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138 M. A. KERVAIRE

8. La formule de Gauss-Ostrogradski

se présente de façon tout à fait semblable à la formule de Stokes.
Définissons tout d'abord l'intégrale de volume. Soit V un volume
combinaison linéaire de morceaux: V Si En postulant

J/rfV J fdv,
v v4

on ramène la définition de J/dV au cas spécial où V est un mor-
V

ceau r (ul7 u2, w3), 0 ^ ul7 u2, u3 ?£ 1. Dans ce cas, on pose

J/dV JJJ7 (uu u2, uz) (rl5 r2, r3) duxdu2duz (8.1)
V

où (rl7 r2, r3) est le produit mixte rx r2 x r3 des vecteurs dérivées

partielles r- dr/di^. L'intégrale triple (8.1) est étendue
au cube unité 0 X5 ux ^5 1, 0 x: u2 < 1, 0 X u3 < 1.

Le théorème de Gauss affirme que dans le domaine de difîé-
rentiabilité (continue) du champ F, on aI"V TdV(j) F dS,oùS (8.2)

V S

On suppose de nouveau que les morceaux constituant V admettent

des dérivées partielles secondes continues.
A cause de la linéarité de l'intégrale, il est de nouveau suffisant

de démontrer cette formule dans le cas particulier où V
est un morceau r (%, ^2, u3). On se sert à cet effet de la formule
auxiliaire :

Ùi, r2> r3) V • F (F1? ra, r3) + (F2, r3, Tj) + (F3, rl5 r2) (8.3)

(F? r2, r3)1 -f (F, r3, t1)2 + (F, rx, r2)3

où la deuxième égalité est triviale (les indices indiquent la
dérivation partielle). On a

J v • FdV JJJ (r1? r2, r3) V Fduxdu2du2
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soit, d'après (8.3),

JJJ (F, r 2, r3)1 du± du2 duz + JJJ (F, r3, rx)2 dux du2 duz -f-

+ JJJ (F, rl5 r2)3 du± du2 duz

En effectuant l'intégration partielle de la première intégrale
suivant de la seconde suivant k2, de la troisième suivant
il vient :

| V • FdV J J (F, r2, r3) t du2 duz — J J (F, r2, r3)Ui=0 du2 duz

+ J J (F, r3, dux duz J J (F, r3, r1)u^=z0 dux duz

+ J J (F, *1, r2>u3 l dul du2 — JJ (F' rl> r2>u3 0 dul du2 *

Appelons w, v les variables d'intégration dans les six
intégrales ci-dessus. En reprenant les notations de (5.3), on a

J V • FdV J JF (1, u, v) rllx X rlt, dudv — J JF (0, u, v) r^u X dudv
y

+ JJF (u, 1, v) rsv X r3Ududç — JJF (m, 0, v) X r^dudv

+ JJF (u, v, 1) r5U X r5V dudv — JJF (m, e, 0) rßU X rßU dad?

Jf ds — Jf ds — Jf ds + Jf *s + Jf d$ — Jf ds
Si s2 S3 S4 S5 S g

J F dS J) F

S1-Sa-S3+S4 + S5-S6 bV

Il reste à prouver la formule (8.3), ce qui est à nouveau
mécanique. Il est suffisant de prouver la formule pour F — /a,
où a est un vecteur constant. La formule à démontrer se réduit à

fUl (a> r2> rs) + 42 (a, r3, rj + (a, rlt r2) (rl5 r2, r3) a V/

ou encore

fi (r2 X r3) + f2 (r3 X rx) + fz (rx X r2) (rx, r2, r3) V/

On utilise
a X (b X c) (a c) b — (a b) c (8.4)

en posant tout d'abord a r3, b v/, c r2 X r3, d'où

ri X (V/ X (r2 X r3)) (rl5 r2, r3) V/ —/i (r2 X r3)

car f1 f r3, d'après (2.2).
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En appliquant encore (8.4), cette fois avec a V/, b r2,
c r3:

V/ X (r2 X r3) /3 r2 — /2 r3

et par suite

h (ri X r2) — /2 (ri X r3J (rl5 r2, r3) V/ — A (r2 X r3)

ce qui est essentiellement la formule à démontrer.

Remarque. — L'analogie entre les démonstrations des
théorèmes de Stokes et de Gauss n'est pas fortuite. Tous deux sont
en fait des cas particuliers d'un seul et unique théorème beaucoup
plus général dont la démonstration n'est pas essentiellement
différente de celle présentée ci-dessus. (Cf. par exemple A. Lich-
nerowicz, Algèbre et Analyse linéaires, § 148 ou B. Eckmann,
Differentiable manifolds, Lecture Notes of the University of
Michigan, 1950.)

Séminaire de physique théorique de V Université de Rerne

et

Dept. of Mathematics, Massachusetts Institute of Technology.
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