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138 M. A. KERVAIRE

8. LA FORMULE DE GAUsS-OSTROGRADSKI

se présente de facon tout a fait semblable & la formule de Stokes.
Définissons tout d’abord I'intégrale de volume. Soit V un volume
combinaison linéaire de morceaux: V = X, n, V,. En postulant

[faV = Z;n; [jav,
v V;

1

on ramene la définition de [fdV au cas spécial o V est un mor-
A

ceau r (u,, Uy, u3), 0 < uy, u,, u; < 1. Dans ce cas, on pose

vfde = j'fff (uy, Uy, ug) (ry, ra, r3) duy duy, duy (8.1)

ou (ry, r,y, ry) est le produit mixte r; . r, X r; des vecteurs déri-
vées partielles r; = dr/ou,. L’intégrale triple (8.1) est étendue
aucube unité 0 <u;, =1,0=u, =1,0 < uy, = 1.

Le théoréme de Gauss affirme que dans le domaine de diffé-
rentiabilité (continue) du champ F, on a

/v.FdV:SEF.dS, ot S = bV, (8.2)
v N

On suppose de nouveau que les morceaux constituant V admet-
tent des dérivées partielles secondes continues.

A cause de la linéarité de I'intégrale, il est de nouveau suffi-
sant de démontrer cette formule dans le cas particulier ou V
est un morceau r (4, Uy, U3). On se sert a cet effet de la formule
auxiliaire:

(r), x5, 13) V . F = (Fy, vy, 13) + (Fp, 13, 1) + (F3, 1y, 1p) = (8.3)
= (F, 1y, x3); + (F, x5, 11)5 + (F, vy, 13)5,

ou la deuxiéme égalité est triviale (les indices indiquent la déri-
vation partielle). On a

[V . Fav = [[[(r;,m5x5) V . Fduy duydu,,
3
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soit, d’apreés (8.3),
= ffJ'(F,r2,r3)1du1 du, dug + JIJ.(F, r;, Ty ), duy dus dug +
+ [ [ (F,x, xa)s duy dus dus -

En effectuant l'intégration partielle de la premiére intégrale
suivant u,, de la seconde suivant u,, de la troisiéme suivant us,
il vient:

[V . FaV = [[(Fxyx5), g dusdus — [ [, xa,ws),, g duy du
A% /
+ [ rym), g duy dug — [ [ (F x5 m0),, g duy dug
+ [ By re), oy duyduy — [ [ (Frqxa), o dug dus -

Appelons u, ¢ les variables d’intégration dans les six Inté-
grales ci-dessus. En reprenant les notations de (5.3), on a

[V . FaV = [[F(1,u,0) .5, X r, dude — [ [F(0,u,0) .y, X ry, dudo
' + [[F(u,1,0) . g, x 1y, dudo — [ [F (,0,0) . rp, X 1y, dudo
+ [[F(u,0,1) . xy, X r dude — [ [F(u,0,0) . rg, X re, dudo
:jF.ds_fF.ds_-jF.dSJrfF.ss+jF.ds—fF.ds,
S1 Sy Sg Sy Ss Se

v

= F . dS = (ﬁF . ds .
S1—Ss—S3+S,+S5~S; Y

Il reste a prouver la formule (8.3), ce qui est & nouveau
mécanique. Il est suffisant de prouver la formule pour F = fa,
ou a est un vecteur constant. La formule & démontrer se réduit a

ful (a’ Ty 1‘3) + fua (a> r3, rl) + fus (a’ Iy, 1‘2) - (1‘1, Ty, 1’3) a. vf ’
ou encore |
fi (ty X 1) + fo(r3 X 1y) + f3(ry X 1) = (r}, vy, v3) Vf .

.On utilise
aX (bxXec)=(a.c)b—(a.b)e (8.4)

en posant tout d’abord a =1r;, b = Vf, ¢ =1, X r;, d’ou
r; X (VX (ry X 13)) = (ry, 15, 13) Vf— f; (13 X 1),

car f, = V[ . r;, d’aprés (2.2).
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En appliquant encore (8.4), cette fois avec a = Vf, b = r,,
¢ = ry:
ViX (xg X xg) = f3.15—f5 .15,

et par suite

fa 1y X wp) — f (xr; X x5) = (ry, 2y, 73) Vf—f1 (ry X 15),
ce qul est essentiellement la formule & démontrer.

Remarque. — L’analogie entre les démonstrations des théo-
rémes de Stokes et de Gauss n’est pas fortuite. Tous deux sont
en fait des cas particuliers d’un seul et unique théoréme beaucoup
plus général dont la démonstration n’est pas essentiellement
différente de celle présentée ci-dessus. (Cf. par exemple A. Lich-
nerowicz, Algébre et Analyse linéaires, § 148 ou B. Eckmann,
Differentiable manifolds, Lecture Notes of the University of
Michigan, 1950.)

Séminaire de physique théorique de I’Université de Berne
et
Dept. of Mathematics, Massachusetts Institute of Technology.

Regu le 7 janvier 1957.
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