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112 A. HAEFLI GER ET G. REER

Ces divers exemples montrent la grande diversité des variétés
à une dimension, connexes et à base dénombrable. Une
classification topologique de ces espaces paraît déjà assez compliquée.

Donnons encore un exemple qui donnera une faible idée de

la complexité des variétés non séparées de dimension > 1.

Soient Ex et E2 deux exemplaires de l'espace numérique R2 à

deux dimensions rapporté à un système de coordonnées polaires
(r, co). Soit p la relation d'équivalence dans l'espace somme 2
de E2 et E2 qui identifie tout point de Ex de coordonnées (r, co),

r < 1, avec le point de E2 de coordonnées (r, oo/l — r) et qui
se réduit à l'identité pour les autres points. L'espace quotient
S/p est une variété à deux dimensions; l'image dans Z/p de tout
point de Ex de coordonnées (1, oo0) n'est séparée d'aucun point
de l'image dans 2/p du cercle r 1 de E2.

1.2. Variétés à une dimension simplement connexes.

Rappelons les définitions suivantes:

Définition 1: Le couple (V, p) formé d'un espace topologique

V et dune application continue p de V sur un espace
topologique V est appelé un revêtement de V, si tout point de V possède

un voisinage ouvert U tel que p~l (U) admette une partition en

so us-ensembles ouverts tels que la restriction de p à chacun
d'eux soit un homéomorphisme sur U.

Un espace topologique V sera dit simplement connexe, s'il est

connexe et si pour tout revêtement connexe (V, p) de V, la

projection p est un homéomorphisme de V sur V.

Définition 2: Une variété à n dimensions Vn est dite orientable,

s'il existe un atlas A de Rn sur Yn tel que tout changement de

cartes associé à deux cartes de A soit un homéomorphisme direct

(c'est-à-dire qui conserve l'orientation) dun ouvert de Rn sur un
ouvert de Rn.

Les variétés construites dans les exemples 2 et 3 (pour n
impair) ne sont pas orientables.

Si une variété V à une dimension peut être étalée dans la
droite numérique R, alors V est nécessairement orientable. Par
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contre, une variété à une dimension orientable ne peut pas
toujours être étalée dans R: il suffit de considérer le cas du cercle.

Cependant, il est possible de démontrer la proposition suivante,
qui sera utile par la suite.

Proposition 1. Soit V une variété à une dimension simplement

connexe et à base dénombrable. Il existe alors une application
continue f qui étale V dans la droite numérique.

Nous utiliserons dans la démonstration le lemme suivant:

Lemme: Si une variété V à une dimension est simplement
connexe, le complémentaire dé un point quelconque x de V a deux

composantes connexes.
En effet, soit U un voisinage de x homéomorphe à un

intervalle; le complémentaire de x dans U a deux composantes
connexes U+ et U_. Considérons alors deux exemplaires V' et
V" du complémentaire de x dans V et soient U'+, Ul_ et U", U"
les correspondants de U+, U_ dans V' et V". Complétons
l'espace somme V' + V" par deux points x' et x" admettant
respectivement des voisinages U/ et U// tel que U' fl V' U+,
LT/ n V" U" et U// n v7 ul, U" n V" - u;7 ; on
obtient ainsi un espace V qui, muni de sa projection naturelle p
sur V (en particulier p (x') p (x") x), est un revêtement à
deux feuillets de V. Si le complémentaire de x dans V était
connexe, V serait aussi connexe, ce qui est impossible puisque V
est simplement connexe.

On peut montrer que réciproquement, si le complémentaire
de tout point de V n'est pas connexe, alors V est simplement
connexe.

Passons maintenant à la démonstration de la proposition.
11 est possible de trouver une famille dénombrable de cartes

\ (i — 2, de R dans V dont les buts 0^ recouvrent V.
Comme V est connexe, on peut supposer que la numérotation
des 0t est faite de telle façon que Qn Ui 12j n 0f soit
connexe, quel que soit l'entier n. Nous raisonnerons par récurrence.

Supposons définie sur ùn une application continue fn qui
étale Qn dans l'intervalle ] — n, + n[. Nous allons montrer que
fn peut être prolongée suivant une application fn+i qui étale
ün+1 dans l'intervalle ] — n — 1, n + 1 [.
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Il résulte du lemme que Qn fl On+1 est connexe, car si ce

n'était pas le cas, on pourrait trouver un point x tel que le
complémentaire de x dans V soit connexe. Donc A~*+1 (ùn n on+1) I
est un intervalle ouvert de R et l'application fn hn+i est une fonction

continue, strictement monotone et inférieure en valeur
absolue à n; elle peut être prolongée en une fonction 9 continue
sur R, strictement monotone et inférieure en valeur absolue à

n + 1. L'application cp/L1 définie sur 0n+1 et l'application fn
coïncident sur Cln fl 0n+1 ; leur réunion définit le prolongement
cherché /n+1.

1.3. Variétés munies de structures différentiables.

Définition 1: Une structure difïérentiable de classe Cr,

r étant un entier positif ou 00 (respectivement une structure
analytique), sur une variété à n dimensions Vn est définie par
la donnée d'un atlas A de Rn sur Vn tel que, pour tout couple
de cartes hiy h3- G A, le changement de cartes ht soit un
homéomorphisme r fois continûment difïérentiable (respectivement

analytique) d'un ouvert de Rn dans Rn.

Une fonction r-différentiable sur Vn est une application / de

Vn dans la droite numérique R telle que, pour toute carte h{ G A,
l'application fh{ soit une fonction r fois continûment difïérentiable

sur Rn. Une fonction r-différentiable sur Vn est dite de

rang 1 au point x G Vn, si pour une carte h{ dont le but contient
x, l'application fh{ est une fonction dont au moins une dérivée

partielle au point /q1 (x) est différente de zéro; cette définition
est évidemment indépendante de la carte choisie G A.

On définirait de même la notion d'applications r différentiables

d'une variété Vn difïérentiable de classe Cr dans une
variété difïérentiable Vm de classe Cr.

Une carte / de Rn dans Vn sera dite compatible avec l'atlas A,
si pour tout AGA, les changements de cartes /-1 h et h~{ f sont
des homéomorphismes r-différentiables (ou analytiques)
d'ouverts de Rn dans Rn. L'ensemble de toutes les cartes compatibles

avec A forme l'atlas maximal A engendré par A. Deux sous-atlas

de A définissent sur Vn la même structure de variété r-différen-
tiable de classe Cr (ou analytique).
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