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132 M. A. KERVAIRE

Pour le bord d'un volume, on procède de façon semblable:
le bord sera linéaire, i.e. bY nx bYx + n2 bY2 (au sens de
l'addition des surfaces) si V nx Yx + n2 V2. Il suffit donc de
dire ce qu'est le bord d'un morceau de volume. Soit r (ul7 u2, u3)

un morceau Y, son bord bY est la surface définie comme suit:
Soient Si7 i 1, 2, 3, 4, 5,6 les morceaux de surfaces définis par
vi (u, c) comme suit:

ri (u, v) r (1, u, c) r2 (u, ç) r (0, u, v)

r3 (u, ç) r (u, i, ç) r4 (u, v) r (m, 0, p) (5.3)
r5 (u, ç) r (m, p, 1) r6 (u, ç) r (u, ç, 0)

Le bord 6V est la surface, combinaison linéaire des St à coefficients

entiers, donnée par
bV Sx — S2 — S3 + S4 + S5 — S6 (5.4)

Rappelons que dans ces expressions pour le bord on devra
« négliger » les morceaux dégénérés s'il s'en présente.

6. Remarques et exemples.

Il y a deux différences essentiellement entre courbes,
surfaces et volumes introduits au § 3 et les notions habituelles :

1° un morceau est muni d'une paramétrisation inhérente à sa

définition. La figure géométrique « cercle » ne devient une
courbe (ou éventuellement un morceau de courbe) qu'après
que l'on a fait choix d'une paramétrisation. Ceci est sans
doute contraire à l'idée géométrique, mais c'est adapté à

l'intégration;
2° courbes, surfaces et volumes trouvent certes leur origine dans

les notions géométriques et analytiques de morceaux de

courbe, surface, volume; cependant ce sont essentiellement
des objets algébriques avec lesquels on calcule formellement
comme avec des formes linéaires d'indéterminées à coefficients
entiers.

On peut naturellement paramétriser un cercle d'une infinité
de manières. On en fait, par exemple, un morceau en prenant

r (t) | R cos (27it) R sin (27zt) 0 } R rayon, 0 ^ t 1. (6.1)
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L'application

r ^)={Ru. cos (2tuc) Ru sin (2w) 0} 0 ^ u, ç £ 1, (6.2)

définit un disque D. Cherchons ÔD: on a (cf. (5.1))

Cx est donné par rx (t) — r (1, t) { R cos (2nt) R sin (2nt) 0 }

C2 est donné par r2 (t) r (0, t) {0 o > °}
C3 est donné par rz (t) r 1) {m o .0}
C4 est donné par r4 (t) r (0) {(R o °}

par suite C2 est dégénérée, C3 C4, et l'on a

6D — Cx — C2 — C3 -j- C4 Cx

La formule

r (u,v) {R cos (2ttc) sin (tzu) R sin (2ttc) sin (nu) R cos (nu) } (6.3)

permet de regarder la sphère comme morceau de surface au sens

du § 3. Cherchons le bord du morceau S défini par la formule
ci-dessus. Les morceaux C3, C4 définis par (5.1) ont les

propriétés C4 C2 0 (dégénérés), C3 C4. Donc bS C4 — C2

— C3 + C4 — C3 + C4 0.

La boule de rayon R est donnée comme morceau de volume

par

r (u1} u2, u3) | Rux cos (2tuu3) sin (nu2) Ru± sin (2nuz) sin (tuu2)

Ru cos (tuu2) I (6.4)

où 0 ^ w4, w2, u3 ^ 1.

On vérifie aisément en utilisant (5.3) que le bord de la boule
est la sphère représentée par (6.3).

On peut également représenter le tore comme morceau de

surface, la formule est la suivante:

r (u, ç) { R cos (2îuu) — r sin (2ttc) cos (2nu) (6.5)

R sin (2tuu) — r sin (27uc) sin (2ivu) r cos (27uc) ]

On vérifie aisément que le bord de cette surface est zéro.
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Etudions maintenant le cas du ruban de Möbius. On peut le

représenter par un morceau de surface dont la fonction r (u, v)

a la propriété
r (1, t) r (t, 0)

ce qui implique C± — C4 (notations de (5.1)). On peut écrire
les formules explicites de plusieurs manières6 toutes compliquées
et pas très instructives. La figure 2 permet de se faire une idée

Fig. 2.

Ruban de Möbius obtenu par une application difïérentiable du carré unité
Les points a, b, c, d sont les images des sommets.

La figure correspond à peu près aux formules du texte
1

avec L%= y cos (nu 1 — c)).

6 Prendre, par exemple:
c 1 1 1 ^

r (u, v) jcos 0 (1 — L sin y 0), sin 0 (1 — L sin y 0), L cos y 0j
où 0 27t(u + ü — 1) et L 1 cos (nu (1 — v)), 0 5^ u, v ^ 1 (21 est la largeur
du ruban).
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de l'application r (h, v). L'essentiel ici est bien entendu de voir
que la formule du bord montre que le bord du ruban de Möbius
n'est pas la seule courbe frontière (au sens intuitif) qui est

représentée par (— 1) (C2 + C3) avec nos notations, mais pour
la paramétrisation ci-dessus bS 2CX + (— 1) (C2 + C3), la
contribution de la courbe C± étant tout à fait inattendue de

l'intuition. Si l'on prend l'expression correcte ci-dessus pour le

bord, la formule de Stokes est alors valable, comme il sera
démontré au paragraphe suivant.

7. La formule de Stokes.

On définit comme suit les intégrales curvilignes et de
surface. Soit F un champ de vecteurs (fonction associant à tout
point d'une région de l'espace un vecteur qui dépend de manière
continue de l'argument), l'intégrale JF dr de F le long de la

c
courbe C est définie d'abord dans le cas où C est un morceau.
On pose

î
J F dr J F (t) r* (t) dt (7.1)CO

où F (t) F (aq(t), x2(t), xs t)),r {.rx (t),xa (t)}
étant la fonction qui définit C. Dans le cas plus général où C
est une courbe: C nxQ+ ••• + nk où C1; Cfe sont des

morceaux, on pose

/F dt2 «j /F dr.(7.2)
C C;

Pour l'intégrale de surface, l'exigence de la linéarité7 permet
à nouveau de n'avoir à donner de formule explicite que dans le
cas du morceau. Soir r (u,c)un morceau de surface S (0 ^ g; 1,
0 < c 1 On pose

JF dSffF (u, x rB dudv (7.3)
S

7 La non-contradiction de cette exigence avec la convention de négliger les
éléments dégénérés est aisément vérifiée en constatant que l'intégrale étendue à unmorceau dégénéré est nulle.
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