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SUR LES FORMULES D'INTÉGRATION
DE L'ANALYSE VECTORIELLE

PAR

Michel A. Kervaire, Boston

1. Introduction1.

Le but du présent article est de préciser les démonstrations
(et l'énoncé) des formules d'intégration de l'analyse vectorielle.
Il s'agit essentiellement des formules

et

jv • FdV (j) F (1.1)
V s

j V X F dS (j) F dr (1.2)

S c

dites théorèmes d'Ostrogradski (ou de Gauss) et de Stokes

respectivement (F, champ vectoriel dans l'espace tri-dimen-
sionnel).

Dans les manuels d'analyse vectorielle (cf. G. Juvet, par
exemple), on regarde souvent (1.1), ainsi que les formules

J* V fdV (j) /dS (Théorème du gradient), (1-L)
V s

j V X FdV (j) dS x F (Théorème du rotationnel), (l.t^)
V s

i Cette introduction a été rédigée en collaboration avec A. Mercier. Pendant la
rédaction de l'article l'auteur avait un contrat avec la National Science Foundation.
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comme presque triviales, parce qu'elles s'obtiennent assez
rapidement à partir d'une définition de l'opérateur V qui serait

V • • lim
v=o

dS

Y

La formule (1.2), ainsi que

(dS x V) X F (1) dr x F (Théorème anonyme (1.2')
J dû à G. Juvet2),

/<
s c

sont alors démontrées avec plus ou moins de rigueur en regardant

S comme la figure limite d'un volume d'épaisseur tendant
vers zéro, dont la surface latérale finit par s'identifier à une ligne.

Outre que la légitimation de ces démonstrations nécessite

(même dans le cas des formules « triviales ») un recours assez
fastidieux au « formalisme des epsilons », il n'est guère satisfaisant

de voir énoncer et démontrer des théorèmes où interviennent
les notions de volume, bord d'un volume, bord d'une surface,
sans que ces notions aient été définies. Cette lacune devient la
source d'anomalies dès que l'on considère des surfaces pour
lesquelles la notion intuitive de bord est douteuse. C'est ce qui
se produit si l'on cherche à appliquer, par exemple, la formule
de Stokes au ruban de Möbius3. Dans cet exemple (voir fig. 1),
si C désigne la courbe qui « borde » le ruban et S le ruban lui-
même, il est inexact que

F dr et J v x F dS

c s

soient égales (en fait, il y a déjà ambiguité sur le signe des
intégrales en question).

2 Cf. A. Mercier, Expression des équations de l'électromagnétisme au moyen des
nombres de Clifford. Archives des S. phys. et nat., G-enève, 17, p. 305, 1935.

3 On pourra objecter que dans la démonstration du théorème de Stokes (telle
qu'elle est donnée par G. Juvet, par exemple) on suppose qu'il est possible d'étendre
par continuité et de manière cohérente l'orientation de la normale à la surface, ce qui
n est pas le cas pour le ruban de Möbius. Il est facile de construire une surface orientable

de « bord intuitif » C, disons, dont le bord algébrique (correct) est 2C (par exemple)
et pour laquelle la formule de Stokes intuitive est donc en défaut. (Prendre la région
de la surface de Riemann de w z1'2 limitée par y <j[ j z | ^ 1 et coller le long de
z f 1 les bords des deux déterminations.)



128 M. A. KERVAIRE

Fig. 1.

Dans ce qui suit nous démontrerons deux des formules
rappelées, l'une de type trivial (1.1), l'autre de type non trivial
(1.2), à l'aide d'une méthode qui évite les difficultés mentionnées.

On verra par là aussi qu'il n'y a pas de différence réelle
entre formules triviales et non triviales. Pour développer la
méthode, nous devrons emprunter des notions aux théories
algébriques plus avancées de l'intégration, en particulier celles
de courbes, surfaces et volumes et de leurs bords en tant que
cas particuliers de notions appartenant à la topologie algébrique.
Toutefois nous nous restreindrons à un exposé assez élémentaire

pour être accessible à l'étudiant d'un cours moyen sur le calcul
vectoriel.

Nous nous limitons aux démonstrations de (1.1) et (1.2) car
(1.1') et (1.1") découlent immédiatement de (1.1): Pour tout
vecteur constant a, on a

a y V/rfV Jv.(/a) dV(j) /a da <j) S, d'où (1.1')

V V s s

(remarque similaire pour (1.1")). De manière analogue, (1.2')
découle de (1.2):

a (j) dv X F (j) dr F X a j'dS V X (F X a), d'après (1.2),

C C * S

ÇdS X V • F X a J* (dS X V) X F a

S s

où a désigne un vecteur constant quelconque.
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L'auteur tient à souligner qu'il ne prétend à aucune originalité
dans le présent article. L'idée des démonstrations présentées est

bien connue en théorie des variétés difîérentiables ; on la trouve
également mentionnée brièvement dans la « Vorlesung von Prof.
Dr. W. Pauli: Elektrodynamik >>, VMP) 1949, page 5. L'intention

de cette publication est de montrer que l'adaptation de ces

démonstrations au niveau élémentaire ne fait pas de difficulté
et qu'il serait par suite souhaitable de les voir s'introduire dans
les cours d'analyse vectorielle.

2. Préliminaires.

Nous utiliserons les formules du calcul vectoriel sans
référence explicite. Citons cependant

a1 X a2 bx X b2 =» dét b^) (2.1)

où x désigne le produit vectoriel et le produit scalaire.
De l'analyse vectorielle, on utilisera la forme que prend la

formule de dérivation des fonctions composées: Si / est une
fonction de x1: x2, x3 et que ces variables soient elles-mêmes des

fonctions de u et v (par exemple), les dérivées partielles (si elles

existent) de la fonction / (&, e) qui prend en (u, e) la valeur de
la fonction / au point xt (w, e), x2 (u, v), x3 (u. v) sont données

par
fu V/ ru fc= v/ r,

"

(2.2)

où r [xx, x2, £3}, les lettres u et v en indice indiquant la
dérivation partielle. On aura, en outre, besoin de la formule

V X /a v/ X a (a, vecteur constant). (2.3)

3. Courbes, surfaces, volumes (définitions).

Dans la suite, un morceau de courbe sera une fonction r (t)
définie pour 0 5g I 1 qui fait correspondre à toute valeur de t
dans cet intervalle un vecteur de l'espace noté r (t). On exige,
en outre, que r (t) possède au moins une dérivée première continue.

Si l'on appelle application une fonction définie continue pour
L'Enseignement mathém., t. Ill, fasc. -2. 9
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toute valeur de l'argument dans un domaine fixé, on peut dire
qu'un morceau de courbe est une application continûment difîé-
rentiable du segment unité dans l'espace (vectoriel).

Une courbe est une combinaison linéaire finie de morceaux
de courbe à coefficients entiers. Notation: C — + /22C2 +
+ nkCk, où Cx, Ck sont des morceaux et nx, nk des

entiers. Une courbe est un objet algébrique: on peut additionner
et soustraire des courbes en formant la somme ou la différence
des combinaisons linéaires qui les définissent (les courbes forment
un groupe abélien libre). Exemple: Soient Cx, C2, C3 des

morceaux; Cx + 3C2, C2 — 2C3 sont des courbes dont la différence
est Cx -f 2C2 + 2C3 (on écrit — C au lieu de (— 1) C pour
simplifier les notations).

Les définitions sont analogues pour surfaces et volumes: un
morceau de surface est une application continûment difîérentiable
du carré unité dans l'espace, c'est-à-dire un vecteur r (u, v)

fonction de deux paramètres u et v défini pour 0 5g u 5g 1,

0 5g v 5g 1, tel que les dérivées partielles ru et rv existent et
soient continues pour toutes valeurs de u et c dans les limites
assignées. Une surface est par définition une combinaison linéaire
finie à coefficients entiers de morceaux. Notation: S nx Sx +
n2 S2 -f + nk Sfe, où les Sx, Sk sont des morceaux et

nk des entiers.
Un morceau de volume est une application difîérentiable du

cube unité dans l'espace. Un volume est une combinaison linéaire
finie à coefficients entiers de morceaux de volume.

4. Remarques et conventions de calcul.

On n'exige pas que les applications r (£), r (n, v) ou r (%, n2, u3)

soient biunivoques. En fait, on n'a même pas exigé que les dérivées

partielles soient linéairement indépendantes. Un exemple
extrême est celui où l'une des dérivées partielles est identiquement

nulle.
On dira que le morceau de courbe C, représenté par r (£),

0 5g t 5g 1 est dégénéré, si r* (la dérivée par rapport à t) est

identiquement nulle (dans l'intervalle de définition 0 5g t 5g 1).

De même, le morceau de surface S, donné par r (n, c), 0 5g n, v 5g 1
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sera dit dégénéré si Tune des dérivées partielles ru ou rv (ou les

deux) s'annule identiquement. On a une définition similaire pour
un morceau de volume V, représenté par r (u^ u2, u3) qui sera

dit dégénéré si l'une au moins des dérivées partielles rl7 r2, r3 est

identiquement nulle.
On convient, dans le calcul avec les courbes, surfaces ou volumes,

de ne pas distinguer entre éléments qui ne diffèrent que par une
combinaison linéaire de morceaux dégénérés (par élément, nous
entendons courbe, surface ou volume suivant le cas). Par
exemple, si Sx et S2 sont deux morceaux dégénérés, on écrira
2Sj + S2 — S3 — S3 (« on néglige les éléments dégénérés »

est une forme souple pour l'expression rigoureuse: on passe dans
le groupe quotient modulo le sous-groupe engendré par les
éléments dégénérés).

5. Bord algébrique d'une surface, d'un volume.

Le bord d'une surface sera une courbe (surface et courbe étant
pris au sens des paragraphes précédents). Soit S une surface, on
notera bS son bord 4. On exige que le bord soit linéaire, i.e. si

Sj nx S2 + n2 S2 (au sens de l'addition des surfaces), on exige
que bS — % bS1 + ^2 ^S2 (au sens de l'addition des courbes).
Grâce à la linéarité 5, pour définir le bord d'une surface
quelconque, il suffît de définir le bord d'un morceau de surface. Soit
r (m, v) un tel morceau (0 < 1, 0 ^ p | 1), disons S. Il
s'agit de définir bS. Soient Q, i 1, 2, 3, 4 les courbes définies
par les fonctions r- (t) suivantes:

r1W r(l,p, r2 (t} — r (0, t) r3 (G r 1) r4 (z) r 0) (5.1)

(ce sont bien des morceaux de courbe car t varie dans le bon
intervalle et les dérivées premières sont continues). On pose,
par définition

bS Cx C2 — C3 -f- C4 (5.2)

(où — C est mis pour (— 1) C).

i La notation usuelle (en topologie algébrique) est öS.
s On vérifiera que le bord d'un élément dégénéré est dégénéré. Ceci nous garantit

que l'exigence de la linéarité n'est pas en contradiction avec la convention de négligerles éléments dégénérés.
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Pour le bord d'un volume, on procède de façon semblable:
le bord sera linéaire, i.e. bY nx bYx + n2 bY2 (au sens de
l'addition des surfaces) si V nx Yx + n2 V2. Il suffit donc de
dire ce qu'est le bord d'un morceau de volume. Soit r (ul7 u2, u3)

un morceau Y, son bord bY est la surface définie comme suit:
Soient Si7 i 1, 2, 3, 4, 5,6 les morceaux de surfaces définis par
vi (u, c) comme suit:

ri (u, v) r (1, u, c) r2 (u, ç) r (0, u, v)

r3 (u, ç) r (u, i, ç) r4 (u, v) r (m, 0, p) (5.3)
r5 (u, ç) r (m, p, 1) r6 (u, ç) r (u, ç, 0)

Le bord 6V est la surface, combinaison linéaire des St à coefficients

entiers, donnée par
bV Sx — S2 — S3 + S4 + S5 — S6 (5.4)

Rappelons que dans ces expressions pour le bord on devra
« négliger » les morceaux dégénérés s'il s'en présente.

6. Remarques et exemples.

Il y a deux différences essentiellement entre courbes,
surfaces et volumes introduits au § 3 et les notions habituelles :

1° un morceau est muni d'une paramétrisation inhérente à sa

définition. La figure géométrique « cercle » ne devient une
courbe (ou éventuellement un morceau de courbe) qu'après
que l'on a fait choix d'une paramétrisation. Ceci est sans
doute contraire à l'idée géométrique, mais c'est adapté à

l'intégration;
2° courbes, surfaces et volumes trouvent certes leur origine dans

les notions géométriques et analytiques de morceaux de

courbe, surface, volume; cependant ce sont essentiellement
des objets algébriques avec lesquels on calcule formellement
comme avec des formes linéaires d'indéterminées à coefficients
entiers.

On peut naturellement paramétriser un cercle d'une infinité
de manières. On en fait, par exemple, un morceau en prenant

r (t) | R cos (27it) R sin (27zt) 0 } R rayon, 0 ^ t 1. (6.1)
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L'application

r ^)={Ru. cos (2tuc) Ru sin (2w) 0} 0 ^ u, ç £ 1, (6.2)

définit un disque D. Cherchons ÔD: on a (cf. (5.1))

Cx est donné par rx (t) — r (1, t) { R cos (2nt) R sin (2nt) 0 }

C2 est donné par r2 (t) r (0, t) {0 o > °}
C3 est donné par rz (t) r 1) {m o .0}
C4 est donné par r4 (t) r (0) {(R o °}

par suite C2 est dégénérée, C3 C4, et l'on a

6D — Cx — C2 — C3 -j- C4 Cx

La formule

r (u,v) {R cos (2ttc) sin (tzu) R sin (2ttc) sin (nu) R cos (nu) } (6.3)

permet de regarder la sphère comme morceau de surface au sens

du § 3. Cherchons le bord du morceau S défini par la formule
ci-dessus. Les morceaux C3, C4 définis par (5.1) ont les

propriétés C4 C2 0 (dégénérés), C3 C4. Donc bS C4 — C2

— C3 + C4 — C3 + C4 0.

La boule de rayon R est donnée comme morceau de volume

par

r (u1} u2, u3) | Rux cos (2tuu3) sin (nu2) Ru± sin (2nuz) sin (tuu2)

Ru cos (tuu2) I (6.4)

où 0 ^ w4, w2, u3 ^ 1.

On vérifie aisément en utilisant (5.3) que le bord de la boule
est la sphère représentée par (6.3).

On peut également représenter le tore comme morceau de

surface, la formule est la suivante:

r (u, ç) { R cos (2îuu) — r sin (2ttc) cos (2nu) (6.5)

R sin (2tuu) — r sin (27uc) sin (2ivu) r cos (27uc) ]

On vérifie aisément que le bord de cette surface est zéro.
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Etudions maintenant le cas du ruban de Möbius. On peut le

représenter par un morceau de surface dont la fonction r (u, v)

a la propriété
r (1, t) r (t, 0)

ce qui implique C± — C4 (notations de (5.1)). On peut écrire
les formules explicites de plusieurs manières6 toutes compliquées
et pas très instructives. La figure 2 permet de se faire une idée

Fig. 2.

Ruban de Möbius obtenu par une application difïérentiable du carré unité
Les points a, b, c, d sont les images des sommets.

La figure correspond à peu près aux formules du texte
1

avec L%= y cos (nu 1 — c)).

6 Prendre, par exemple:
c 1 1 1 ^

r (u, v) jcos 0 (1 — L sin y 0), sin 0 (1 — L sin y 0), L cos y 0j
où 0 27t(u + ü — 1) et L 1 cos (nu (1 — v)), 0 5^ u, v ^ 1 (21 est la largeur
du ruban).
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de l'application r (h, v). L'essentiel ici est bien entendu de voir
que la formule du bord montre que le bord du ruban de Möbius
n'est pas la seule courbe frontière (au sens intuitif) qui est

représentée par (— 1) (C2 + C3) avec nos notations, mais pour
la paramétrisation ci-dessus bS 2CX + (— 1) (C2 + C3), la
contribution de la courbe C± étant tout à fait inattendue de

l'intuition. Si l'on prend l'expression correcte ci-dessus pour le

bord, la formule de Stokes est alors valable, comme il sera
démontré au paragraphe suivant.

7. La formule de Stokes.

On définit comme suit les intégrales curvilignes et de
surface. Soit F un champ de vecteurs (fonction associant à tout
point d'une région de l'espace un vecteur qui dépend de manière
continue de l'argument), l'intégrale JF dr de F le long de la

c
courbe C est définie d'abord dans le cas où C est un morceau.
On pose

î
J F dr J F (t) r* (t) dt (7.1)CO

où F (t) F (aq(t), x2(t), xs t)),r {.rx (t),xa (t)}
étant la fonction qui définit C. Dans le cas plus général où C
est une courbe: C nxQ+ ••• + nk où C1; Cfe sont des

morceaux, on pose

/F dt2 «j /F dr.(7.2)
C C;

Pour l'intégrale de surface, l'exigence de la linéarité7 permet
à nouveau de n'avoir à donner de formule explicite que dans le
cas du morceau. Soir r (u,c)un morceau de surface S (0 ^ g; 1,
0 < c 1 On pose

JF dSffF (u, x rB dudv (7.3)
S

7 La non-contradiction de cette exigence avec la convention de négliger les
éléments dégénérés est aisément vérifiée en constatant que l'intégrale étendue à unmorceau dégénéré est nulle.
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où l'intégrale double (de la fonction numérique F (u, v) ru x rj
est étendue au carré unité 0 ^ u, v ^ 1. On a dénoté par F (u, v)

le vecteur F (x1 (u, ç) x2 (&, e), x3 (w, e)), où r (u, e) — (u, e),

(^, 0? ^3 (*b ?)}•
Soit S une surface dont les morceaux admettent des dérivées

partielles secondes continues et F un champ de vecteur. Le
théorème de Stokes affirme que

j"VXF.rfS (j)F.dr, où G (7.4)
S c

pourvu que F ait des dérivées partielles premières continues dans

une région contenant S.

Démonstration. — Il est suffisant de se limiter au cas où S est

un morceau de surface si: S — nx S! + + nk SÄ, où les S{ sont
des morceaux, alors

k

JvxF.dS 2^JvxF-^s
S 1 S;

et si Ton sait que (7.4) vaut pour un morceau, on en tire

j* V XF JS ni Ç V X F dS ni (j) F dr (j) F dr

S 1
Si

1
bS.: bS

car
kbs2 "j bSi
1

Soit donc S un morceau r (m, c), 0 u 1, 0 x; c 1. On

a besoin de la formule auxiliaire

VXF.ruX^Fu.rrFrru«(F. rv)u — (F rJ,, (7.5)

la deuxième égalité étant triviale (continuité des dérivées
partielles secondes de r).

On a

JVXF.dS=JJvx F ru X rv dudv JJ (F rv)u dudv —

~ JJ (F • rv)v dudv
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Par intégration partielle de la première intégrale selon u et de

la seconde selon e, il vient (avec les notations de (5.1)):

1 1

J v x F dS J (F (1, v) r4 — F (0, p) r2) dv — J (F (u: 1) r3 —SO 0

— F (u, 0) r4) du

et en appelant t la variable d'intégration dans chaque intégrale :

î î #if V X F dS J (F (1, t) /vxdt— JF(0,*) r2 dt — J F (£, 1) r3 dt +SO 0 0

1

-f J F (t, 0) r4 dt ~ J F dx — J F dr — J F dr + J F dv
0 C4 c2 C3 c4

(j) F dr (cf. (7.2)).

5 S

Il reste à prouver la formule (7.5), ce qui est mécanique:
Comme F intervient linéairement dans (7.5), il suffit de démontrer

cette formule pour un champ spécial de la forme F /a,
où a est un vecteur constant et / une fonction numérique (en effet,
en choisissant une base vectorielle a1? a2, a3, on a bien F ax +
f2 a2 -f fs a3- Si la formule (7.5) est prouvée pour chaque ft
elle l'est par linéarité pour F lui-même). Soit donc F — ,/a, la
formule à prouver se réduit à V X /a ru x rv fu a rv —
/,. a ru. On a

V X /a ru X V/Xa.r^r^
d'après (2.3), puis

V / • rM V / • r,

a

fv

d'après (2.1),

d'après (2.2), c.q.f.d.
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8. La formule de Gauss-Ostrogradski

se présente de façon tout à fait semblable à la formule de Stokes.
Définissons tout d'abord l'intégrale de volume. Soit V un volume
combinaison linéaire de morceaux: V Si En postulant

J/rfV J fdv,
v v4

on ramène la définition de J/dV au cas spécial où V est un mor-
V

ceau r (ul7 u2, w3), 0 ^ ul7 u2, u3 ?£ 1. Dans ce cas, on pose

J/dV JJJ7 (uu u2, uz) (rl5 r2, r3) duxdu2duz (8.1)
V

où (rl7 r2, r3) est le produit mixte rx r2 x r3 des vecteurs dérivées

partielles r- dr/di^. L'intégrale triple (8.1) est étendue
au cube unité 0 X5 ux ^5 1, 0 x: u2 < 1, 0 X u3 < 1.

Le théorème de Gauss affirme que dans le domaine de difîé-
rentiabilité (continue) du champ F, on aI"V TdV(j) F dS,oùS (8.2)

V S

On suppose de nouveau que les morceaux constituant V admettent

des dérivées partielles secondes continues.
A cause de la linéarité de l'intégrale, il est de nouveau suffisant

de démontrer cette formule dans le cas particulier où V
est un morceau r (%, ^2, u3). On se sert à cet effet de la formule
auxiliaire :

Ùi, r2> r3) V • F (F1? ra, r3) + (F2, r3, Tj) + (F3, rl5 r2) (8.3)

(F? r2, r3)1 -f (F, r3, t1)2 + (F, rx, r2)3

où la deuxième égalité est triviale (les indices indiquent la
dérivation partielle). On a

J v • FdV JJJ (r1? r2, r3) V Fduxdu2du2
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soit, d'après (8.3),

JJJ (F, r 2, r3)1 du± du2 duz + JJJ (F, r3, rx)2 dux du2 duz -f-

+ JJJ (F, rl5 r2)3 du± du2 duz

En effectuant l'intégration partielle de la première intégrale
suivant de la seconde suivant k2, de la troisième suivant
il vient :

| V • FdV J J (F, r2, r3) t du2 duz — J J (F, r2, r3)Ui=0 du2 duz

+ J J (F, r3, dux duz J J (F, r3, r1)u^=z0 dux duz

+ J J (F, *1, r2>u3 l dul du2 — JJ (F' rl> r2>u3 0 dul du2 *

Appelons w, v les variables d'intégration dans les six
intégrales ci-dessus. En reprenant les notations de (5.3), on a

J V • FdV J JF (1, u, v) rllx X rlt, dudv — J JF (0, u, v) r^u X dudv
y

+ JJF (u, 1, v) rsv X r3Ududç — JJF (m, 0, v) X r^dudv

+ JJF (u, v, 1) r5U X r5V dudv — JJF (m, e, 0) rßU X rßU dad?

Jf ds — Jf ds — Jf ds + Jf *s + Jf d$ — Jf ds
Si s2 S3 S4 S5 S g

J F dS J) F

S1-Sa-S3+S4 + S5-S6 bV

Il reste à prouver la formule (8.3), ce qui est à nouveau
mécanique. Il est suffisant de prouver la formule pour F — /a,
où a est un vecteur constant. La formule à démontrer se réduit à

fUl (a> r2> rs) + 42 (a, r3, rj + (a, rlt r2) (rl5 r2, r3) a V/

ou encore

fi (r2 X r3) + f2 (r3 X rx) + fz (rx X r2) (rx, r2, r3) V/

On utilise
a X (b X c) (a c) b — (a b) c (8.4)

en posant tout d'abord a r3, b v/, c r2 X r3, d'où

ri X (V/ X (r2 X r3)) (rl5 r2, r3) V/ —/i (r2 X r3)

car f1 f r3, d'après (2.2).
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En appliquant encore (8.4), cette fois avec a V/, b r2,
c r3:

V/ X (r2 X r3) /3 r2 — /2 r3

et par suite

h (ri X r2) — /2 (ri X r3J (rl5 r2, r3) V/ — A (r2 X r3)

ce qui est essentiellement la formule à démontrer.

Remarque. — L'analogie entre les démonstrations des
théorèmes de Stokes et de Gauss n'est pas fortuite. Tous deux sont
en fait des cas particuliers d'un seul et unique théorème beaucoup
plus général dont la démonstration n'est pas essentiellement
différente de celle présentée ci-dessus. (Cf. par exemple A. Lich-
nerowicz, Algèbre et Analyse linéaires, § 148 ou B. Eckmann,
Differentiable manifolds, Lecture Notes of the University of
Michigan, 1950.)
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