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FORMULES D'INTÉGRATION 135

de l'application r (h, v). L'essentiel ici est bien entendu de voir
que la formule du bord montre que le bord du ruban de Möbius
n'est pas la seule courbe frontière (au sens intuitif) qui est

représentée par (— 1) (C2 + C3) avec nos notations, mais pour
la paramétrisation ci-dessus bS 2CX + (— 1) (C2 + C3), la
contribution de la courbe C± étant tout à fait inattendue de

l'intuition. Si l'on prend l'expression correcte ci-dessus pour le

bord, la formule de Stokes est alors valable, comme il sera
démontré au paragraphe suivant.

7. La formule de Stokes.

On définit comme suit les intégrales curvilignes et de
surface. Soit F un champ de vecteurs (fonction associant à tout
point d'une région de l'espace un vecteur qui dépend de manière
continue de l'argument), l'intégrale JF dr de F le long de la

c
courbe C est définie d'abord dans le cas où C est un morceau.
On pose

î
J F dr J F (t) r* (t) dt (7.1)CO

où F (t) F (aq(t), x2(t), xs t)),r {.rx (t),xa (t)}
étant la fonction qui définit C. Dans le cas plus général où C
est une courbe: C nxQ+ ••• + nk où C1; Cfe sont des

morceaux, on pose

/F dt2 «j /F dr.(7.2)
C C;

Pour l'intégrale de surface, l'exigence de la linéarité7 permet
à nouveau de n'avoir à donner de formule explicite que dans le
cas du morceau. Soir r (u,c)un morceau de surface S (0 ^ g; 1,
0 < c 1 On pose

JF dSffF (u, x rB dudv (7.3)
S

7 La non-contradiction de cette exigence avec la convention de négliger les
éléments dégénérés est aisément vérifiée en constatant que l'intégrale étendue à unmorceau dégénéré est nulle.
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où l'intégrale double (de la fonction numérique F (u, v) ru x rj
est étendue au carré unité 0 ^ u, v ^ 1. On a dénoté par F (u, v)

le vecteur F (x1 (u, ç) x2 (&, e), x3 (w, e)), où r (u, e) — (u, e),

(^, 0? ^3 (*b ?)}•
Soit S une surface dont les morceaux admettent des dérivées

partielles secondes continues et F un champ de vecteur. Le
théorème de Stokes affirme que

j"VXF.rfS (j)F.dr, où G (7.4)
S c

pourvu que F ait des dérivées partielles premières continues dans

une région contenant S.

Démonstration. — Il est suffisant de se limiter au cas où S est

un morceau de surface si: S — nx S! + + nk SÄ, où les S{ sont
des morceaux, alors

k

JvxF.dS 2^JvxF-^s
S 1 S;

et si Ton sait que (7.4) vaut pour un morceau, on en tire

j* V XF JS ni Ç V X F dS ni (j) F dr (j) F dr

S 1
Si

1
bS.: bS

car
kbs2 "j bSi
1

Soit donc S un morceau r (m, c), 0 u 1, 0 x; c 1. On

a besoin de la formule auxiliaire

VXF.ruX^Fu.rrFrru«(F. rv)u — (F rJ,, (7.5)

la deuxième égalité étant triviale (continuité des dérivées
partielles secondes de r).

On a

JVXF.dS=JJvx F ru X rv dudv JJ (F rv)u dudv —

~ JJ (F • rv)v dudv
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Par intégration partielle de la première intégrale selon u et de

la seconde selon e, il vient (avec les notations de (5.1)):

1 1

J v x F dS J (F (1, v) r4 — F (0, p) r2) dv — J (F (u: 1) r3 —SO 0

— F (u, 0) r4) du

et en appelant t la variable d'intégration dans chaque intégrale :

î î #if V X F dS J (F (1, t) /vxdt— JF(0,*) r2 dt — J F (£, 1) r3 dt +SO 0 0

1

-f J F (t, 0) r4 dt ~ J F dx — J F dr — J F dr + J F dv
0 C4 c2 C3 c4

(j) F dr (cf. (7.2)).

5 S

Il reste à prouver la formule (7.5), ce qui est mécanique:
Comme F intervient linéairement dans (7.5), il suffit de démontrer

cette formule pour un champ spécial de la forme F /a,
où a est un vecteur constant et / une fonction numérique (en effet,
en choisissant une base vectorielle a1? a2, a3, on a bien F ax +
f2 a2 -f fs a3- Si la formule (7.5) est prouvée pour chaque ft
elle l'est par linéarité pour F lui-même). Soit donc F — ,/a, la
formule à prouver se réduit à V X /a ru x rv fu a rv —
/,. a ru. On a

V X /a ru X V/Xa.r^r^
d'après (2.3), puis

V / • rM V / • r,

a

fv

d'après (2.1),

d'après (2.2), c.q.f.d.
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