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FORMULES D’ INTEGRATION 135

de Tapplication r (u, ¢). L’essentiel ici est bien entendu de voir
que la formule du bord montre que le bord du ruban de Mobius
n’est pas la seule courbe frontiére (au sens intuitif) qui est
représentée par (— 1) (G, + C;) avec nos notations, mais pour
la paramétrisation ci-dessus bS = 2C; + (— 1) (Cy + Cy), la
contribution de la courbe C, étant tout a fait inattendue de
I'intuition. Si Pon prend Pexpression correcte ci-dessus pour le
bord, la formule de Stokes est alors valable, comme il sera
démontré au paragraphe suivant.

7. LA FORMULE DE STOKES.

On définit comme suit les intégrales curvilignes et de sur-
face. Soit F un champ de vecteurs (fonction associant & tout
point d’une région de I'espace un vecteur qui dépend de maniére
continue de 'argument), I'intégrale [F . dr de F le long de la

C

courbe C est définie d’abord dans le cas ou C est un morceau.
On pose

1
fF.drsz(z)_r-(t)dt, (7.1)
C 0

ou F (1) = F (2, (1), 25 (1), zg (1)), (1) = {a; (1), x5 (t), x5 (1) }
étant la fonction qui définit C. Dans le cas plus général ou C
est une courbe: C = n, C; + ... + n, C,, ou Cy, ..., C, sont des
morceaux, on pose

jF.dr:EnifF.dr. (7.2)
C g

Pour I'intégrale de surface, 'exigence de la linéarité 7 permet,
& nouveau de n’avoir & donner de formule explicite que dans le
cas du morceau. Soir r (1, ¢) un morceau de surface S (0 < u < 1,
0 =¢ =< 1). On pose

SfF.dS——_ [[F(w,0) . x, xr, dudo (7.3)

7 La ‘non—'contradiction de cette exigence avec la convention de négliger les élé-
ments dégénérés est aisément vérifiée en constatant que l’'intégrale étendue a un
morceau dégénéré est nulle.
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ou I'intégrale double (de la fonction numérique F (u, ¢) . r, X r,)
est étendue au carré unité 0 < u, ¢ < 1. On a dénoté par F (u, 0)
le vecteur F (x; (u, ¢) 2, (u, ¢), 25 (u, ¢)), our (u, ¢) = {z; (u,v),
s (1, 0), g (1, ¢) }.

Soit S une surface dont les morceaux admettent des dérivées
partielles secondes continues et F un champ de vecteur. Le
théoréme de Stokes affirme que

[vxF.dS:g@F.dr, on  C = b8, (7.4)
§ ¢

pourvu que F ait des dérivées partielles premieres continues dans
une région contenant S.

Démonstration. — 11 est suffisant de se limiter au cas ou S est
un morceau de surface si: S = n; S; + ... + n, S;, ot les S; sont
des morceaux, alors

k
[VxF.ds=n, [V xF.ds
S 1 .

1

Si

et s1 on sait que (7.4) vaut pour un morceau, on en tire
p y

R R .
f'v X F . dS= N n, fvxF.dSZEni<ﬁF.dr=4§F.dr,
S r L 8

S bS

car
kR
BS = > n; bS; .
1

Soit done S un morceaur (u, ¢),0 = u <1,0
a besoin de la formule auxiliaire

A

< 1. On

VxF.rx, xer,=F .¢x,—F .r,=(F.r) —(F.r) kB (7.5

u

la deuxiéme égalité étant triviale (continuité des dérivées par-
tielles secondes de r).
On a

[VXF.dS= [[V xXF.x,xr,dude= [[(F.r), dudo —
S

— fI(F . r,), dudo .
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Par intégration partielle de la premiére intégrale selon u et de
la seconde selon ¢, il vient (avec les notations de (5.1)):

1 1 .
jvxF.dS=j(F(i,v).‘rl—F(o,p).r'z)do—j(F(u,m.rg_.
S 0 0

— F(u, 0) . 1)) du

et en appelant ¢ la variable d’intégration dans chaque intégrale:

1 1 1
[vxF.ds= [(F(t,0) xydi— [F(0,1) . rydt — [F(5,1) . rydt +
S 0 0 0

{

+ [F(t,0) rydt = [F.de— [F.dr— [F.dr + [F.de =
02 Cs C

0 Cy 4

_ <ﬁF L dr (cf. (7.2)).

bS

Il reste & prouver la formule (7.5), ce qui est mécanique:
Comme F intervient linéairement dans (7.5), il suffit de démon-
trer cette formule pour un champ spécial de la forme F = fa,
ol a est un vecteur constant et f une fonction numérique (en effet,
en choisissant une hase vectorielle a,, a,, a;,onabien F = f, a; +
fo ay, + f3as. Sila formule (7.5) est prouvée pour chaque f; a;
elle I'est par linéarité pour F lui-méme). Soit donc F = fa, la
formule & prouver se réduit 4 Vv X fa . r, Xr, = f,a . r, —
f,a.r, On a |

VX]‘a.ruerz VfXa.ruer,

d’apres (2.3), puis

\VA N Vf.or,
= , d’apres (2.1),
a I‘u a I'v
fu fv
= , d’apres (2.2), c.q.f.d.
a. I'u a l‘77
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