand cercle (ω_n) , de rayon ρ_n correspondant à l'indice donné n, coïncide nécessairement, au-dessus de AB, avec le sommet S_n de l'ellipse (E_n) sur laquelle il est situé et dont l'excentricité e_n ne dépend que de n, R, θ . En effet, puisque

$$\rho_n = e_n \cdot y_n ,$$

³ J. AUDERSSON, Mathesis, 1956, p. 556.

L'Enseignement mathém., t. III, fasc. 2.

le maximum de ρ_n correspond à celui de l'ordonnée y_n de S_n par rapport à AB. Or, les égalités

$$y_n = \rho_n = OS_n + OA_1 = R (1 + \sin \theta)$$
 ,

donnent

$$\rho_n = \frac{e_n}{1 + e_n} (1 + \sin \theta) \cdot R .$$

Le cercle cherché, de centre $\omega_n \equiv S_n$, tangent intérieurement au cercle (O), est donc déterminé. On peut aussi le construire, ainsi que les cercles (ω_{n+1}) , ..., (ω_1) , en considérant le point de rencontre D_n de By avec la droite AQ_n joignant A au point Q_n où la médiatrice de AB coupe le cercle (O) au-dessus de AB.

D'après (4), le rayon

$$\rho = BD_n \cdot \frac{\cos \theta}{2[1 + (n - 1)\cos \theta]} = D\omega'_n$$

du cercle (ω'_n) , transformé de (ω_n) par i, étant connu, on obtient sur la droite By, à partir de D_n , les points $D_{n-1}, ..., D_1$, les centres des cercles (ω'_n) , (ω'_{n-1}) , ..., (ω'_n) , par suite les points $\omega_n = S_n$, $\omega_{n-1}, ..., \omega_1$ et le point C sur AB correspondant à l'indice donné n.

3. LIEU DU POINT DE CONTACT AVEC (O_1) DU CERCLE (ω_n) , D'INDICE DONNÉ n. — Les transformés des points de contact $f_1, f_2, ..., f_n$ des cercles $(\omega_1), (\omega_2), ..., (\omega_n)$ avec le cercle (O_1) par l'inversion i, se confondent avec les points de contact $F_1, F_2, ..., F_n$ des cercles $(\omega_1'), (\omega_2'), ..., (\omega_n')$ avec la droite $C_0 x_0$. Or, en vertu de (4),

$$\cot \left(\mathrm{BF}_n,\,\mathrm{BD}_n\right) = \frac{\mathrm{BD}_n}{\mathrm{D}_n\mathrm{F}_n} = \frac{\mathrm{BD}_n}{2\,\mathrm{p}} = \frac{1\,+\,(n\,-\,1)\,\cos\,\theta}{\cos\,\theta} \,\cdot$$

le point de contact f_n du cercle (ω_n) , d'indice donné n, avec (O_1) , décrit donc au-dessus de AB, un arc du cercle transformé de la droite fixe BF_n par l'inversion i, et passant en A et B.

Lieu du point de contact du cercle (ω_{n-1}) et du cercle (ω_n) , d'indice donné n. — La distance N_n' M_n' de la droite By au point de contact N_n' des cercles (ω_{n-1}') , (ω_n') , transformé du point de contact N_n de (ω_{n-1}) et (ω_n) , étant égale au rayon ρ des

cercles (ω'_{n-1}) , (ω'_n) , en raison de (4), on obtient, de proche en proche,

$$\begin{split} \cot\left(\mathrm{BN}_n',\mathrm{B}y\right) &= \frac{\mathrm{BM}_n'}{\mathrm{M}_n'\mathrm{N}_n'} = \frac{\mathrm{BD}_n - \mathrm{M}_n'\mathrm{D}_n}{\varrho} = \frac{\mathrm{BD}_n - \varrho}{\varrho} = \\ &= \frac{\mathrm{BD}_n}{\varrho} - 1 = \frac{2}{\cos\theta} [1 + (n-2)\cos\theta] \,. \end{split}$$

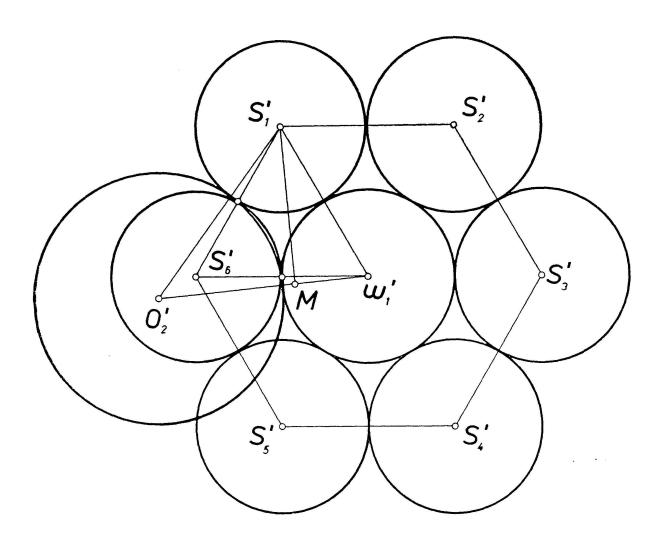


Fig. 2

Lorsque C varie sur AB, entre A et B, le contact N_n de (ω_{n-1}) , (ω_n) décrit donc un arc du cercle transformé de la droite fixe BN'_n par l'inversion i et passant en A et B.

- N.B. Mêmes conclusions pour les lieux des points de contact des cercles analogues des autres chaînes.
- 4. Une extension a l'espace. Conservons la figure 1 située dans un plan (P) et décrivons les sphères (O), (O₁), (O₂),

 (ω_1) sur les cercles de mêmes noms comme grands cercles, puis traçons la sphère (S₁) tangente aux quatre précédentes. Si le point C se déplace, entre A et B, sur le diamètre fixe AB, les sphères (O_1) , (O_2) , (ω_1) , varient aussi et la sphère (S_1) qui leur est tangente, enveloppe la sphère fixe (O) et une autre sphère fixe (Γ_1) déterminée en transformant la figure par une inversion $i \equiv (A, AB^2)$. En effet, dans cette transformation, la sphère (O) devient le plan (Δ) perpendiculaire au plan (P) et au rayon AO et qui passe par B; la sphère (O_1) , le plan (π) parallèle à (Δ) et passant par le transformé C_0 de C par i; (O_2) , une sphère (O'_2) décrite sur BC_0 comme diamètre; (ω_1) , une sphère (ω'_1) tangente à (Δ) , (π) , (O'_2) ; (S_1) , une sphère (S'_1) tangente à (Δ) , (π) , (O'_1) , (ω'_1) , égale à (ω'_1) et de rayon ρ . D'autre part, si S'_1 se projette orthogonalement en M, N sur les plans (P), (Δ) respectivement, $O_2' \omega_1' S_1'$ est un triangle isocèle $(O_2' \omega_1' = O_2' S_1')$, dont la hauteur S_1 M a pour mesure

$$S_1' M = \frac{2\rho}{1 + \cos^2 \theta} \sqrt{1 + 2\cos^2 \theta}$$
,

car

$$\omega_{1}'\,M\,=\,2\,\rho\,\sin\,\frac{1}{2}\left(O_{2}'\,\omega_{1}'\,,\;O_{2}'\,S_{1}'\right),\,\sin\,\frac{1}{2}\left(O_{2}'\,\omega_{1}'\,,\;O_{2}'\,S_{1}'\right)\,=\,\frac{\cos^{2}\,\theta}{1\,+\,\cos^{2}\,\theta}\,\cdot$$

Comme $S_i' N = \rho$, on obtient la suite de rapports égaux

(12)
$$\frac{S_1'M}{S_1'N} = \frac{S_1'M}{\rho} = \frac{2}{1 + \cos^2\theta} \sqrt{1 + 2\cos^2\theta}$$

dont il résulte, si le point C varie entre A et B sur AB, que le plan (By, S_1') reste fixe ainsi que le second plan (π') tangent à la sphère (S_1') et mené par By.

Conséquences. — La sphère (S_1) enveloppe bien la sphère (O) et une autre sphère fixe (Γ_1) transformée du plan (π') par i; son centre S_1 est situé sur l'ellipsoïde de révolution (E_1) , de foyers O, Γ_1 , au-dessus de (P) et entièrement déterminé.

Cas particulier. — Pour la configuration d'Archimède, $\theta = 0$; les rapports (12) ont pour valeur commune $\sqrt{3}$.

Configuration de sphères. — Une analogie avec la configuration plane consiste à construire, de proche en proche, les sphères: (S_1) , tangente aux sphères (O), (O_1) , (O_2) , (ω_1) ; (S_2) , tangente à (O), (O_1) , (ω_1) , (S_1) ; (S_3) , tangente à (O), (O_1) , (ω_1) , (S_2) , ...; (S_6) , tangente à (O), (O_1) , (ω_1) , (S_5) . La chaîne formée par les sphères (S_n) , (n=1,2,3,4,5,6), autour de la sphère (ω_1) , est fermée. En effet, l'inversion i transforme les six sphères (S_n) en des sphères (S_n') égales à (ω_1') , tangentes aux plans (Δ) , (π) , tangentes entre elles et dont les centres sont coplanaires. Les triangles S_1' ω_1' S_2' , ..., S_5' ω_1' S_6' étant équilatéraux, les points ω_1' et S_n' coıncident respectivement avec le centre et les sommets d'un hexagone régulier (fig. 2). Lorsque C varie entre A et B sur AB, chacune des sphères (S_n) enveloppe la sphère (O) et une sphère (Γ_n) ; son centre S_n appartient à un ellipsoïde de révolution déterminé (E_n) , au-dessus ou au-dessous du plan (P).

N.B. — Si $\theta = 0$, les sphères (O'_2) et (S'_6) sont confondues ainsi que (O_2) et (S_6) .

Errata (L'Enseignement mathématique, 1951-1954). — La première ligne de l'équation (2) doit s'écrire

$$[(a^2 + b^2 + 2ab \cos \theta) R^2 - 2ab (a + b) R \cos^2 \theta + a^2 b^2 \cos^4 \theta] \rho_1^2;$$

p. 64, ligne 15, lire... $(\omega_1, (\omega_2))$ sont transformés l'un de l'autre par...; ligne 5 en remontant: OS_1 : $S_1 \omega_1$; p. 69, ligne 11, entre au lieu de centre.

Reçu le 4 décembre 1956.