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112 A. HAEFLIGER ET G. REEB

Ces divers exemples montrent la grande diversité des variétés
a une dimension, connexes et & base dénombrable. Une classi-
fication topologique de ces espaces parait déja assez compliquée.

Donnons encore un exemple qui donnera une faible idée de
la complexité des variétés non séparées de dimension > 1.
Soient E; et E, deux exemplaires de I'espace numérique R2? &
deux dimensions rapporté a un systeme de coordonnées polaires
(r, ). Soit p la relation d’équivalence dans 'espace somme X
de E; et E, qui identifie tout point de E; de coordonnées (r, w),
r < 1, avec le point de E, de coordonnées (r, /1 — r) et qui
se réduit a I'identité pour les autres points. L’espace quotient
2 /e est une variété a deux dimensions; 'image dans Z/p de tout
point de E; de coordonnées (1, w,) n’est séparée d’aucun point
de I'tmage dans X/p du cercle r = 1 de E,.

1.2. Variétés a une dimenston stmplement connexes.

Rappelons les définitions suivantes:

DeriniTiON 1:  Le couple (V, p) formé d’un espace topolo-

gique V et dune application continue p de V sur un espace topo-
logique V est appelé un revétement de V, st tout point de V posseéde
un voisinage ouvert U tel que p™ (U) admelte une partition en
sous-ensembles ouverts U, tels que la restriction de p a chacun
d’eux soit un homéomorphisme sur U.

Un espace topologique V sera dit simplement connexe, s’il est

~

connexe et si pour tout revétement connexe (V, p) de V, la

projection p est un homéomorphisme de V sur V.

DEriNiTioN 2: Une variété a n dimensions V,, est dite orten-
table, s’il existe un atlas A de R™ sur V, tel que tout changement de
cartes associé a deux cartes de A soit un homéomorphisme direct
(C’est-a-dire qui conserve Uortentation) d’un ouvert de R™ sur un
ouvert de R™ .

Les variétés construites dans les exemples 2 et 3 (pour » im-
pair) ne sont pas orientables.

Si une variété V & une dimension peut étre étalée dans la
droite numérique R, alors V est nécessairement orientable. Par
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contre, une variété & une dimension orientable ne peut pas tou-
jours étre étalée dans R: il suffit de considérer le cas du cercle.
Cependant, il est possible de démontrer la proposition suivante,
qui sera utile par la suite.

Proposition 1. Sott V une variété ¢ une dimension stmple-
ment connexe et a base dénombrable. Il existe alors une application
continue f qut étale V dans la droite numérique.

Nous utiliserons dans la démonstration le lemme suivant:

LEMME: Si une variété V d une dimension est simplement
connexe, le complémentaire d’un point quelconque x de V a deux
composantes connexes.

En effet, soit U un voisinage de £ homéomorphe a un inter-
valle; le complémentaire de x dans U a deux composantes
connexes U, et U_. Considérons alors deux exemplaires V' et
V' du complémentaire de z dans V et soient U’, U et U/, U”
les correspondants de U,, U_ dans V' et V”. Complétons
Iespace somme V' 4 V"' par deux points z’ et 2’ admettant
respectivement des voisinages U’ et U” tel que U’ N V' = U,
UNV' =Ul e U'NV =U_, U'NV'=1U/; on
obtient ainsi un espace V qui, muni de sa projection naturelle p
sur V (en particulier p (') = p (') = x), est un revétement a
deux feuillets de V. Si le complémentaire de x dans V était
connexe, V serait aussi connexe, ce qui est impossible pulsque V
est simplement connexe.

On peut montrer que réciproquement, si le complémentaire
de tout point de V n’est pas connexe, alors V est simplement
connexe.

Passons maintenant & la démonstration de la proposition.
Il est possible de trouver une famille dénombrable de cartes
hi(t =1,2,..) de R dans V dont les buts 0, recouvrent V.
Comme V est connexe, on peut supposer que la numérotation
des 0O; est faite de telle facon que Q, = U;_yq .. . 0; soit
‘connexe, quel que soit 'entier n. Nous raisonnerons par récur-
rence. Supposons définie sur Q, une application continue f,, qui
étale 2, dans I'intervalle ] — n, + n[. Nous allons montrer que
f, peut étre prolongée suivant une application [nir qui étale
Q,., dans Pintervalle ] —n—1, n 4 17.

L’Enseignement mathém., t. III, facs. 2. S
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Il résulte du lemme que Q, N 0,,, est connexe, car si ce
n’était pas le cas, on pourrait trouver un point x tel que le com-
plémentaire de x dans V soit connexe. Donc A, (Q, N 0,,,) = 1
est un intervalle ouvert de R et '’application f, %,,, est une fone-
tion continue, strictement monotone et inférieure en valeur
absolue & n; elle peut étre prolongée en une fonction ¢ continue
sur R, strictement monotone et inférieure en valeur absolue a
n + 1. L’application ¢A™ définie sur 0,,, et P'application f,
coincident sur QN 0, ., ; leur réunion définit le prolongement

n+l?
cherché f, . ,.

1.3. Variétés munies de structures différentiables.

DeriniTioNn 1: Une structure différentiable de classe C7,
r étant un entier positif ou o (respectivement une structure
analytique), sur une variété a n dimensions V,_ est définie par
la donnée d’un atlas A de R" sur V, tel que, pour tout couple
de cartes k;, h; € A, le changement de cartes ;' k; soit un
homéomorphisme r fois continiiment différentiable (respective-
ment analytique) d’un ouvert de R™ dans R™

Une fonction r-différentiable sur V, est une application f de
V., dans la droite numérique R telle que, pour toute carte £z, € A,
Papplication fh, soit une fonction r fois contintiment différen-
tiable sur R™ Une fonction r-différentiable sur V. est dite de
rang 1 au point z < V_, si pour une carte &, dont le but contient
x, Papplication fh; est une fonction dont au moins une dérivée
partielle au point ;! (z) est différente de zéro; cette définition
est évidemment indépendante de la carte choisie %; € A.

On définirait de méme la notion d’applications r différen-
tiables d’une variété V, différentiable de classe (" dans une
variété différentiable V, de classe (7.

Une carte f de R™ dans V,, sera dite compatible avec 'atlas A,
si pour tout 2 € A, les changements de cartes f! het £ f sont
des homéomorphismes r-différentiables (ou analytiques) d’ou-
verts de R™ dans R™ L’ensemble de toutes les cartes compatibles

avec A forme 'atlas maximal A engendré par A. Deux sous-atlas

de A définissent sur V, la méme structure de variété r-différen-
tiable de classe C" (ou analytique).
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