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SUR LES FORMULES D’INTEGRATION
DE IANALYSE VECTORIELLE

PAR

Michel A. KervaIirg, Boston

1. InTrRODUCTION!.

Le but du présent article est de préciser les démonstrations

(et I'énoncé) des formules d’intégration de I'analyse vectorielle.
Il s’agit essentiellement des formules

fv.dezéﬁF.ds (1.1)
3 S

et
JVxF.dSZSEF.dr (1.2)
s &

dites théoremes d’Ostrogradski (ou de Gauss) et de Stokes
respectivement (F, champ vectoriel dans l'’espace tri-dimen-
sionnel).

Dans les manuels d’analyse vectorielle (cf. G. Juvet, par
exemple), on regarde souvent (1.1), ainsi que les formules

/ v fdV = fﬁfds (Théoréme du gradient), (1.1
A% S

"D -
‘ vV X FdV = SEdS X F  (Théoréme du rotationnel), (1.17)
\ §

1 Cette introduction a été rédigée en collaboration avec A. Mercier. Pendant la
rédaction de ’article ’auteur avait un contrat avec la National Science Foundation.
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FORMULES D’ INTEGRATION 127

comme presque triviales, parce qu’elles s’obtiennent assez rapi-
dement & partir d’une définition de 'opérateur v qui serait

<ﬁds...
vV ...=Ilm-*——rnr—— -
v=0 V

La formule (1.2), ainsi que

f(dS X V) X F= (j}dr x F  (Théoréme anonyme (1.27)
3 a di a G. Juvet 2),

sont alors démontrées avec plus ou moins de rigueur en regar-
dant S comme la figure limite d’un volume d’épaisseur tendant
vers zéro, dont la surface latérale finit par s’identifier & une ligne.
~ Outre que la légitimation de ces démonstrations nécessite
(méme dans le cas des formules « triviales ») un recours assez
fastidieux au « formalisme des epsilons », il n’est guére satisfai-
sant de voir énoncer et démontrer des théorémes ou interviennent
les notions de volume, bord d’un volume, bord d’une surface,
sans que ces notions alent été définies. Cette lacune devient la
source d’anomalies des que l'on considére des surfaces pour
lesquelles la notion intuitive de bord est douteuse. C’est ce qui
se prodult si I'on cherche & appliquer, par exemple, la formule
de Stokes au ruban de Mobius 3. Dans cet exemple (voir fig. 1),
s1 G désigne la courbe qui «borde » le ruban et S le ruban lui-
meéme, 1l est inexact que

(ﬁF.dr et fVXF.dS
(-3 e

S

solent égales (en fait, il y a déja ambiguité sur le signe des
intégrales en question).

2 Cf. A. MERrCIER, Expression des équations de 1’électromagnétisme au moven des
nombres de Clifford. Archives des S. phys. et nat., Genéve, 17, p. 305, 1935.

3 On pourra objecter que dans la démonstration du théoreme de Stokes (telle
qu’elle est donnée par G. Juvet, par exemple) on suppose qu’il est possible d’étendre
par continuité et de maniére cohérente 1’orientation de 1a normale 3 Ia surface, ce qui
n’est pas le cas pour le ruban de Mobius. Il est facile de construire une surface orien-
table de «bord intuitif » C, disons, dont le bord algébrique (correct) est 2C (par exemple)
et pour laquelle la formule de Stokes intuitive est donc en défaut. (Prendre la région

de la surface de Riemann de w = z'* limitée par % = |z| = 1 et coller le long de
2 | = %, 1 les bords des deux déterminations.)

~
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Fic. 1.

Dans ce qui suit nous démontrerons deux des formules
rappelées, 'une de type trivial (1.1), 'autre de type non trivial
(1.2), & 'aide d’une méthode qui évite les difficultés mention-
nées. On verra par la aussi qu’il n'y a pas de différence réelle
entre formules triviales et non triviales. Pour développer la
méthode, nous devrons emprunter des notions aux théories
algébriques plus avancées de lintégration, en particulier celles
de courbes, surfaces et volumes et de leurs bords en tant que
cas particuliers de notions appartenant a la topologie algébrique.
Toutefois nous nous restreindrons a un exposé assez élémentaire
pour étre accessible & 1’étudiant d’un cours moyen sur le calcul
vectoriel.

Nous nous limitons aux démonstrations de (1.
(1.17) et (1.1") découlent immédiatement de (1.
vecteur constant a, on a

a.fode /‘v . (fa)de*@fa.dS:a. Sﬁfds, doi (1.17)
v S 8

5

1)
1

et (1.2) car
je

Pour tout

(remarque similaire pour (1.1")). De maniére analogue, (1.2')
découle de (1.2):

a.\fﬁerF:#dr.FXaz/dS.VX(FXa), d’apres (1.2),

¢ & - IS
:dex V.an:f(deV)XF.a
g S

ou a désigne un vecteur constant quelconque.
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[’auteur tient & souligner qu’il ne prétend & aucune originalité
dans le présent article. L’idée des démonstrations présentees est
bien connue en théorie des variétés différentiables; on la trouve
également mentionnée briévement dans la « Vorlesung von Prof.
Dr. W. Pauli: Elektrodynamik », VM P, 1949, page 5. L’inten-
tion de cette publication est de montrer que adaptation de ces
démonstrations au niveau élémentaire ne fait pas de difficulté
et qu’il serait par suite souhaitable de les voir s’introduire dans
les cours d’analyse vectorielle.

2. PRELIMINAIRES.

Nous utiliserons les formules du calcul vectoriel sans réfé-
rence explicite. Citons cependant

a; X ay . by X by = dét(a; . b , (2.1)

ou X désigne le produit vectoriel et . le produit scalaire.

De l'analyse vectorielle, on utilisera la forme que prend la
formule de dérivation des fonctions composées: Si f est une
fonction de xy, x,, 23 et que ces variables soient elles-mémes des
fonctions de u et ¢ (par exemple), les dérivées partielles (si elles
existent) de la fonction f (u, ¢) qui prend en (u, ¢) la valeur de
la fonction f au point z; (u, ¢), z, (u, ¢), x;3 (1, ¢) sont données
par

fu= Vf.r,, f. = Vf.r,, ‘ (2.2)

ol r = {x, y, 23}, les lettres u et ¢ en indice indiquant la déri-
vation partielle. On aura, en outre, besoin de la formule

vV X fa= Vf X a (a, vecteur constant). (2.

1o
w

3. COURBES, SURFACES, VOLUMES (DEFINITIONS).

Dans la suite, un morceau de courbe sera une fonction r (¢)
définie pour 0 = ¢ < 1 qui fait correspondre & toute valeur de ¢
dans cet intervalle un vecteur de I'espace noté r (¢). On exige,
en outre, que r (¢) posséde au moins une dérivée premiére conti-
nue. S1l'on appelle application une fonction définie continue pour

L’Enseignement mathém., t. III, fasc. 2 9
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toute valeur de 'argument dans un domaine fixé, on peut dire
qu'un morceau de courbe est une application contintiment diffé-
rentiable du segment unité dans l'espace (vectoriel).

Une courbe est une combinaison linéaire finie de morceaux
de courbe & coefficients entiers. Notation: C = n,C; + n,Cy, + ...
+ n;, C,, ou Cy, ..., C, sont des morceaux et ng, ..., n, des
entiers. Une courbe est un objet algébrique: on peut additionner
et soustraire des courbes en formant la somme ou la différence
des combinaisons linéaires qui les définissent (les courbes forment
un groupe abélien libre). Exemple: Soient C;, Gy, C; des mor-
ceaux; G; + 3C,, C, — 2C; sont des courbes dont la différence
est C; + 2G, 4+ 2C5 (on écrit — C au lieu de (— 1) C pour sim-
plifier les notations).

Les définitions sont analogues pour surfaces et volumes: un
morceau de surface est une application contintiment différentiable
du carré unité dans l'espace, c’est-a-dire un vecteur r (u, ¢)
fonction de deux parameétres u et ¢ définl pour 0 < u = 1,
0 < v =<1, tel que les dérivées partielles r, et r, existent et
solent continues pour toutes valeurs de u et ¢ dans les limites
assignées. Une surface est par définition une combinaison linéaire
finie & coefficients entiers de morceaux. Notation: S = n; S; +
N Se + ... + 1, S,, ou les Sy, ..., S, sont des morceaux et
Ny, ..y 1y, des entiers.

Un morceau de volume est une application différentiable du
cube unité dans 'espace. Un volume est une combinaison linéaire
finie a coefficients entiers de morceaux de volume.

4. REMARQUES ET CONVENTIONS DE CALCUL.

On n’exige pas que les applications r (¢), r (u, ¢) our (uy, Uy, u;)
soient biunivoques. En fait, on n’a méme pas exigé que les déri-
vées partielles soient linéairement indépendantes. Un exemple
extréme est celui ou 'une des dérivées partielles est identique-
ment nulle. -

On dira que le morceau de courbe C, représenté par r (1),
0 <t =<1 est dégénéré, s1 r (la dérivée par rapport a t) est
identiquement nulle (dans l'intervalle de définition 0 <t =< 1).
De méme, le morceau de surface S, donné parr(u,¢), 0= u, v < 1
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sera dit dégénéré si I'une des dérivées partielles r, ou r, (ou les
deux) s’annule identiquement. On a une définition similaire pour
un morceau de volume V, représenté par r (u,, u,y, u3) qui sera
dit dégénéré si 'une au moins des dérivées partielles ry, r,, r3 est
identiquement nulle.

On convient, dans le calcul avec les courbes, surfaces ou volunies,
de ne pas distinguer entre éléments qui ne différent que par une
combinaison linéaire de morceaux dégénérés (par élément, nous
entendons courbe, surface ou volume suivant le cas). Par
exemple, si S; et S, sont deux morceaux dégénérés, on écrira
25, + S, — S; = — S; («on néglige les éléments dégénérés »
est une forme souple pour I'expression rigoureuse: on passe dans
le groupe quotient modulo le sous-groupe engendré par les
éléments dégénérés).

5. BORD ALGEBRIQUE D'UNE SURFACE, D’UN VOLUME.

Le bord d’une surface sera une courbe (surface et courbe étant
pris au sens des paragraphes précédents). Soit S une surface, on
notera bS son bord ¢. On exige que le bord soit linéaire, i.e. si
S; = n; S; + ny S, (au sens de 'addition des surfaces), on exige
que bS = n, bS, + n, bS, (au sens de 'addition des courbes).
Grace & la linéarité °, pour définir le bord d’une surface quel-
conque, 1l suffit de définir le bord d’un morceau de surface. Soit
r (u, ¢) un tel morceau (0 < u <1, 0 < ¢ < 1), disons S. Il
s’agit de définir bS. Soient C;, i = 1, 2, 3, 4 les courbes définies
par les fonctions r; (z) suivantes:

r () =r(,1), v =r0,1, r =r1), ry (f) =r (¢, 0) (5.1)

(ce sont bien des morceaux de courbe car ¢ varie dans le bon
intervalle et les dérivées premiéres sont continues). On pose,

par définition
bS = C; — Cy— C,y + C, (5.2)

(ot — C est mis pour (— 1) Q).

~_i La notgtion usuelle (en topologie algébrique) est O S.
5 ’On vérifiera que le bord d’un élément dégénéré est dégénéré. Ceci nous garantit
que P’exigence de la linéarité n’est pas en contradiction avec la convention de négliger

les éléments dégénérés.
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Pour le bord d’un volume, on procéde de facon semblable:
le bord sera linéaire, i.e. bV = n, bV, -+~ n, bV, (au sens de
Paddition des surfaces) si V. = n; V; + n, V,. Il suffit donc de
dire ce qu’est le bord d’un morceau de volume. Soit r (u;, U, us)
un morceau V, son bord bV est la surface définie comme suit:
Soient S;,1 = 1, 2, 3, 4, 5,6 les morceaux de surfaces définis par
r; (u, v) comme suit:

ry(u,0) =r(1,u,0) , ry(u, 9)=r(0,u,r
rg(u, 0) =r(u,1,0) , 14w, o) =ru, 0,0 (5.3)
rs (u, 9) =r(u,0,1) , 1x5(u,v) =r(u, v 0)

Le bord 6V est la surface, combinaison linéaire des S; a coeffi-
cients entiers, donnée par

BV = 8, — 8, — 8, - 8, + 8, — S, . (5.4)

Rappelons que dans ces expressions pour le bord on devra
«négliger » les morceaux dégénérés s’il s’en présente.

6. REMARQUES ET EXEMPLES.

Il y a deux diftérences essentiellement entre courbes, sur-
faces et volumes introduits au § 3 et les notions habituelles:

1o un morceau est muni d’une paramétrisation inhérente a sa
définition. La figure géométrique «cercle » ne devient une
courbe (ou éventuellement un morceau de courbe) qu’apres
que l'on a fait choix d’une paramétrisation. Ceci est sans
doute contraire & l'idée géométrique, mais c’est adapté a
I'intégration;

20 courbes, surfaces et volumes trouvent certes leur origine dans
les notions géométriques et analytiques de morceaux de
courbe, surface, volume; cependant ce sont essentiellement
des objets algébriques avec lesquels on calcule formellement
comme avec des formes linéaires d’indéterminées a coefficients

entiers.

On peut naturellement parameétriser un cercle d’une infinité
de manieres. On en fait, par exemple, un morceau en prenant

r(f) = {Rcos (2nt), Rsin (2m) , 0}, R =rayon, 0 =<¢=<1. (6.1)
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L’application
r (u, ») = { Ru . cos (2m9) , Ru . sin (270) 0}, <1, (6.2)
définit un disque D. Cherchons #D: on a (cf. (5.1))

C, est donné parr; (1) = r (1,1) = {R cos (2mt) , R sin (27t) , 0}

C, est donné par r, () = r (0,1 = {0 , 0 , 0}
C, est donné par rg (t) = r (¢, 1) = {tR , 0 , O}
C, est donné par r, () = r (t, 0) = {iR , 0 , 0}

par suite G, est dégénérée, C3 = Cy, et 'on a
bD = C, — Cp — Cy + Gy = G .
La formule
r (u, o) E{R cos (2mo) . sin (mu), Rsin (2we) . sin (7u), R cos (nu)} (6.3)

permet de regarder la sphére comme morceau de surface au sens
du § 3. Cherchons le bord du morceau S défini par la formule
ci-dessus. Les morceaux C, ..., C, définis par (5.1) ont les pro-
priétés C; = C, = 0 (dégénérés), C; = C4. Donc 0S = C; — G,
—Cy+C=—C; 4+ C, = 0.

La boule de rayon R est donnée comme morceau de volume
par

r (U, Ug, Ug) = {Ru1 cos (2mug) sin (mwuy) , Ruy sin (27u,) sin (wu,)
Ru cos (mu,) } (6.4)
ou 0 = uy, uy, ug < 1.
On vérifie aisément en utilisant (5.3) que le bord de la boule
est la sphére représentée par (6.3).

On peut également représenter le fore comme morceau de
surface, la formule est la suivante:

r (u, 9) = {R cos (2mwu) — rsin (27e) cos (2mu) , (6.5)

R sin (2wu) — r sin (27o) sin (2wu) , r cos (27:0)} :

On vérifie aisément que le bord de cette surface est zéro.
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Etudions maintenant le cas du ruban de Mdébius. On peut le

représenter par un morceau de surface dont la fonction r (u, ¢)
a la propriété
r(1,t) =r (¢ 0),

¢ce qui implique C; = C, (notations de (5.1)). On peut écrire
les formules explicites de plusieurs maniéres® toutes compliquées
et pas trés instructives. La figure 2 permet de se faire une idée

Z

Fic. 2.

Ruban de Mo6bius obtenu par une application différentiable du carré unité
Les points a, b, ¢, d sont les images des sommets.
La figure correspond a peu prés aux formules du texte

1
avec L = 5 - cos (ru (1 — ¢)).

6 Prendre, par exemple:

r(u,v)z{cosﬁ.(i—Lsin%-G), sin().(1~Lsin—;—6), Lcos%@},

o1 0 =2n(u+v—1) et L =1cos (mru(l—w)), 0 =u v =1 (2 est 1a largeur
du ruban). :
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de Tapplication r (u, ¢). L’essentiel ici est bien entendu de voir
que la formule du bord montre que le bord du ruban de Mobius
n’est pas la seule courbe frontiére (au sens intuitif) qui est
représentée par (— 1) (G, + C;) avec nos notations, mais pour
la paramétrisation ci-dessus bS = 2C; + (— 1) (Cy + Cy), la
contribution de la courbe C, étant tout a fait inattendue de
I'intuition. Si Pon prend Pexpression correcte ci-dessus pour le
bord, la formule de Stokes est alors valable, comme il sera
démontré au paragraphe suivant.

7. LA FORMULE DE STOKES.

On définit comme suit les intégrales curvilignes et de sur-
face. Soit F un champ de vecteurs (fonction associant & tout
point d’une région de I'espace un vecteur qui dépend de maniére
continue de 'argument), I'intégrale [F . dr de F le long de la

C

courbe C est définie d’abord dans le cas ou C est un morceau.
On pose

1
fF.drsz(z)_r-(t)dt, (7.1)
C 0

ou F (1) = F (2, (1), 25 (1), zg (1)), (1) = {a; (1), x5 (t), x5 (1) }
étant la fonction qui définit C. Dans le cas plus général ou C
est une courbe: C = n, C; + ... + n, C,, ou Cy, ..., C, sont des
morceaux, on pose

jF.dr:EnifF.dr. (7.2)
C g

Pour I'intégrale de surface, 'exigence de la linéarité 7 permet,
& nouveau de n’avoir & donner de formule explicite que dans le
cas du morceau. Soir r (1, ¢) un morceau de surface S (0 < u < 1,
0 =¢ =< 1). On pose

SfF.dS——_ [[F(w,0) . x, xr, dudo (7.3)

7 La ‘non—'contradiction de cette exigence avec la convention de négliger les élé-
ments dégénérés est aisément vérifiée en constatant que l’'intégrale étendue a un
morceau dégénéré est nulle.
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ou I'intégrale double (de la fonction numérique F (u, ¢) . r, X r,)
est étendue au carré unité 0 < u, ¢ < 1. On a dénoté par F (u, 0)
le vecteur F (x; (u, ¢) 2, (u, ¢), 25 (u, ¢)), our (u, ¢) = {z; (u,v),
s (1, 0), g (1, ¢) }.

Soit S une surface dont les morceaux admettent des dérivées
partielles secondes continues et F un champ de vecteur. Le
théoréme de Stokes affirme que

[vxF.dS:g@F.dr, on  C = b8, (7.4)
§ ¢

pourvu que F ait des dérivées partielles premieres continues dans
une région contenant S.

Démonstration. — 11 est suffisant de se limiter au cas ou S est
un morceau de surface si: S = n; S; + ... + n, S;, ot les S; sont
des morceaux, alors

k
[VxF.ds=n, [V xF.ds
S 1 .

1

Si

et s1 on sait que (7.4) vaut pour un morceau, on en tire
p y

R R .
f'v X F . dS= N n, fvxF.dSZEni<ﬁF.dr=4§F.dr,
S r L 8

S bS

car
kR
BS = > n; bS; .
1

Soit done S un morceaur (u, ¢),0 = u <1,0
a besoin de la formule auxiliaire

A

< 1. On

VxF.rx, xer,=F .¢x,—F .r,=(F.r) —(F.r) kB (7.5

u

la deuxiéme égalité étant triviale (continuité des dérivées par-
tielles secondes de r).
On a

[VXF.dS= [[V xXF.x,xr,dude= [[(F.r), dudo —
S

— fI(F . r,), dudo .
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Par intégration partielle de la premiére intégrale selon u et de
la seconde selon ¢, il vient (avec les notations de (5.1)):

1 1 .
jvxF.dS=j(F(i,v).‘rl—F(o,p).r'z)do—j(F(u,m.rg_.
S 0 0

— F(u, 0) . 1)) du

et en appelant ¢ la variable d’intégration dans chaque intégrale:

1 1 1
[vxF.ds= [(F(t,0) xydi— [F(0,1) . rydt — [F(5,1) . rydt +
S 0 0 0

{

+ [F(t,0) rydt = [F.de— [F.dr— [F.dr + [F.de =
02 Cs C

0 Cy 4

_ <ﬁF L dr (cf. (7.2)).

bS

Il reste & prouver la formule (7.5), ce qui est mécanique:
Comme F intervient linéairement dans (7.5), il suffit de démon-
trer cette formule pour un champ spécial de la forme F = fa,
ol a est un vecteur constant et f une fonction numérique (en effet,
en choisissant une hase vectorielle a,, a,, a;,onabien F = f, a; +
fo ay, + f3as. Sila formule (7.5) est prouvée pour chaque f; a;
elle I'est par linéarité pour F lui-méme). Soit donc F = fa, la
formule & prouver se réduit 4 Vv X fa . r, Xr, = f,a . r, —
f,a.r, On a |

VX]‘a.ruerz VfXa.ruer,

d’apres (2.3), puis

\VA N Vf.or,
= , d’apres (2.1),
a I‘u a I'v
fu fv
= , d’apres (2.2), c.q.f.d.
a. I'u a l‘77
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8. LA FORMULE DE GAUsS-OSTROGRADSKI

se présente de facon tout a fait semblable & la formule de Stokes.
Définissons tout d’abord I'intégrale de volume. Soit V un volume
combinaison linéaire de morceaux: V = X, n, V,. En postulant

[faV = Z;n; [jav,
v V;

1

on ramene la définition de [fdV au cas spécial o V est un mor-
A

ceau r (u,, Uy, u3), 0 < uy, u,, u; < 1. Dans ce cas, on pose

vfde = j'fff (uy, Uy, ug) (ry, ra, r3) duy duy, duy (8.1)

ou (ry, r,y, ry) est le produit mixte r; . r, X r; des vecteurs déri-
vées partielles r; = dr/ou,. L’intégrale triple (8.1) est étendue
aucube unité 0 <u;, =1,0=u, =1,0 < uy, = 1.

Le théoréme de Gauss affirme que dans le domaine de diffé-
rentiabilité (continue) du champ F, on a

/v.FdV:SEF.dS, ot S = bV, (8.2)
v N

On suppose de nouveau que les morceaux constituant V admet-
tent des dérivées partielles secondes continues.

A cause de la linéarité de I'intégrale, il est de nouveau suffi-
sant de démontrer cette formule dans le cas particulier ou V
est un morceau r (4, Uy, U3). On se sert a cet effet de la formule
auxiliaire:

(r), x5, 13) V . F = (Fy, vy, 13) + (Fp, 13, 1) + (F3, 1y, 1p) = (8.3)
= (F, 1y, x3); + (F, x5, 11)5 + (F, vy, 13)5,

ou la deuxiéme égalité est triviale (les indices indiquent la déri-
vation partielle). On a

[V . Fav = [[[(r;,m5x5) V . Fduy duydu,,
3
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soit, d’apreés (8.3),
= ffJ'(F,r2,r3)1du1 du, dug + JIJ.(F, r;, Ty ), duy dus dug +
+ [ [ (F,x, xa)s duy dus dus -

En effectuant l'intégration partielle de la premiére intégrale
suivant u,, de la seconde suivant u,, de la troisiéme suivant us,
il vient:

[V . FaV = [[(Fxyx5), g dusdus — [ [, xa,ws),, g duy du
A% /
+ [ rym), g duy dug — [ [ (F x5 m0),, g duy dug
+ [ By re), oy duyduy — [ [ (Frqxa), o dug dus -

Appelons u, ¢ les variables d’intégration dans les six Inté-
grales ci-dessus. En reprenant les notations de (5.3), on a

[V . FaV = [[F(1,u,0) .5, X r, dude — [ [F(0,u,0) .y, X ry, dudo
' + [[F(u,1,0) . g, x 1y, dudo — [ [F (,0,0) . rp, X 1y, dudo
+ [[F(u,0,1) . xy, X r dude — [ [F(u,0,0) . rg, X re, dudo
:jF.ds_fF.ds_-jF.dSJrfF.ss+jF.ds—fF.ds,
S1 Sy Sg Sy Ss Se

v

= F . dS = (ﬁF . ds .
S1—Ss—S3+S,+S5~S; Y

Il reste a prouver la formule (8.3), ce qui est & nouveau
mécanique. Il est suffisant de prouver la formule pour F = fa,
ou a est un vecteur constant. La formule & démontrer se réduit a

ful (a’ Ty 1‘3) + fua (a> r3, rl) + fus (a’ Iy, 1‘2) - (1‘1, Ty, 1’3) a. vf ’
ou encore |
fi (ty X 1) + fo(r3 X 1y) + f3(ry X 1) = (r}, vy, v3) Vf .

.On utilise
aX (bxXec)=(a.c)b—(a.b)e (8.4)

en posant tout d’abord a =1r;, b = Vf, ¢ =1, X r;, d’ou
r; X (VX (ry X 13)) = (ry, 15, 13) Vf— f; (13 X 1),

car f, = V[ . r;, d’aprés (2.2).
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En appliquant encore (8.4), cette fois avec a = Vf, b = r,,
¢ = ry:
ViX (xg X xg) = f3.15—f5 .15,

et par suite

fa 1y X wp) — f (xr; X x5) = (ry, 2y, 73) Vf—f1 (ry X 15),
ce qul est essentiellement la formule & démontrer.

Remarque. — L’analogie entre les démonstrations des théo-
rémes de Stokes et de Gauss n’est pas fortuite. Tous deux sont
en fait des cas particuliers d’un seul et unique théoréme beaucoup
plus général dont la démonstration n’est pas essentiellement
différente de celle présentée ci-dessus. (Cf. par exemple A. Lich-
nerowicz, Algébre et Analyse linéaires, § 148 ou B. Eckmann,
Differentiable manifolds, Lecture Notes of the University of
Michigan, 1950.)

Séminaire de physique théorique de I’Université de Berne
et
Dept. of Mathematics, Massachusetts Institute of Technology.

Regu le 7 janvier 1957.
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