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108 A. HAEFLIGER ET G. REEB

séparation de Hausdorff. Ces espaces s’introduisent en effet d’une
maniere naturelle dans plusieurs questions? Le but de notre
article est de montrer comment ’étude des variétés a une dimen-
sion (en général non séparées) permet de retrouver plusieurs
proprietés des feuilletages du plan.

La premiere partie est consacrée a I’étude des variétés non
séparées (plus particulierement des variétés & une dimension).
Apres avoir donné quelques définitions et des exemples (1.1),
nous établissons quelques propriétés des variétés & une dimension
simplement connexes (1.2) et des structures différentiables qu’on
peut y définir (1.3). Ces propriétés seront appliquées dans la
seconde partie.

Les structures feuilletées du plan ont été étudiées par
Poincaré et de nombreux auteurs. Les définitions fondamentales
et les principaux résultats ont été rassemblés en 2.1. Les théo-
réemes 2, 3 et 4, dus & Kaplan, Kamke et Wazewsky, deviennent
particulierement clairs & notre sens si1 ’on part de la remarque
fondamentale suivante: 1’espace des feuilles d’une structure
feuilletée du plan est une variété & une dimension (en général
non séparée) (2.2). Ces théoremes sont démontrés en 2.3.

1. PROPRIETES DES VARIETES A UNE DIMENSION.

1.1. Définitions et exemples.

DEriNiTioN 1:  Une variété topologique a n dimensions V.,
est un espace topologique dont chaque point admet un voisinage
ouvert homéomorphe a l'espace numérique a n dimensions R".

On appelle carte de R™ dans V., un homéomorphisme 42 de R"
sur un ouvert U de V_; Uouvert U est le but de la carte 4. Le
changement de cartes associé & deux cartes h; et h; de R™ dans
V,, de buts respectifs U; et U; est ’homéomorphisme 7;' 7, 3 de
Vouvert ;' (U, N U;) de R™ sur Pouvert ;' (U; N U,). D’apres la
définition précédente, il existe toujours un ensemble de cartes

2 Par exemple, un faisceau défini sur une variété séparée est muni d’une structure
de variété en général non séparée.

3 Qi f est une application d’une partie A d’un ensemble E dans un ensemble E’ et
f’ une application d’une partie A’ de E’ dans un ensemble E’’, on désignera par f’'f
application x — f’[f (x)] de la partie de E formée des points x tels que f (x) € A",
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dont les buts recouvrent V. ; un tel ensemble sera appelé un
atlas de R™ sur V4.

Les variétés topologiques séparées sont souvent munies de
structures supplémentaires: orientation, structure différentiable,
structure complexe... Ces notions (ainsi que celles, par exemple,
de vecteur tangent ou de tenseur) sont définies sans faire appel
A Paxiome de séparation; elles se transposent donc immédiate-
ment aux variétés non séparées.

Un procédé de construction général.

DErFINITION 20 On dit qu'une application continue p d’un
espace topologique E dans un espace topologique E’ étale E dans
E’, st tout point x de E admet un voisinage ouvert U tel que la
restriction de p a U soit un homéomorphisme sur un ouvert de E’.

ProrositioN 1: Soit V,, une variété a n dimensions et soit o
une relation d’équivalence ouverte dans V, telle que la restriction
de o a un voisinage suffisamment petit de tout point x de V, se
rédutise a U'identité. L’espace topologique quotient V, = V,_[o de V.,
par la relation d’équivalence o est une variété d n dimensions et
Papplication canonique p de V, sur V,[p étale V, sur V,.

En effet, si U est un voisinage ouvert de x tel que la restric-
tion de p & U soit 'identité, la restriction de p & U est un homéo-
morphisme de U sur un ouvert U’ de V,; chaque point de V,
admet un voisinage homéomorphe a R", il en sera donc de
méme pour chaque point de V.

Remarquons que si V, est une variété séparée, en général il
n’en sera pas de méme pour V,, comme le montreront les exemples
qui suivent.

Le procédé de construction des variétés donné par la pro-
position 1 est général dans le sens suivant: Etant donnée une
varieté a n dimensions V,, il existe une famille de cartes A, de R™
dans V, dont les buts recouvrent V, (i parcourant un ensemble
d’indices I); la variété V, est donc isomorphe au quotient de
Iespace somme I X R" par la relation d’équivalence associée a

Papplication (i, x) - h; (z) de I X R" sur V.

4 Nous utilisons ici la terminologie et les définitions de C. Ehresmann.
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DeriniTION 3: Un point x d’une variéié V, est appelé un point
de branchement s’il existe un point z de V, (z # X) qui n’est pas
séparé de x, c’est-a-dire que tout voisinage de z rencontre tout
voisinage de z.

On remarquera que la relation « x n’est pas séparé de z» est
symétrique et réflexive, mais qu’elle n’est pas transitive en
général (cf. exemple 3 ci-dessous).

Exemples.

La proposition 1 permet la construction d’une multitude
d’exemples de variétés. Nous limitant maintenant aux variétés
a une dimension et satisfaisant au deuxiéme axiome de dénom-
brabilité, nous allons étudier quelques exemples importants.

ExempLE 1. Soient R; et R, deux exemplaires de la droite
numeérique réelle R et soit X la somme topologique de R, et R,
Considérons un ouvert Q de R; la relation d’équivalence p dans
2 qui identifie les points de R; et R, de méme abscisse ¢t € Q
et qui se réduit & 'identité pour les autres points satisfait & la
condition de la proposition 1. En passant au quotient, on obtient
une variété a une dimension V. Les points de branchement sont
ceux dont I’abscisse est un point frontiere de Q5. Il est utile
d’indiquer quelques cas particuliers:

a) le branchement simple : ici € est 'ensemble ¢ << 0. Les points
de branchement sont ceux d’abscisse 0;

b) le lasso: € est I’ensemble ¢ > 0 et t << — 1. Les points de
branchement sont les points d’abscisse 0 et — 1.;

c) le lasso étranglé: Q) est 'ensemble ¢ £ 0. Les points de bran-
chement ont I’abscisse 0;

d) Q est le complémentaire de I’ensemble parfait de Cantor.
Ici 'ensemble des points de branchement a la puissance du
continu.

ExemprLE 2. La boucle: Soit p la relation d’équivalence
dans la droite numérique R qui identifie les points d’abscisse ¢
et — ¢t pour l t \ < 1 et qui se réduit a 'identité pour les autres

5 L’abscisse du point x de /¢ est I'abscisse des points de = qui sont projetés sur x
par I’application canonique de X sur X/p.
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points. L’espace quotient est la boucle et les points de branche-
ment sont les points 1 et — 1.

ExempLE 3. L’étoile: Soit X la somme topologique de n
exemplaires R;, R,, ... R, de la droite numérique. Soit o la
relation d’équivalence dans X qui identifie chaque point d’abs-
cisse t > 0 de R; avec le point d’abscisse — t de R;,; (1 <1 < n;
on posera R,,, = R;). L’espace quotient est une variété & une
dimension qui peut é&tre appelée une étoile & n branches. Les
points de branchement sont ici les points d’abscisse 0; deux tels
points appartenant & R; et R; sont séparés si et seulement si
i — ] # 1. On pourrait considérer également une étoile avec

une infinité de branches.

ExeMPLE 4. La plume: I’exemple 1 a) montre comment il
est possible de « greffer » au point ¢ = 0 d’une droite R un bran-
chement simple; on peut évidemment greffer un tel branchement
en un point quelconque de R. Si en tous les points de coordon-
nées rationnelles de R, on greffe simultanément un branche-
ment simple — il est inutile de décrire ce procédé en détail —
on obtient une variété & une dimension qui mérite le nom de
plume; la droite R est la tige sur laquelle sont greffées les barbes.
Iciles points de branchement forment un ensemble partout dense
dans R.

En greffant une barbe en chaque point de R, on obtiendrait
une variété a une dimension qui n’est pas & base dénombrable.

ExempLE 5. La plume composée: Si dans une plume, on
remplace chaque barbe par une nouvelle plume, on définit ainsi
une variéte a une dimension, que nous appellerons plume double.
Dans une plume double on peut remplacer chaque barbe par une
plume simple, obtenant ainsi une plume riple; en réitérant ce
processus n fois (n entier) on obtient la plume n-uple. Rien
n’empéche d’effectuer une suite dénombrable de ces opérations
pour obtenir la variété & une dimension qui mérite le nom de
plume composée (ou plume compléte). La plume composée
posseéde la propriété remarquable suivante: I’ensemble des points
de branchement, qui est dénombrable, est partout dense dans
Pespace envisagé.
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Ces divers exemples montrent la grande diversité des variétés
a une dimension, connexes et & base dénombrable. Une classi-
fication topologique de ces espaces parait déja assez compliquée.

Donnons encore un exemple qui donnera une faible idée de
la complexité des variétés non séparées de dimension > 1.
Soient E; et E, deux exemplaires de I'espace numérique R2? &
deux dimensions rapporté a un systeme de coordonnées polaires
(r, ). Soit p la relation d’équivalence dans 'espace somme X
de E; et E, qui identifie tout point de E; de coordonnées (r, w),
r < 1, avec le point de E, de coordonnées (r, /1 — r) et qui
se réduit a I'identité pour les autres points. L’espace quotient
2 /e est une variété a deux dimensions; 'image dans Z/p de tout
point de E; de coordonnées (1, w,) n’est séparée d’aucun point
de I'tmage dans X/p du cercle r = 1 de E,.

1.2. Variétés a une dimenston stmplement connexes.

Rappelons les définitions suivantes:

DeriniTiON 1:  Le couple (V, p) formé d’un espace topolo-

gique V et dune application continue p de V sur un espace topo-
logique V est appelé un revétement de V, st tout point de V posseéde
un voisinage ouvert U tel que p™ (U) admelte une partition en
sous-ensembles ouverts U, tels que la restriction de p a chacun
d’eux soit un homéomorphisme sur U.

Un espace topologique V sera dit simplement connexe, s’il est

~

connexe et si pour tout revétement connexe (V, p) de V, la

projection p est un homéomorphisme de V sur V.

DEriNiTioN 2: Une variété a n dimensions V,, est dite orten-
table, s’il existe un atlas A de R™ sur V, tel que tout changement de
cartes associé a deux cartes de A soit un homéomorphisme direct
(C’est-a-dire qui conserve Uortentation) d’un ouvert de R™ sur un
ouvert de R™ .

Les variétés construites dans les exemples 2 et 3 (pour » im-
pair) ne sont pas orientables.

Si une variété V & une dimension peut étre étalée dans la
droite numérique R, alors V est nécessairement orientable. Par
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contre, une variété & une dimension orientable ne peut pas tou-
jours étre étalée dans R: il suffit de considérer le cas du cercle.
Cependant, il est possible de démontrer la proposition suivante,
qui sera utile par la suite.

Proposition 1. Sott V une variété ¢ une dimension stmple-
ment connexe et a base dénombrable. Il existe alors une application
continue f qut étale V dans la droite numérique.

Nous utiliserons dans la démonstration le lemme suivant:

LEMME: Si une variété V d une dimension est simplement
connexe, le complémentaire d’un point quelconque x de V a deux
composantes connexes.

En effet, soit U un voisinage de £ homéomorphe a un inter-
valle; le complémentaire de x dans U a deux composantes
connexes U, et U_. Considérons alors deux exemplaires V' et
V' du complémentaire de z dans V et soient U’, U et U/, U”
les correspondants de U,, U_ dans V' et V”. Complétons
Iespace somme V' 4 V"' par deux points z’ et 2’ admettant
respectivement des voisinages U’ et U” tel que U’ N V' = U,
UNV' =Ul e U'NV =U_, U'NV'=1U/; on
obtient ainsi un espace V qui, muni de sa projection naturelle p
sur V (en particulier p (') = p (') = x), est un revétement a
deux feuillets de V. Si le complémentaire de x dans V était
connexe, V serait aussi connexe, ce qui est impossible pulsque V
est simplement connexe.

On peut montrer que réciproquement, si le complémentaire
de tout point de V n’est pas connexe, alors V est simplement
connexe.

Passons maintenant & la démonstration de la proposition.
Il est possible de trouver une famille dénombrable de cartes
hi(t =1,2,..) de R dans V dont les buts 0, recouvrent V.
Comme V est connexe, on peut supposer que la numérotation
des 0O; est faite de telle facon que Q, = U;_yq .. . 0; soit
‘connexe, quel que soit 'entier n. Nous raisonnerons par récur-
rence. Supposons définie sur Q, une application continue f,, qui
étale 2, dans I'intervalle ] — n, + n[. Nous allons montrer que
f, peut étre prolongée suivant une application [nir qui étale
Q,., dans Pintervalle ] —n—1, n 4 17.

L’Enseignement mathém., t. III, facs. 2. S
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Il résulte du lemme que Q, N 0,,, est connexe, car si ce
n’était pas le cas, on pourrait trouver un point x tel que le com-
plémentaire de x dans V soit connexe. Donc A, (Q, N 0,,,) = 1
est un intervalle ouvert de R et '’application f, %,,, est une fone-
tion continue, strictement monotone et inférieure en valeur
absolue & n; elle peut étre prolongée en une fonction ¢ continue
sur R, strictement monotone et inférieure en valeur absolue a
n + 1. L’application ¢A™ définie sur 0,,, et P'application f,
coincident sur QN 0, ., ; leur réunion définit le prolongement

n+l?
cherché f, . ,.

1.3. Variétés munies de structures différentiables.

DeriniTioNn 1: Une structure différentiable de classe C7,
r étant un entier positif ou o (respectivement une structure
analytique), sur une variété a n dimensions V,_ est définie par
la donnée d’un atlas A de R" sur V, tel que, pour tout couple
de cartes k;, h; € A, le changement de cartes ;' k; soit un
homéomorphisme r fois continiiment différentiable (respective-
ment analytique) d’un ouvert de R™ dans R™

Une fonction r-différentiable sur V, est une application f de
V., dans la droite numérique R telle que, pour toute carte £z, € A,
Papplication fh, soit une fonction r fois contintiment différen-
tiable sur R™ Une fonction r-différentiable sur V. est dite de
rang 1 au point z < V_, si pour une carte &, dont le but contient
x, Papplication fh; est une fonction dont au moins une dérivée
partielle au point ;! (z) est différente de zéro; cette définition
est évidemment indépendante de la carte choisie %; € A.

On définirait de méme la notion d’applications r différen-
tiables d’une variété V, différentiable de classe (" dans une
variété différentiable V, de classe (7.

Une carte f de R™ dans V,, sera dite compatible avec 'atlas A,
si pour tout 2 € A, les changements de cartes f! het £ f sont
des homéomorphismes r-différentiables (ou analytiques) d’ou-
verts de R™ dans R™ L’ensemble de toutes les cartes compatibles

avec A forme 'atlas maximal A engendré par A. Deux sous-atlas

de A définissent sur V, la méme structure de variété r-différen-
tiable de classe C" (ou analytique).
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ProprigTE 1: Le branchement simple (exemple 1 a)) [de
méme que le lasso étranglé] est une variété & une dimension
susceptible de deux structures de variétés différentiables de
classe C” non i1somorphes.

Autrement dit, on peut munir le branchement simple de
deux structures différentiables de classe C* telles qu’il n’existe
aucun homéomorphisme de classe C* (ainsi que son inverse)
de V muni de la premiére structure sur V muni de la seconde.

En reprenant les notations de 'exemple 1, R; et R, (iden-
tifiés & leurs images dans V) sont deux ouverts formant un
recouvrement de V, le point de R; (respectivement R,) d’abs-
cisse ¢t étant désigné par ¢; (respectivement ¢,). On peut définir
une structure’ différentiable de classe G sur V en se donnant
deux cartes k, et h, de R sur R; et R, telles que A' %, et B! &y
soient des homéomorphismes co-différentiables de la demi-droite
]— oo, O].

Premiére structure: elle est définie par £y (1) =1t et

Deuxiéme structure: elle est définie par ki (1) =t et
hy (1) = t,.

Pour la premiére structure, la fonction qui au point ¢, ou #,
prend la valeur ¢ est une fonction oo-différentiable sur V partout
de rang 1. Par contre, pour la deuxiéme structure, tout fonetion
oo-différentiable f sur V est de rang 0 au point ¢ = 0. En effet,
soient fy = fhy et f, = fhy; de [, (1) = fy At hy (¢) résulte
( % f1 (t))tzo = 0. Cette derniére circonstance établit la pro-

priété 1 6. Remarquons que les deux structures définies ci-dessus
sont méme analytiques.

Il est clair qu’on pourrait multiplier les exemples. On com-
prendra facilement & partir de 'exemple précédent comment
construire une structure différentiable de classe C® sur une
plume composée qui mette en évidence la propriété suivante:

_ 6 Dans un article récent [4], Milnor a construit deux structures différentiables non
isomorphes sur la sphére S7. Le résultat de Milnor est global; il s’agit ici au contraire

d’une propriete locale, relative & un voisinage arbitraire d’un couple de points non
séparés. :
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PropriETE 2: ]l existe des variétés & une dimension (par
exemple: la plume composée) susceptibles d’une structure
différentiable de classe C” telle que toutes les fonctions conti-
ntument différentiables sur ces variétés se réduisent a des
constantes.

Les propriétés pathologiques mises en évidence ci-dessus
conduisent & une notion de structure différentiable plus stricte
pour laquelle les propriétés précédentes ne soient plus valables,

DeriNiTION 2: Une structure différentiable de classe C" sur
une variété V. est dite réguliére s1 pour toute fonction r-différen-
tiable définie sur un voisinage de z € V_, il existe une fonction
r-différentiable f définie sur V_ telle que f et f' coincident sur
un voisinage de z.

Toute structure différentiable de classe C" sur une variété
séparée V, est réguliere. La deuxieme structure différentiable
définie sur le branchement simple n’est pas réguliére.

Nous utiliserons dans la démonstration de la proposition 1

ci-dessous le

LemMME: Soit V une variété munie d’une structure différen-
tiable réguliere de classe C7. Si une fonction r-différentiable f
sur V est de rang 1 en un point x de V, elle est également de
rang 1 en tout point y non séparé de .

Pour simplifier les notations, nous démontrerons ce lemme
dans le cas ot V est une variété & une dimension. Soient A, et A,
deux cartes de R dans V telles que #; (0) = x et 2, (0) = y.
L’application h = &' k; est un homéomorphisme r-différen-
tiable, ainsi que son inverse, d’un ouvert U; de R sur un ouvert
U, de R, lorigine 0 appartenant & I’adhérence de U, et U,; les
fonctions f; = fhy et fy = fh, sont r-différentiables dans R et la
dérivée ]‘ (0) de f, a 'origine n’est pas nulle. Soit ¢, Lyy vovy Ly oo
une suite de points de Uj tels que lim ¢, = O;en posant i, = h(t),

n-—)oo

on a aussi lim ¢, = 0. Comme ]‘ (t,) = ]‘ ) pour tout n,

n—>oo

si la lim f2 (t¢,) = fz( ) était nulle, alors Iim A’ ( n) serait infinie;

N—> 0

mais alors si g est une fonction r-différentiable sur V et de rang 1
en y (une telle fonction existe toujours en vertu de I’hypothese
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de régularité), avec les notations correspondantes, lim g: (¢,)

n—w
serait infinie, ce qui est impossible. Donc ]‘; (0) = 0.
La proposition 1 de 1.2 peut étre précisée de la maniere

suivante:

ProrositioN 1: Sur toute variété a une dimension V munte
d’une structure différentiable réguliére de classe CT, sumplement
connexe et & base dénombrable, il existe une fonction r-différen-
ttable f partout de rang 1.

Autrement dit, la variété V peut étre étalée dans R par une
application r-différentiable f partout de rang 1.

Nous supposerons connu le lemme suivant:

LemmE: Soit f (¢) une fonction r-différentiable définie sur un
ouvert I’ de la droite numérique R et dont la dérivée est diffé-
rente de zéro en tout point d’un intervalle fermé I < I’; la
restriction de f & I peut se prolonger suivant une fonction
r-différentiable sur R et de dérivée non nulle en tout point
de R.

Soit A D'atlas de R sur V qui définit la structure différen-
tiable de classe C" sur V. La marche générale de la démonstra-
tion est celle de la proposition 1 de 1.2. Reprenons les mémes
notations en supposant cette fois que chaque 0, est 'image de
I'intervalle I: 1— 1, + 1[ par un homéomorphisme %; qui se

prolonge suivant un homéomorphisme izi €A de R dans V.
On suppose définie sur Q_ une fonction r-différentiable f, par-
tout de rang 1 et telle que pour tout 0,, 1 < i < n, la fonction
foh;y qui est définie sur I se prolonge suivant une fonction
r-différentiable sur R partout de rang 1. On va montrer que f,
peut se prolonger suivant une fonction r-différentiable f, ., sur
Q,., Jouissant des mémes propriétés.

Comme Q N0, est connexe, f, A, est une fonction
r-différentiable sur un intervalle ]i,, ¢;[ contenu dans I et &
dérivée non nulle. Les ensembles %\, (0,), 1 < i < n sont des

n+i

intervalles ouverts qui recouvrent ]¢,, ¢, [; soit 0, un ouvert tel
que /., (0,) soit un intervalle de la forme ]ty #,[, (t, < ¢,). Par

Phypothése de récurrence, la fonction f, &, se prolonge sur R
suivant une fonction f, partout de rang 1. Soit ¢, le point de
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Pintervalle [— 1, + 1] défini par ¢ = lim B! 2, (1) et soit
5 ’ . > t_>t0 .

x' = hy, (t,); le point x = h,,, ({,) n’est pas séparé de z'. Il existe

une fonction r-différentiable g dans V qui coincide avec f, h;!

sur un voisinage de z’; comme g est de rang 1 en z’, elle Pest

également en x (lemme 1). La fonction qui est égale a gh, ., sur
Iintervalle ]| — oo, 4] et & f, A, sur |, ¢;[ est r-différentiable

sur | — oo, ;[ car les deux fonctions g;znH et f, h,., coincident
dans un intervalle ]¢,, t;[. En répétant la méme construction
pour ¢;, on obtient une fonction définie sur R de rang 1 sur
Pintervalle [¢,, t;] et dont la restriction & ]#,, ¢;[ coincide avec
fnhp.y; d’apres le lemme 2, il existe une fonction r-différentiable

fnir qui prolonge f, k., et qui est partout de rang 1. La fonc-

-1

tion f, , cherchée est égale a f, sur Q et & f, ., A,y

sur 0,,.

CororLLAIRE: Toutes les structures différentiables sur la
droite numérique R sont équivalentes.

Soit R la droite numérique munie de sa structure différen-
tiable ordinaire et R’ la droite numérique munie d’une structure
différentiable de classe C". D’aprés la proposition, il existe une
application r-différentiable partout de rang 1 de R’ sur R (en
faisant au besoin une homothétie convenable). Comme cette
application est biunivoque, ¢’est un isomorphisme de classe C’
de R’ sur R (muni de sa structure différentiable ordinaire de
classe C").

2. LES STRUCTURES FEUILLETEES DU PLAN.

2.1. Rappel de définitions et de propriétés classiques.

DerinitioNn 1: Une structure feutlletée (F) sur une variété
a deux dimensions V, est définte par un atlas A de R? sur V, tel
que st h; et h; sont deux cartes quelconques de A, le changement de
cartes hy; = hi' h; est un homéomorphisme d’un ouvert U de R?
sur un ouvert de R qui, au votsinage de tout point de U;; s’exprime
par des équations de la forme:

x = gji (%, y) Yy = kji ly) - 1)
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