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132 ‘ M. A. KERVAIRE

Pour le bord d’un volume, on procéde de facon semblable:
le bord sera linéaire, i.e. bV = n, bV, -+~ n, bV, (au sens de
Paddition des surfaces) si V. = n; V; + n, V,. Il suffit donc de
dire ce qu’est le bord d’un morceau de volume. Soit r (u;, U, us)
un morceau V, son bord bV est la surface définie comme suit:
Soient S;,1 = 1, 2, 3, 4, 5,6 les morceaux de surfaces définis par
r; (u, v) comme suit:

ry(u,0) =r(1,u,0) , ry(u, 9)=r(0,u,r
rg(u, 0) =r(u,1,0) , 14w, o) =ru, 0,0 (5.3)
rs (u, 9) =r(u,0,1) , 1x5(u,v) =r(u, v 0)

Le bord 6V est la surface, combinaison linéaire des S; a coeffi-
cients entiers, donnée par

BV = 8, — 8, — 8, - 8, + 8, — S, . (5.4)

Rappelons que dans ces expressions pour le bord on devra
«négliger » les morceaux dégénérés s’il s’en présente.

6. REMARQUES ET EXEMPLES.

Il y a deux diftérences essentiellement entre courbes, sur-
faces et volumes introduits au § 3 et les notions habituelles:

1o un morceau est muni d’une paramétrisation inhérente a sa
définition. La figure géométrique «cercle » ne devient une
courbe (ou éventuellement un morceau de courbe) qu’apres
que l'on a fait choix d’une paramétrisation. Ceci est sans
doute contraire & l'idée géométrique, mais c’est adapté a
I'intégration;

20 courbes, surfaces et volumes trouvent certes leur origine dans
les notions géométriques et analytiques de morceaux de
courbe, surface, volume; cependant ce sont essentiellement
des objets algébriques avec lesquels on calcule formellement
comme avec des formes linéaires d’indéterminées a coefficients

entiers.

On peut naturellement parameétriser un cercle d’une infinité
de manieres. On en fait, par exemple, un morceau en prenant

r(f) = {Rcos (2nt), Rsin (2m) , 0}, R =rayon, 0 =<¢=<1. (6.1)
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L’application
r (u, ») = { Ru . cos (2m9) , Ru . sin (270) 0}, <1, (6.2)
définit un disque D. Cherchons #D: on a (cf. (5.1))

C, est donné parr; (1) = r (1,1) = {R cos (2mt) , R sin (27t) , 0}

C, est donné par r, () = r (0,1 = {0 , 0 , 0}
C, est donné par rg (t) = r (¢, 1) = {tR , 0 , O}
C, est donné par r, () = r (t, 0) = {iR , 0 , 0}

par suite G, est dégénérée, C3 = Cy, et 'on a
bD = C, — Cp — Cy + Gy = G .
La formule
r (u, o) E{R cos (2mo) . sin (mu), Rsin (2we) . sin (7u), R cos (nu)} (6.3)

permet de regarder la sphére comme morceau de surface au sens
du § 3. Cherchons le bord du morceau S défini par la formule
ci-dessus. Les morceaux C, ..., C, définis par (5.1) ont les pro-
priétés C; = C, = 0 (dégénérés), C; = C4. Donc 0S = C; — G,
—Cy+C=—C; 4+ C, = 0.

La boule de rayon R est donnée comme morceau de volume
par

r (U, Ug, Ug) = {Ru1 cos (2mug) sin (mwuy) , Ruy sin (27u,) sin (wu,)
Ru cos (mu,) } (6.4)
ou 0 = uy, uy, ug < 1.
On vérifie aisément en utilisant (5.3) que le bord de la boule
est la sphére représentée par (6.3).

On peut également représenter le fore comme morceau de
surface, la formule est la suivante:

r (u, 9) = {R cos (2mwu) — rsin (27e) cos (2mu) , (6.5)

R sin (2wu) — r sin (27o) sin (2wu) , r cos (27:0)} :

On vérifie aisément que le bord de cette surface est zéro.
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Etudions maintenant le cas du ruban de Mdébius. On peut le

représenter par un morceau de surface dont la fonction r (u, ¢)
a la propriété
r(1,t) =r (¢ 0),

¢ce qui implique C; = C, (notations de (5.1)). On peut écrire
les formules explicites de plusieurs maniéres® toutes compliquées
et pas trés instructives. La figure 2 permet de se faire une idée

Z

Fic. 2.

Ruban de Mo6bius obtenu par une application différentiable du carré unité
Les points a, b, ¢, d sont les images des sommets.
La figure correspond a peu prés aux formules du texte

1
avec L = 5 - cos (ru (1 — ¢)).

6 Prendre, par exemple:

r(u,v)z{cosﬁ.(i—Lsin%-G), sin().(1~Lsin—;—6), Lcos%@},

o1 0 =2n(u+v—1) et L =1cos (mru(l—w)), 0 =u v =1 (2 est 1a largeur
du ruban). :
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de Tapplication r (u, ¢). L’essentiel ici est bien entendu de voir
que la formule du bord montre que le bord du ruban de Mobius
n’est pas la seule courbe frontiére (au sens intuitif) qui est
représentée par (— 1) (G, + C;) avec nos notations, mais pour
la paramétrisation ci-dessus bS = 2C; + (— 1) (Cy + Cy), la
contribution de la courbe C, étant tout a fait inattendue de
I'intuition. Si Pon prend Pexpression correcte ci-dessus pour le
bord, la formule de Stokes est alors valable, comme il sera
démontré au paragraphe suivant.

7. LA FORMULE DE STOKES.

On définit comme suit les intégrales curvilignes et de sur-
face. Soit F un champ de vecteurs (fonction associant & tout
point d’une région de I'espace un vecteur qui dépend de maniére
continue de 'argument), I'intégrale [F . dr de F le long de la

C

courbe C est définie d’abord dans le cas ou C est un morceau.
On pose

1
fF.drsz(z)_r-(t)dt, (7.1)
C 0

ou F (1) = F (2, (1), 25 (1), zg (1)), (1) = {a; (1), x5 (t), x5 (1) }
étant la fonction qui définit C. Dans le cas plus général ou C
est une courbe: C = n, C; + ... + n, C,, ou Cy, ..., C, sont des
morceaux, on pose

jF.dr:EnifF.dr. (7.2)
C g

Pour I'intégrale de surface, 'exigence de la linéarité 7 permet,
& nouveau de n’avoir & donner de formule explicite que dans le
cas du morceau. Soir r (1, ¢) un morceau de surface S (0 < u < 1,
0 =¢ =< 1). On pose

SfF.dS——_ [[F(w,0) . x, xr, dudo (7.3)

7 La ‘non—'contradiction de cette exigence avec la convention de négliger les élé-
ments dégénérés est aisément vérifiée en constatant que l’'intégrale étendue a un
morceau dégénéré est nulle.
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