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VARIETES (NON SEPAREES) A UNE DIMENSION
ET STRUCTURES FEUILLETEES DU PLAN

PAR

André HarrrLicer, Paris et Georges REEB, Grenoble

INTRODUCTION.

La notion de variété topologique séparée ! est fondamentale
dans plusieurs branches des mathématiques. Rappelons-en la
définition:

Une variété topologique séparée 4 n dimensions est un
espace topologique V,_ satisfaisant aux deux conditions
suivantes:

(i) Tout point de V, admet un voisinage ouvert homéo-
morphe & ’espace numérique a n dimensions R",

(1) V, est un espace topologique séparé au sens de Haus-
dorff, c¢’est-a-dire que deux points quelconques de V,
admettent des voisinages sans points communs.

La commodité de la condition (i) apparait dans 1’étude de
certaines propriétés de géométrie différentielle et de topologie.
Par exemple, une variété séparée V, & n dimensions et & base
dénombrable est métrisable; il en résulte qu’elle est homéo-
morphe & un sous-espace d’un espace numérique de dimension
assez élevée. Toute variété séparée connexe a une dimension et
a base dénombrable est homéomorphe soit & I’espace numérique
a une dimension R, soit au cercle.

Cependant, il semble utile d’étudier également les variétés
topologiques qui ne satisfont pas nécessairement l'axiome de

1 Habituellement on dit variété topologique au lieu de variété topologique séparée.
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séparation de Hausdorff. Ces espaces s’introduisent en effet d’une
maniere naturelle dans plusieurs questions? Le but de notre
article est de montrer comment ’étude des variétés a une dimen-
sion (en général non séparées) permet de retrouver plusieurs
proprietés des feuilletages du plan.

La premiere partie est consacrée a I’étude des variétés non
séparées (plus particulierement des variétés & une dimension).
Apres avoir donné quelques définitions et des exemples (1.1),
nous établissons quelques propriétés des variétés & une dimension
simplement connexes (1.2) et des structures différentiables qu’on
peut y définir (1.3). Ces propriétés seront appliquées dans la
seconde partie.

Les structures feuilletées du plan ont été étudiées par
Poincaré et de nombreux auteurs. Les définitions fondamentales
et les principaux résultats ont été rassemblés en 2.1. Les théo-
réemes 2, 3 et 4, dus & Kaplan, Kamke et Wazewsky, deviennent
particulierement clairs & notre sens si1 ’on part de la remarque
fondamentale suivante: 1’espace des feuilles d’une structure
feuilletée du plan est une variété & une dimension (en général
non séparée) (2.2). Ces théoremes sont démontrés en 2.3.

1. PROPRIETES DES VARIETES A UNE DIMENSION.

1.1. Définitions et exemples.

DEriNiTioN 1:  Une variété topologique a n dimensions V.,
est un espace topologique dont chaque point admet un voisinage
ouvert homéomorphe a l'espace numérique a n dimensions R".

On appelle carte de R™ dans V., un homéomorphisme 42 de R"
sur un ouvert U de V_; Uouvert U est le but de la carte 4. Le
changement de cartes associé & deux cartes h; et h; de R™ dans
V,, de buts respectifs U; et U; est ’homéomorphisme 7;' 7, 3 de
Vouvert ;' (U, N U;) de R™ sur Pouvert ;' (U; N U,). D’apres la
définition précédente, il existe toujours un ensemble de cartes

2 Par exemple, un faisceau défini sur une variété séparée est muni d’une structure
de variété en général non séparée.

3 Qi f est une application d’une partie A d’un ensemble E dans un ensemble E’ et
f’ une application d’une partie A’ de E’ dans un ensemble E’’, on désignera par f’'f
application x — f’[f (x)] de la partie de E formée des points x tels que f (x) € A",
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dont les buts recouvrent V. ; un tel ensemble sera appelé un
atlas de R™ sur V4.

Les variétés topologiques séparées sont souvent munies de
structures supplémentaires: orientation, structure différentiable,
structure complexe... Ces notions (ainsi que celles, par exemple,
de vecteur tangent ou de tenseur) sont définies sans faire appel
A Paxiome de séparation; elles se transposent donc immédiate-
ment aux variétés non séparées.

Un procédé de construction général.

DErFINITION 20 On dit qu'une application continue p d’un
espace topologique E dans un espace topologique E’ étale E dans
E’, st tout point x de E admet un voisinage ouvert U tel que la
restriction de p a U soit un homéomorphisme sur un ouvert de E’.

ProrositioN 1: Soit V,, une variété a n dimensions et soit o
une relation d’équivalence ouverte dans V, telle que la restriction
de o a un voisinage suffisamment petit de tout point x de V, se
rédutise a U'identité. L’espace topologique quotient V, = V,_[o de V.,
par la relation d’équivalence o est une variété d n dimensions et
Papplication canonique p de V, sur V,[p étale V, sur V,.

En effet, si U est un voisinage ouvert de x tel que la restric-
tion de p & U soit 'identité, la restriction de p & U est un homéo-
morphisme de U sur un ouvert U’ de V,; chaque point de V,
admet un voisinage homéomorphe a R", il en sera donc de
méme pour chaque point de V.

Remarquons que si V, est une variété séparée, en général il
n’en sera pas de méme pour V,, comme le montreront les exemples
qui suivent.

Le procédé de construction des variétés donné par la pro-
position 1 est général dans le sens suivant: Etant donnée une
varieté a n dimensions V,, il existe une famille de cartes A, de R™
dans V, dont les buts recouvrent V, (i parcourant un ensemble
d’indices I); la variété V, est donc isomorphe au quotient de
Iespace somme I X R" par la relation d’équivalence associée a

Papplication (i, x) - h; (z) de I X R" sur V.

4 Nous utilisons ici la terminologie et les définitions de C. Ehresmann.
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DeriniTION 3: Un point x d’une variéié V, est appelé un point
de branchement s’il existe un point z de V, (z # X) qui n’est pas
séparé de x, c’est-a-dire que tout voisinage de z rencontre tout
voisinage de z.

On remarquera que la relation « x n’est pas séparé de z» est
symétrique et réflexive, mais qu’elle n’est pas transitive en
général (cf. exemple 3 ci-dessous).

Exemples.

La proposition 1 permet la construction d’une multitude
d’exemples de variétés. Nous limitant maintenant aux variétés
a une dimension et satisfaisant au deuxiéme axiome de dénom-
brabilité, nous allons étudier quelques exemples importants.

ExempLE 1. Soient R; et R, deux exemplaires de la droite
numeérique réelle R et soit X la somme topologique de R, et R,
Considérons un ouvert Q de R; la relation d’équivalence p dans
2 qui identifie les points de R; et R, de méme abscisse ¢t € Q
et qui se réduit & 'identité pour les autres points satisfait & la
condition de la proposition 1. En passant au quotient, on obtient
une variété a une dimension V. Les points de branchement sont
ceux dont I’abscisse est un point frontiere de Q5. Il est utile
d’indiquer quelques cas particuliers:

a) le branchement simple : ici € est 'ensemble ¢ << 0. Les points
de branchement sont ceux d’abscisse 0;

b) le lasso: € est I’ensemble ¢ > 0 et t << — 1. Les points de
branchement sont les points d’abscisse 0 et — 1.;

c) le lasso étranglé: Q) est 'ensemble ¢ £ 0. Les points de bran-
chement ont I’abscisse 0;

d) Q est le complémentaire de I’ensemble parfait de Cantor.
Ici 'ensemble des points de branchement a la puissance du
continu.

ExemprLE 2. La boucle: Soit p la relation d’équivalence
dans la droite numérique R qui identifie les points d’abscisse ¢
et — ¢t pour l t \ < 1 et qui se réduit a 'identité pour les autres

5 L’abscisse du point x de /¢ est I'abscisse des points de = qui sont projetés sur x
par I’application canonique de X sur X/p.
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points. L’espace quotient est la boucle et les points de branche-
ment sont les points 1 et — 1.

ExempLE 3. L’étoile: Soit X la somme topologique de n
exemplaires R;, R,, ... R, de la droite numérique. Soit o la
relation d’équivalence dans X qui identifie chaque point d’abs-
cisse t > 0 de R; avec le point d’abscisse — t de R;,; (1 <1 < n;
on posera R,,, = R;). L’espace quotient est une variété & une
dimension qui peut é&tre appelée une étoile & n branches. Les
points de branchement sont ici les points d’abscisse 0; deux tels
points appartenant & R; et R; sont séparés si et seulement si
i — ] # 1. On pourrait considérer également une étoile avec

une infinité de branches.

ExeMPLE 4. La plume: I’exemple 1 a) montre comment il
est possible de « greffer » au point ¢ = 0 d’une droite R un bran-
chement simple; on peut évidemment greffer un tel branchement
en un point quelconque de R. Si en tous les points de coordon-
nées rationnelles de R, on greffe simultanément un branche-
ment simple — il est inutile de décrire ce procédé en détail —
on obtient une variété & une dimension qui mérite le nom de
plume; la droite R est la tige sur laquelle sont greffées les barbes.
Iciles points de branchement forment un ensemble partout dense
dans R.

En greffant une barbe en chaque point de R, on obtiendrait
une variété a une dimension qui n’est pas & base dénombrable.

ExempLE 5. La plume composée: Si dans une plume, on
remplace chaque barbe par une nouvelle plume, on définit ainsi
une variéte a une dimension, que nous appellerons plume double.
Dans une plume double on peut remplacer chaque barbe par une
plume simple, obtenant ainsi une plume riple; en réitérant ce
processus n fois (n entier) on obtient la plume n-uple. Rien
n’empéche d’effectuer une suite dénombrable de ces opérations
pour obtenir la variété & une dimension qui mérite le nom de
plume composée (ou plume compléte). La plume composée
posseéde la propriété remarquable suivante: I’ensemble des points
de branchement, qui est dénombrable, est partout dense dans
Pespace envisagé.
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Ces divers exemples montrent la grande diversité des variétés
a une dimension, connexes et & base dénombrable. Une classi-
fication topologique de ces espaces parait déja assez compliquée.

Donnons encore un exemple qui donnera une faible idée de
la complexité des variétés non séparées de dimension > 1.
Soient E; et E, deux exemplaires de I'espace numérique R2? &
deux dimensions rapporté a un systeme de coordonnées polaires
(r, ). Soit p la relation d’équivalence dans 'espace somme X
de E; et E, qui identifie tout point de E; de coordonnées (r, w),
r < 1, avec le point de E, de coordonnées (r, /1 — r) et qui
se réduit a I'identité pour les autres points. L’espace quotient
2 /e est une variété a deux dimensions; 'image dans Z/p de tout
point de E; de coordonnées (1, w,) n’est séparée d’aucun point
de I'tmage dans X/p du cercle r = 1 de E,.

1.2. Variétés a une dimenston stmplement connexes.

Rappelons les définitions suivantes:

DeriniTiON 1:  Le couple (V, p) formé d’un espace topolo-

gique V et dune application continue p de V sur un espace topo-
logique V est appelé un revétement de V, st tout point de V posseéde
un voisinage ouvert U tel que p™ (U) admelte une partition en
sous-ensembles ouverts U, tels que la restriction de p a chacun
d’eux soit un homéomorphisme sur U.

Un espace topologique V sera dit simplement connexe, s’il est

~

connexe et si pour tout revétement connexe (V, p) de V, la

projection p est un homéomorphisme de V sur V.

DEriNiTioN 2: Une variété a n dimensions V,, est dite orten-
table, s’il existe un atlas A de R™ sur V, tel que tout changement de
cartes associé a deux cartes de A soit un homéomorphisme direct
(C’est-a-dire qui conserve Uortentation) d’un ouvert de R™ sur un
ouvert de R™ .

Les variétés construites dans les exemples 2 et 3 (pour » im-
pair) ne sont pas orientables.

Si une variété V & une dimension peut étre étalée dans la
droite numérique R, alors V est nécessairement orientable. Par
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contre, une variété & une dimension orientable ne peut pas tou-
jours étre étalée dans R: il suffit de considérer le cas du cercle.
Cependant, il est possible de démontrer la proposition suivante,
qui sera utile par la suite.

Proposition 1. Sott V une variété ¢ une dimension stmple-
ment connexe et a base dénombrable. Il existe alors une application
continue f qut étale V dans la droite numérique.

Nous utiliserons dans la démonstration le lemme suivant:

LEMME: Si une variété V d une dimension est simplement
connexe, le complémentaire d’un point quelconque x de V a deux
composantes connexes.

En effet, soit U un voisinage de £ homéomorphe a un inter-
valle; le complémentaire de x dans U a deux composantes
connexes U, et U_. Considérons alors deux exemplaires V' et
V' du complémentaire de z dans V et soient U’, U et U/, U”
les correspondants de U,, U_ dans V' et V”. Complétons
Iespace somme V' 4 V"' par deux points z’ et 2’ admettant
respectivement des voisinages U’ et U” tel que U’ N V' = U,
UNV' =Ul e U'NV =U_, U'NV'=1U/; on
obtient ainsi un espace V qui, muni de sa projection naturelle p
sur V (en particulier p (') = p (') = x), est un revétement a
deux feuillets de V. Si le complémentaire de x dans V était
connexe, V serait aussi connexe, ce qui est impossible pulsque V
est simplement connexe.

On peut montrer que réciproquement, si le complémentaire
de tout point de V n’est pas connexe, alors V est simplement
connexe.

Passons maintenant & la démonstration de la proposition.
Il est possible de trouver une famille dénombrable de cartes
hi(t =1,2,..) de R dans V dont les buts 0, recouvrent V.
Comme V est connexe, on peut supposer que la numérotation
des 0O; est faite de telle facon que Q, = U;_yq .. . 0; soit
‘connexe, quel que soit 'entier n. Nous raisonnerons par récur-
rence. Supposons définie sur Q, une application continue f,, qui
étale 2, dans I'intervalle ] — n, + n[. Nous allons montrer que
f, peut étre prolongée suivant une application [nir qui étale
Q,., dans Pintervalle ] —n—1, n 4 17.

L’Enseignement mathém., t. III, facs. 2. S
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Il résulte du lemme que Q, N 0,,, est connexe, car si ce
n’était pas le cas, on pourrait trouver un point x tel que le com-
plémentaire de x dans V soit connexe. Donc A, (Q, N 0,,,) = 1
est un intervalle ouvert de R et '’application f, %,,, est une fone-
tion continue, strictement monotone et inférieure en valeur
absolue & n; elle peut étre prolongée en une fonction ¢ continue
sur R, strictement monotone et inférieure en valeur absolue a
n + 1. L’application ¢A™ définie sur 0,,, et P'application f,
coincident sur QN 0, ., ; leur réunion définit le prolongement

n+l?
cherché f, . ,.

1.3. Variétés munies de structures différentiables.

DeriniTioNn 1: Une structure différentiable de classe C7,
r étant un entier positif ou o (respectivement une structure
analytique), sur une variété a n dimensions V,_ est définie par
la donnée d’un atlas A de R" sur V, tel que, pour tout couple
de cartes k;, h; € A, le changement de cartes ;' k; soit un
homéomorphisme r fois continiiment différentiable (respective-
ment analytique) d’un ouvert de R™ dans R™

Une fonction r-différentiable sur V, est une application f de
V., dans la droite numérique R telle que, pour toute carte £z, € A,
Papplication fh, soit une fonction r fois contintiment différen-
tiable sur R™ Une fonction r-différentiable sur V. est dite de
rang 1 au point z < V_, si pour une carte &, dont le but contient
x, Papplication fh; est une fonction dont au moins une dérivée
partielle au point ;! (z) est différente de zéro; cette définition
est évidemment indépendante de la carte choisie %; € A.

On définirait de méme la notion d’applications r différen-
tiables d’une variété V, différentiable de classe (" dans une
variété différentiable V, de classe (7.

Une carte f de R™ dans V,, sera dite compatible avec 'atlas A,
si pour tout 2 € A, les changements de cartes f! het £ f sont
des homéomorphismes r-différentiables (ou analytiques) d’ou-
verts de R™ dans R™ L’ensemble de toutes les cartes compatibles

avec A forme 'atlas maximal A engendré par A. Deux sous-atlas

de A définissent sur V, la méme structure de variété r-différen-
tiable de classe C" (ou analytique).
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ProprigTE 1: Le branchement simple (exemple 1 a)) [de
méme que le lasso étranglé] est une variété & une dimension
susceptible de deux structures de variétés différentiables de
classe C” non i1somorphes.

Autrement dit, on peut munir le branchement simple de
deux structures différentiables de classe C* telles qu’il n’existe
aucun homéomorphisme de classe C* (ainsi que son inverse)
de V muni de la premiére structure sur V muni de la seconde.

En reprenant les notations de 'exemple 1, R; et R, (iden-
tifiés & leurs images dans V) sont deux ouverts formant un
recouvrement de V, le point de R; (respectivement R,) d’abs-
cisse ¢t étant désigné par ¢; (respectivement ¢,). On peut définir
une structure’ différentiable de classe G sur V en se donnant
deux cartes k, et h, de R sur R; et R, telles que A' %, et B! &y
soient des homéomorphismes co-différentiables de la demi-droite
]— oo, O].

Premiére structure: elle est définie par £y (1) =1t et

Deuxiéme structure: elle est définie par ki (1) =t et
hy (1) = t,.

Pour la premiére structure, la fonction qui au point ¢, ou #,
prend la valeur ¢ est une fonction oo-différentiable sur V partout
de rang 1. Par contre, pour la deuxiéme structure, tout fonetion
oo-différentiable f sur V est de rang 0 au point ¢ = 0. En effet,
soient fy = fhy et f, = fhy; de [, (1) = fy At hy (¢) résulte
( % f1 (t))tzo = 0. Cette derniére circonstance établit la pro-

priété 1 6. Remarquons que les deux structures définies ci-dessus
sont méme analytiques.

Il est clair qu’on pourrait multiplier les exemples. On com-
prendra facilement & partir de 'exemple précédent comment
construire une structure différentiable de classe C® sur une
plume composée qui mette en évidence la propriété suivante:

_ 6 Dans un article récent [4], Milnor a construit deux structures différentiables non
isomorphes sur la sphére S7. Le résultat de Milnor est global; il s’agit ici au contraire

d’une propriete locale, relative & un voisinage arbitraire d’un couple de points non
séparés. :
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PropriETE 2: ]l existe des variétés & une dimension (par
exemple: la plume composée) susceptibles d’une structure
différentiable de classe C” telle que toutes les fonctions conti-
ntument différentiables sur ces variétés se réduisent a des
constantes.

Les propriétés pathologiques mises en évidence ci-dessus
conduisent & une notion de structure différentiable plus stricte
pour laquelle les propriétés précédentes ne soient plus valables,

DeriNiTION 2: Une structure différentiable de classe C" sur
une variété V. est dite réguliére s1 pour toute fonction r-différen-
tiable définie sur un voisinage de z € V_, il existe une fonction
r-différentiable f définie sur V_ telle que f et f' coincident sur
un voisinage de z.

Toute structure différentiable de classe C" sur une variété
séparée V, est réguliere. La deuxieme structure différentiable
définie sur le branchement simple n’est pas réguliére.

Nous utiliserons dans la démonstration de la proposition 1

ci-dessous le

LemMME: Soit V une variété munie d’une structure différen-
tiable réguliere de classe C7. Si une fonction r-différentiable f
sur V est de rang 1 en un point x de V, elle est également de
rang 1 en tout point y non séparé de .

Pour simplifier les notations, nous démontrerons ce lemme
dans le cas ot V est une variété & une dimension. Soient A, et A,
deux cartes de R dans V telles que #; (0) = x et 2, (0) = y.
L’application h = &' k; est un homéomorphisme r-différen-
tiable, ainsi que son inverse, d’un ouvert U; de R sur un ouvert
U, de R, lorigine 0 appartenant & I’adhérence de U, et U,; les
fonctions f; = fhy et fy = fh, sont r-différentiables dans R et la
dérivée ]‘ (0) de f, a 'origine n’est pas nulle. Soit ¢, Lyy vovy Ly oo
une suite de points de Uj tels que lim ¢, = O;en posant i, = h(t),

n-—)oo

on a aussi lim ¢, = 0. Comme ]‘ (t,) = ]‘ ) pour tout n,

n—>oo

si la lim f2 (t¢,) = fz( ) était nulle, alors Iim A’ ( n) serait infinie;

N—> 0

mais alors si g est une fonction r-différentiable sur V et de rang 1
en y (une telle fonction existe toujours en vertu de I’hypothese
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de régularité), avec les notations correspondantes, lim g: (¢,)

n—w
serait infinie, ce qui est impossible. Donc ]‘; (0) = 0.
La proposition 1 de 1.2 peut étre précisée de la maniere

suivante:

ProrositioN 1: Sur toute variété a une dimension V munte
d’une structure différentiable réguliére de classe CT, sumplement
connexe et & base dénombrable, il existe une fonction r-différen-
ttable f partout de rang 1.

Autrement dit, la variété V peut étre étalée dans R par une
application r-différentiable f partout de rang 1.

Nous supposerons connu le lemme suivant:

LemmE: Soit f (¢) une fonction r-différentiable définie sur un
ouvert I’ de la droite numérique R et dont la dérivée est diffé-
rente de zéro en tout point d’un intervalle fermé I < I’; la
restriction de f & I peut se prolonger suivant une fonction
r-différentiable sur R et de dérivée non nulle en tout point
de R.

Soit A D'atlas de R sur V qui définit la structure différen-
tiable de classe C" sur V. La marche générale de la démonstra-
tion est celle de la proposition 1 de 1.2. Reprenons les mémes
notations en supposant cette fois que chaque 0, est 'image de
I'intervalle I: 1— 1, + 1[ par un homéomorphisme %; qui se

prolonge suivant un homéomorphisme izi €A de R dans V.
On suppose définie sur Q_ une fonction r-différentiable f, par-
tout de rang 1 et telle que pour tout 0,, 1 < i < n, la fonction
foh;y qui est définie sur I se prolonge suivant une fonction
r-différentiable sur R partout de rang 1. On va montrer que f,
peut se prolonger suivant une fonction r-différentiable f, ., sur
Q,., Jouissant des mémes propriétés.

Comme Q N0, est connexe, f, A, est une fonction
r-différentiable sur un intervalle ]i,, ¢;[ contenu dans I et &
dérivée non nulle. Les ensembles %\, (0,), 1 < i < n sont des

n+i

intervalles ouverts qui recouvrent ]¢,, ¢, [; soit 0, un ouvert tel
que /., (0,) soit un intervalle de la forme ]ty #,[, (t, < ¢,). Par

Phypothése de récurrence, la fonction f, &, se prolonge sur R
suivant une fonction f, partout de rang 1. Soit ¢, le point de
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Pintervalle [— 1, + 1] défini par ¢ = lim B! 2, (1) et soit
5 ’ . > t_>t0 .

x' = hy, (t,); le point x = h,,, ({,) n’est pas séparé de z'. Il existe

une fonction r-différentiable g dans V qui coincide avec f, h;!

sur un voisinage de z’; comme g est de rang 1 en z’, elle Pest

également en x (lemme 1). La fonction qui est égale a gh, ., sur
Iintervalle ]| — oo, 4] et & f, A, sur |, ¢;[ est r-différentiable

sur | — oo, ;[ car les deux fonctions g;znH et f, h,., coincident
dans un intervalle ]¢,, t;[. En répétant la méme construction
pour ¢;, on obtient une fonction définie sur R de rang 1 sur
Pintervalle [¢,, t;] et dont la restriction & ]#,, ¢;[ coincide avec
fnhp.y; d’apres le lemme 2, il existe une fonction r-différentiable

fnir qui prolonge f, k., et qui est partout de rang 1. La fonc-

-1

tion f, , cherchée est égale a f, sur Q et & f, ., A,y

sur 0,,.

CororLLAIRE: Toutes les structures différentiables sur la
droite numérique R sont équivalentes.

Soit R la droite numérique munie de sa structure différen-
tiable ordinaire et R’ la droite numérique munie d’une structure
différentiable de classe C". D’aprés la proposition, il existe une
application r-différentiable partout de rang 1 de R’ sur R (en
faisant au besoin une homothétie convenable). Comme cette
application est biunivoque, ¢’est un isomorphisme de classe C’
de R’ sur R (muni de sa structure différentiable ordinaire de
classe C").

2. LES STRUCTURES FEUILLETEES DU PLAN.

2.1. Rappel de définitions et de propriétés classiques.

DerinitioNn 1: Une structure feutlletée (F) sur une variété
a deux dimensions V, est définte par un atlas A de R? sur V, tel
que st h; et h; sont deux cartes quelconques de A, le changement de
cartes hy; = hi' h; est un homéomorphisme d’un ouvert U de R?
sur un ouvert de R qui, au votsinage de tout point de U;; s’exprime
par des équations de la forme:

x = gji (%, y) Yy = kji ly) - 1)
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Si les changements de cartes hy; sont r-différentiables (respecti-
vement analytiques ), on dira que la structure feutlletée (F) est diffé-
rentiable de classe C" (respectivement analytique) °.

Disons qu'une carte / de R? dans V, est compatible avec A,
si pour toute carte £ € A, le changement de carte /™ % est aussi
de la forme (1) (et de plus est r-différentiable ou analytique dans
le cas ou (F) est une structure différentiable de classe C" ou
analytique). L’ensemble de toutes les cartes compatibles avec A
forme 1’atlas maximal engendré par A et définissant sur V, la
structure feuilletée (F). Nous supposerons dans ce qui suit que
A est déja un atlas maximal.

Soit U un ouvert de V,. L’ensemble des cartes de A dont le
but est dans U forme un atlas de R, sur U qui définit la structure
feuilletée (Fy) induite par (F) sur U.

Si (F) et (F’) sont des structures feuilletées sur V, et V,
respectivement, définies par les atlas maximaux A et A, un
isomorphisme de (I) sur (F’) est un homéomorphisme ¢ de V,
sur V, tel que A’ = JA (c’est-a-dire que toute carte de A’ est
de la forme {k, ou £ € A).

Dans le but 0, de chaque carte 2, € A est définie une relation
d’équivalence p; dont les classes sont les images par &, des droites
y = Cte. Des relations (1) il résulte que pour tout point
x €0; N 0y, les relations d’équivalence induites par p; et p; dans
un voisinage suffisamment petit de = coincident. Soit p la rela-
tion d’équivalence engendrée par les o, o

(i

DeriNiTION 2:  Les classes de o dans V, sont appelées les
feuilles de la structure feutlletée (F).

L’espace des feuilles, c’est-a-dire 'espace quotient de V, par
la relation d’équivalence o (muni de la topologie quotient de
celle de V,), jouera un role essentiel dans la suite.

On remarquera que la relation d’équivalence p est ouverte
puisqu’elle est engendrée par les relations p, qui sont ouvertes.

Rappelons qu’a tout champ de vecteurs E défini sur une
variété V, séparée vérifiant les deux conditions suivantes:
(1) E est différentiable de classe C" (ou analytique), (ii) E (z) £ 0

" Pour une définition générale des varietés feuilletées, voir [6].
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en tout point z de V,, est associée une structure feuilletée diffé-
rentiable de classe C" (ou analytique). Les feuilles sont alors les
trajectoires du champ de vecteurs E. Réciproquement a toute
structure feuilletée différentiable (F) de la classe C" dans R,,
on peut faire correspondre un champ de vecteurs E sur V, dont

les trajectoires sont les feuilles de (F).

Exemple: Les courbes qui sont solutions de 'équation diffé-
rentielle (en coordonnées polaires r et w): drjde = r (1 — r?)
sont les feuilles d’une structure feuilletée analytique du plan
privé de 'origine. Le cercle r = 1 est une feuille autour de laquelle
les autres feuilles s’enroulent asymptotiquement.

L’espace quotient de R2 — 0 par la relation d’équivalence p
associée a la structure feuilletée admet dans ce cas une partition
en un sous-espace ouvert homéomorphe a deux cercles et un
point admettant comme seul voisinage I’espace tout entier.

DerintTiON 3: Le couple (0, h;) formé d’une carte h, € A
et de son but O, s’appelle un ouvert distingué de la structure feuille-
tée (F).

Enoncons les principaux résultats relatifs aux structures
feuilletées du plan. Le théoréme 1 qui suit est classique; sa
démonstration repose sur le théoréme de Jordan (dans une
version particulierement facile a établir); elle utilise donc
essentiellement le fait que le plan R? est simplement connexe
(ou plus précisément que son premier nombre de Betti modulo 2
est nul).

TaHtorEME 1 (Poincaré [5], Bendixon [1]): Soit (0;, ;) un
ouvert distingué d’une structure feuilletée du plan; 'image par
k7' de Pintersection de 0; avec une feuille quelconque se réduit
a ’ensemble vide ou & une droite y = Cte.

TukEorEME 2 (Kaplan [3]): A toute structure feuilletée du
plan R2 on peut associer une fonction numérique ¢ définie dans
R? qui vérifie les propriétés suivantes:

(1) ¢ est continue et n’admet pas de maximum ou de minimum
(au sens large);

(i1) ¢ est constante sur les feuilles de la structure feuilletée.
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TutoriEME 3 (Kamke [2]): Soit (F) une structure feuilletée

de classe C" du plan R2 Soit Q un ouvert borné du plan. Il

existe une fonction numérique ¢ définie dans Q et qui vérifie
les propriétés suivantes:

(i) ¢ est r-différentiable et le gradient de ¢ est différent de 0O
en tout point de Q;

(i) ¢ est constante sur les feuilles de la structure feuilletée
induite par (F) sur Q.

TuroriME 4 (Wazewsky [7]): On peut munir le plan R?
d’une structure feuilletée de classe C* telle que toute fonction
r-différentiable sur R2 et qui est constante sur les feuilles de la
structure feuilletée se réduise a une constante.

Nous ne reproduirons pas la démonstration du théoreme 1,
mais nous montrerons dans 2.2 et 2.3 que les théoremes 2, 3
et 4 sont des conséquences du théoreme 1 et des propriétés des
variétés & une dimension établies dans la premiére partie.

Exemples de structures feuilletées du plan:

1. Les droites y = Cte sont évidemment les feuilles d’une
structure feuilletée du plan;

2. Soit C une courbe de Jordan dans le plan R2. La structure
feuilletée précédente induit sur I'ouvert limité par C et qui
est homéomorphe a R2 une structure feuilletée analytique;

3. Le complémentaire U dans R? de Pensemble des points de

coordonnées x = 0, y > 0 est homéomorphe & R2. Les
composantes connexes des lignes de niveau de la fonction

¢ = ay sont les feuilles d’une structure feuilletée analytique

de U.

2.2. L’espace des feuilles d’une structure feuilletée
du plan.

La proposition suivante est une conséquence essentielle du
théoréme 1 de 2.1.

Proposition 1: Soit (F) une structure feuilletée du plan R2.
L’espace quotient V de R? par la relation d’équivalence o associée
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au feutlletage (cf. définition 2 de 2.1) est une variété a une dimen-
sion a base dénombrable et simplement connexe. Si (F) est une
structure feuilletée différentiable de classe C" (ou analytique),
Uespace des feuilles V est munt canoniquement d’une structure de
variété a une dimension différentielle de classe C* (ou analytique).

Comme R? est connexe et a base dénombrable, V est égale-
ment connexe et & base dénombrable. Pour montrer que V est
une variété a une dimension, il suffit de vérifier que tout point z
de V admet un voisinage ouvert homéomorphe a la droite numé-
tique. Soit = la projection canonique de R2 sur V; la feuille = (2)
rencontre au moins un ouvert distingué 0,. La relation d’équi-
valence induite par p dans 0' est, d’apres le théoréme 1, la rela-
tion p,. Donc = (0;) qui est un voisinage ouvert de z, puisque g
est une relation d’équivalence ouverte, est homéomorphe a 0%/o,,
c’est-a-dire a la droite numérique.

En vertu du théoréeme de Jordan, le complémentaire de
toute feuille (qui est un sous-ensemble fermé de R2) a deux
composantes connexes; le complémentaire de tout point de V
a donc également deux composantes connexes. Cette propriété
est équivalente au fait que V est simplement connexe (cf. 1.2,
lemme).

Soit A un atlas définissant sur R? la structure feuilletée diffé-

rentiable considérée et soit 7@1 la restriction de la carte %, € A

a la droite x = 0. L’ensemble des cartes wh;, de R dans V est un
atlas qui définit sur V une structure différentiable.

Le lecteur pourra construire a titre d’exercice ’espace des
feuilles des structures feuilletées du plan définies dans les
exemples ci-dessus.

2.3. Application des résultats de 1. aux structures feuilletées
du plan.

Démonstration du théoréeme 2.

Le théoreme 2 de 2:1 (Kaplan) est une conséquence immeé-
diate de la proposition 1 de 2.2 et de la proposition 1 de 1.2.
Soit f une application qui étale I'espace quotient R2%/p dans R;
I’application ¢ = fr est une fonction numérique sur R? qui
satisfait aux conditions du théoréeme 2.
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Démonstration du théoréme 3.

Si le théoréme est vrai pour les ouverts bornés et simplement
connexes de R2, il le sera également pour tout ouvert  borne;
il suffit de considérer 'ouvert C limité par un cercle qui con-
tient Q; si o est une fonction dans C qui satisfait aux conditions
du théoréme, il en sera évidemment de méme de sa restriction
a .

Ainsi le théoreme de Kamke est une conséquence de la pro-
position 1 de 1.3 et de la proposition suivante:

Propositiox: L’espace des feuilles V' = Qfo" de la struc-
ture feuilletée (F’) induite par (F) sur Q est munie d’une struc-
ture de variété différentiable réguliére de classe C.

Soient = et =’ respectivement les projections canoniques de
R? sur R%/o = V et Q/o" = V'. Linjection canonique  — R?
définit par passage aux quotients une application continue ¢
de V' dans V. Comme tout ouvert distingué de € est un ouvert
distingué de R? I'application ¢ étale V' dans V; elle est r-diffé-
rentiable et partout de rang 1.

Soit " un point de V’ et soit x le point ¢ (z'). Comme € est
relativement compact, I'intersection de la feuille F = =t (x)

avec Padhérence Q de Q est compacte. On peut alors trouver
un ouvert distingué W dans R? suffisamment étroit et allongé

pour contenir F N Q et tel que W N Q soit saturé par des
feuilles de €. Il est appliqué par = sur un ouvert U homéomorphe
a un intervalle et contenant x. Soit f* une fonction r-différen-
tiable uéfinie sur un voisinage U’ homéomorphe & un intervalle
de z" dans V'’ suffisamment petit pour que ¢ (U’) c U. L’appli-
cation f obtenue en composant I'inverse de la restriction de U
a U’ avec 'application [ est une fonction r-différentiable définie
sur un voisinage de x. Comme U est homéomorphe & un inter-
valle, 1l est possible de construire une fonction r-différentiable g
sur U qui coincide avec f sur un voisinage de x et qui s’an-
nule en dehors d’un compact K contenu dans U. Comme
= (K) N W N Q est un fermé dans Q et qu'il est saturé par
des feuilles de Q, la fonction égale & gx sur W N Q et a zéro
aux autres points de Q est r-différentiable et définit par passage
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aux quotients une fonction r-différentiable g’ sur V' qui coincide
avec f' au voisinage de x'.

Démonstration du théoréme 4.

Il est en général nécessaire de supposer que Q est borné pour
que le théoréme de Kamke soit vrai, comme le montre ’exemple
suivant.

Soient 0; et 0, deux exemplaires du plan R?2; dans I'espace
somme 0; + 0, considérons la relation d’équivalence qui iden-
tifie les points (x;, ¥) et (zy, ¥5) tels que x, = 2 + 1)y, yo = ¥,
pour tout y; < 0 et qui se réduit a l'identité pour les points
tels que y, > 0 ouy, > 0. L’espace quotient E est homéomorphe
au plan R2; les deux cartes 0; et 0, forment un atlas qui définit
sur E une structure feuilletée analytique dont l’espace des
feuilles est le branchement simple muni de la deuxiéme structure
différentiable définie dans 1.3, propriété 1.

Cet exemple permet de bien comprendre la construction de
Iexemple de Wazewsky. En particulier, il est facile d’imaginer
une structure feuilletée de classe C” dont 'espace des feuilles
soit une plume composée V (cf. 1.1, ex. 5) munie d’une structure
différentiable de classe C” telle que toute fonction différen-
tiable sur V se réduise a une constante.

CLASSIFICATION DES STRUCTURES FEUILLETEES DU PLAN.

Le probleme de la classification des structures feuilletées du
plan a été résolu completement par Kaplan [3]. Nous allons
indiquer briévement et sans démonstration comment nos
méthodes permettent également de résoudre ce probléeme.

La seule considération de I’espace quotient V associé au
feuilletage ne suffit pas a le caractériser. Pour cela, il faut
introduire une relation d’ordre parmi les points de branchement.
Soit V une variété & une dimension simplement connexe et
orientée, et soit A un atlas de R sur V définissant une orientation
de V. Soient z, et x, deux points de V qui ne sont pas séparés.
Nous dirons que x, et x, ne sont pas séparés a droite (respective-
ment & gauche) et nous écrirons x; ~ x, mod. A" (respecti-
vement A7) si, étant données deux cartes A, et h, de A telles
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que h; (0) = x, et hy (0) = x,, h3' Iy est défini pour des points
d’abscisse > 0 (respectivement < 0). Ces deux relations sont
des relations d’équivalence. Chaque classe contient un nombre
fini ou dénombrable de points.

Appelons structure feutlletée orientée du plan R? une structure
feuilletée du plan orienté R2 avec une orientation cohérente des
feuilles et disons que deux structures feuilletées orientées du
plan sont équivalentes §’il existe un homéomorphisme de R2? sur
R2? qui transporte la premiére structure munie de son orientation
sur la seconde structure munie de son orientation. (Remarquons
que toute structure feuilletée du plan peut étre orientée.)

On montre alors que 'espace des feuilles V de toute structure
orientée du plan est une variété a une dimension orientée pour
laquelle un ordre est déterminé canoniquement dans chaque
classe d’équivalence modulo A" ou A™. On dira que la variété
orientée V est munie d’une structure d’ordre.

Deux structures feuilletées orientées du plan sont équiva-
lentes si et seulement §’il existe un homéomorphisme de espace
des feuilles de la premiére structure sur l'espace des feuilles
de la deuxieme structure qui conserve la structure d’ordre.

Enfin, & toute variété & une dimension & base dénombrable,
simplement connexe, orientée et munie d’une structure d’ordre,
correspond une structure feuilletée du plan.

Recu le 6 décembre 1956.
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