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VARIÉTÉS (NON SÉPARÉES) A UNE DIMENSION

ET STRUCTURES FEUILLETÉES DU PLAN

PAR

André Haefliger, Paris et Georges Reeb, Grenoble

Introduction.

La notion de variété topologique séparée 1 est fondamentale
dans plusieurs branches des mathématiques. Rappelons-en la
définition :

Une variété topologique séparée à n dimensions est un
espace topologique Vn satisfaisant aux deux conditions
suivantes :

(i) Tout point de Vn admet un voisinage ouvert homéo-

morphe à l'espace numérique à n dimensions Rn,

(ii) Vn est un espace topologique séparé au sens de Haus-
dorfï, c'est-à-dire que deux points quelconques de Vn
admettent des voisinages sans points communs.

La commodité de la condition (ii) apparaît dans l'étude de

certaines propriétés de géométrie différentielle et de topologie.
Par exemple, une variété séparée Vn à n dimensions et à base

dénombrable est métrisable; il en résulte qu'elle est homéo-
morphe à un sous-espace d'un espace numérique de dimension
assez élevée. Toute variété séparée connexe à une dimension et
à base dénombrable est homéomorphe soit à l'espace numérique
à une dimension R, soit au cercle.

Cependant, il semble utile d'étudier également les variétés
topologiques qui ne satisfont pas nécessairement l'axiome de

i Habituellement on dit variété topologique au lieu de variété topologique séparée.
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séparation de Hausdorff. Ces espaces s'introduisent en effet d'une
manière naturelle dans plusieurs questions2. Le but de notre
article est de montrer comment l'étude des variétés à une dimension

(en général non séparées) permet de retrouver plusieurs
propriétés des feuilletages du plan.

La première partie est consacrée à l'étude des variétés non
séparées (plus particulièrement des variétés à une dimension).
Après avoir donné quelques définitions et des exemples (1.1),
nous établissons quelques propriétés des variétés à une dimension
simplement connexes (1.2) et des structures différentiables qu'on
peut y définir (1.3). Ces propriétés seront appliquées dans la
seconde partie.

Les structures feuilletées du plan ont été étudiées par
Poincaré et de nombreux auteurs. Les définitions fondamentales
et les principaux résultats ont été rassemblés en 2.1. Les
théorèmes 2, 3 et 4, dus à Kaplan, Kamke et Wazewsky, deviennent
particulièrement clairs à notre sens si l'on part de la remarque
fondamentale suivante: l'espace des feuilles d'une structure
feuilletée du plan est une variété à une dimension (en général
non séparée) (2.2); Ces théorèmes sont démontrés en 2.3.

1. Propriétés des variétés a une dimension.

1.1. Définitions et exemples.

Définition 1: Une variété topologique à n dimensions Vn
est un espace topologique dont chaque point admet un voisinage
ouvert homéomorphe à Vespace numérique à n dimensions Rn.

On appelle carte de Rn dans Vn un homéomorphisme h de Rn

sur un ouvert U de Vn; l'ouvert U est le but de la carte h. Le
changement de cartes associé à deux cartes h{ et /q de Rn dans

Vn de buts respectifs Ui et U3 est l'homéomorphisme hf kL 3 de

l'ouvert hf (U^ D U,) de Rn sur l'ouvert h^ (U4 H U3). D'après la
définition précédente, il existe toujours un ensemble de cartes

2 Par exemple, un faisceau défini sur une variété séparée est muni d'une structure
de variété en général non séparée.

3 Si / est une application d'une partie A d'un ensemble E dans un ensemble E' et

/' une application d'une partie A' de E' dans un ensemble E", on désignera par f f
l'application #->/'[/ (x)] de la partie de E formée des points x tels que / (x) e A'.
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dont les buts recouvrent Vn; un tel ensemble sera appelé un
atlas de Rn sur Vn 4.

Les variétés topologiques séparées sont souvent munies de

structures supplémentaires: orientation, structure difïérentiable,
structure complexe... Ces notions (ainsi que celles, par exemple,
de vecteur tangent ou de tenseur) sont définies sans faire appel
à l'axiome de séparation; elles se transposent donc immédiatement

aux variétés non séparées.

Un procédé de construction général.

Définition 2: On dit qu'une application continue p d'un
espace topologique E dans un espace topologique E7 étale E dans

E7, si tout point x de E admet un voisinage ouvert U tel que la
restriction de p à U soit un homéomorphisme sur un ouvert de E7.

Proposition 1 : Soit Vn une variété à n dimensions et soit p

une relation dé équivalence ouverte dans Vn telle que la restriction
de p à un voisinage suffisamment petit de tout point x de Yn se

réduise à V identité. Uespace topologique quotient Vn/p de Vn
par la relation dé équivalence p est une variété à n dimensions et

Vapplication canonique p de Vn sur YJp étale Yn sur Y'n.

En effet, si U est un voisinage ouvert de x tel que la restriction

de p à U soit l'identité, la restriction de p à U est un
homéomorphisme de U sur un ouvert U7 de Y'a; chaque point de Vn
admet un voisinage homéomorphe à Rn, il en sera donc de
même pour chaque point de Y'n.

Remarquons que si Vn est une variété séparée, en général il
n'en sera pas de même pour V^, comme le montreront les exemples
qui suivent.

Le procédé de construction des variétés donné par la
proposition 1 est général dans le sens suivant: Etant donnée une
variété à n dimensions Vn, il existe une famille de cartes h{ de Rn
dans Vn dont les buts recouvrent Vn (i parcourant un ensemble
d'indices I); la variété Vn est donc isomorphe au quotient de

l'espace somme I X Rn par la relation d'équivalence associée à

l'application (i, x) -> h{ (x) de I x Rn sur Vn.

4 Nous utilisons ici la terminologie et les définitions de C. Eliresmann.
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Définition 3: Un point x d'une variété Vn est appelé un point
de branekement s'il existe un point z de Vn (z ^ x) qui n'est pas
séparé de x, c'est-à-dire que tout voisinage de x rencontre tout
voisinage de 2.

On remarquera que la relation « x n'est pas séparé de z » est

symétrique et réflexive, mais qu'elle n'est pas transitive en
général (cf. exemple 3 ci-dessous).

Exemples.

La proposition 1 permet la construction d'une multitude
d'exemples de variétés. Nous limitant maintenant aux variétés
à une dimension et satisfaisant au deuxième axiome de dénom-
brabilité, nous allons étudier quelques exemples importants.

Exemple 1. Soient Rx et R2 deux exemplaires de la droite
numérique réelle R et soit 2 la somme topologique de Rx et R2.

Considérons un ouvert £2 de R; la relation d'équivalence p dans
21 qui identifie les points de Rx et R2 de même abscisse t G £2

et qui se réduit à l'identité pour les autres points satisfait à la
condition de la proposition 1. En passant au quotient, on obtient
une variété à une dimension V. Les points de branchement sont
ceux dont l'abscisse est un point frontière de £2 5. Il est utile
d'indiquer quelques cas particuliers:

a) le branchement simple: ici £2 est l'ensemble t < 0. Les points
de branchement sont ceux d'abscisse 0;

b) le lasso : £2 est l'ensemble t > 0 et t < — 1. Les points de

branchement sont les points d'abscisse 0 et — 1.;

c) le lasso étranglé: £2 est l'ensemble t ^ 0. Les points de bran¬
chement ont l'abscisse 0;

d) £2 est le complémentaire de l'ensemble parfait de Cantor.
Ici l'ensemble des points de branchement a la puissance du
continu.

Exemple 2. La boucle: Soit p la relation d'équivalence
dans la droite numérique R qui identifie les points d'abscisse t
et — t pour

I t\ < 1 et qui se réduit à l'identité pour les autres

5 L'abscisse du point x de X/p est l'abscisse des points de X qui sont projetés sur x
par l'application canonique de X sur X/p.
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points. L'espace quotient est la boucle et les points de branchement

sont les points 1 et — 1.

Exemple 3. L'étoile: Soit S la somme topologique de n

exemplaires Rl5 R2, Rn de la droite numérique. Soit p la

relation d'équivalence dans S qui identifie chaque point d'abscisse

t > 0 de R| avec le point d'abscisse — t de Ri+1 (1 < i < n\
on posera Rn+1 Rj). L'espace quotient est une variété à une
dimension qui peut être appelée une étoile à n branches. Les

points de branchement sont ici les points d'abscisse 0; deux tels

points appartenant à Ri et R3 sont séparés si et seulement si

i — ^ 1. On pourrait considérer également une étoile avec

une infinité de branches.

Exemple 4. La plume: L'exemple la) montre comment il
est possible de « greffer » au point t 0 d'une droite R un
branchement simple ; on peut évidemment greffer un tel branchement
en un point quelconque de R. Si en tous les points de coordonnées

rationnelles de R, on greffe simultanément un branchement

simple — il est inutile de décrire ce procédé en détail —
on obtient une variété à une dimension qui mérite le nom de

plume; la droite R est la tige sur laquelle sont greffées les barbes.

Ici les points de branchement forment un ensemble partout dense
dans R.

En greffant une barbe en chaque point de R, on obtiendrait
une variété à une dimension qui n'est pas à base dénombrable.

Exemple 5. La plume composée: Si dans une plume, on
remplace chaque barbe par une nouvelle plume, on définit ainsi
une variété à une dimension, que nous appellerons plume double.
Dans une plume double on peut remplacer chaque barbe par une
plume simple, obtenant ainsi une plume triple; en réitérant ce

processus n fois (n entier) on obtient la plume n-uple. Rien
n'empêche d'effectuer une suite dénombrable de ces opérations
pour obtenir la variété à une dimension qui mérite le nom de
plume composée (ou plume complète). La plume composée
possède la propriété remarquable suivante: l'ensemble des points
de branchement, qui est dénombrable, est partout dense dans
l'espace envisagé.
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Ces divers exemples montrent la grande diversité des variétés
à une dimension, connexes et à base dénombrable. Une
classification topologique de ces espaces paraît déjà assez compliquée.

Donnons encore un exemple qui donnera une faible idée de

la complexité des variétés non séparées de dimension > 1.

Soient Ex et E2 deux exemplaires de l'espace numérique R2 à

deux dimensions rapporté à un système de coordonnées polaires
(r, co). Soit p la relation d'équivalence dans l'espace somme 2
de E2 et E2 qui identifie tout point de Ex de coordonnées (r, co),

r < 1, avec le point de E2 de coordonnées (r, oo/l — r) et qui
se réduit à l'identité pour les autres points. L'espace quotient
S/p est une variété à deux dimensions; l'image dans Z/p de tout
point de Ex de coordonnées (1, oo0) n'est séparée d'aucun point
de l'image dans 2/p du cercle r 1 de E2.

1.2. Variétés à une dimension simplement connexes.

Rappelons les définitions suivantes:

Définition 1: Le couple (V, p) formé d'un espace topologique

V et dune application continue p de V sur un espace
topologique V est appelé un revêtement de V, si tout point de V possède

un voisinage ouvert U tel que p~l (U) admette une partition en

so us-ensembles ouverts tels que la restriction de p à chacun
d'eux soit un homéomorphisme sur U.

Un espace topologique V sera dit simplement connexe, s'il est

connexe et si pour tout revêtement connexe (V, p) de V, la

projection p est un homéomorphisme de V sur V.

Définition 2: Une variété à n dimensions Vn est dite orientable,

s'il existe un atlas A de Rn sur Yn tel que tout changement de

cartes associé à deux cartes de A soit un homéomorphisme direct

(c'est-à-dire qui conserve l'orientation) dun ouvert de Rn sur un
ouvert de Rn.

Les variétés construites dans les exemples 2 et 3 (pour n
impair) ne sont pas orientables.

Si une variété V à une dimension peut être étalée dans la
droite numérique R, alors V est nécessairement orientable. Par



VARIÉTÉS (NON SÉPARÉES) A UNE DIMENSION 113

contre, une variété à une dimension orientable ne peut pas
toujours être étalée dans R: il suffit de considérer le cas du cercle.

Cependant, il est possible de démontrer la proposition suivante,
qui sera utile par la suite.

Proposition 1. Soit V une variété à une dimension simplement

connexe et à base dénombrable. Il existe alors une application
continue f qui étale V dans la droite numérique.

Nous utiliserons dans la démonstration le lemme suivant:

Lemme: Si une variété V à une dimension est simplement
connexe, le complémentaire dé un point quelconque x de V a deux

composantes connexes.
En effet, soit U un voisinage de x homéomorphe à un

intervalle; le complémentaire de x dans U a deux composantes
connexes U+ et U_. Considérons alors deux exemplaires V' et
V" du complémentaire de x dans V et soient U'+, Ul_ et U", U"
les correspondants de U+, U_ dans V' et V". Complétons
l'espace somme V' + V" par deux points x' et x" admettant
respectivement des voisinages U/ et U// tel que U' fl V' U+,
LT/ n V" U" et U// n v7 ul, U" n V" - u;7 ; on
obtient ainsi un espace V qui, muni de sa projection naturelle p
sur V (en particulier p (x') p (x") x), est un revêtement à
deux feuillets de V. Si le complémentaire de x dans V était
connexe, V serait aussi connexe, ce qui est impossible puisque V
est simplement connexe.

On peut montrer que réciproquement, si le complémentaire
de tout point de V n'est pas connexe, alors V est simplement
connexe.

Passons maintenant à la démonstration de la proposition.
11 est possible de trouver une famille dénombrable de cartes

\ (i — 2, de R dans V dont les buts 0^ recouvrent V.
Comme V est connexe, on peut supposer que la numérotation
des 0t est faite de telle façon que Qn Ui 12j n 0f soit
connexe, quel que soit l'entier n. Nous raisonnerons par récurrence.

Supposons définie sur ùn une application continue fn qui
étale Qn dans l'intervalle ] — n, + n[. Nous allons montrer que
fn peut être prolongée suivant une application fn+i qui étale
ün+1 dans l'intervalle ] — n — 1, n + 1 [.

L'Enseignement mathém., t. III, facs. %. 3
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Il résulte du lemme que Qn fl On+1 est connexe, car si ce

n'était pas le cas, on pourrait trouver un point x tel que le
complémentaire de x dans V soit connexe. Donc A~*+1 (ùn n on+1) I
est un intervalle ouvert de R et l'application fn hn+i est une fonction

continue, strictement monotone et inférieure en valeur
absolue à n; elle peut être prolongée en une fonction 9 continue
sur R, strictement monotone et inférieure en valeur absolue à

n + 1. L'application cp/L1 définie sur 0n+1 et l'application fn
coïncident sur Cln fl 0n+1 ; leur réunion définit le prolongement
cherché /n+1.

1.3. Variétés munies de structures différentiables.

Définition 1: Une structure difïérentiable de classe Cr,

r étant un entier positif ou 00 (respectivement une structure
analytique), sur une variété à n dimensions Vn est définie par
la donnée d'un atlas A de Rn sur Vn tel que, pour tout couple
de cartes hiy h3- G A, le changement de cartes ht soit un
homéomorphisme r fois continûment difïérentiable (respectivement

analytique) d'un ouvert de Rn dans Rn.

Une fonction r-différentiable sur Vn est une application / de

Vn dans la droite numérique R telle que, pour toute carte h{ G A,
l'application fh{ soit une fonction r fois continûment difïérentiable

sur Rn. Une fonction r-différentiable sur Vn est dite de

rang 1 au point x G Vn, si pour une carte h{ dont le but contient
x, l'application fh{ est une fonction dont au moins une dérivée

partielle au point /q1 (x) est différente de zéro; cette définition
est évidemment indépendante de la carte choisie G A.

On définirait de même la notion d'applications r différentiables

d'une variété Vn difïérentiable de classe Cr dans une
variété difïérentiable Vm de classe Cr.

Une carte / de Rn dans Vn sera dite compatible avec l'atlas A,
si pour tout AGA, les changements de cartes /-1 h et h~{ f sont
des homéomorphismes r-différentiables (ou analytiques)
d'ouverts de Rn dans Rn. L'ensemble de toutes les cartes compatibles

avec A forme l'atlas maximal A engendré par A. Deux sous-atlas

de A définissent sur Vn la même structure de variété r-différen-
tiable de classe Cr (ou analytique).
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Propriété 1: Le branchement simple (exemple 1 a)) [de

même que le lasso étranglé] est une variété à une dimension

susceptible de deux structures de variétés difïérentiables de

classe G00 non isomorphes.

Autrement dit, on peut munir le branchement simple de

deux structures difïérentiables de classe C00 telles qu'il n'existe

aucun homéomorphisme de classe C00 (ainsi que son inverse)
de V muni de la première structure sur V muni de la seconde.

En reprenant les notations de l'exemple 1, Rx et R2 (identifiés

à leurs images dans V) sont deux ouverts formant un
recouvrement de V, le point de Rx (respectivement R2) d'abscisse

t étant désigné par tx (respectivement t2). On peut définir
une structure' différentiable de classe C00 sur V en se donnant
deux cartes hx et h2 de R sur Rx et R2 telles que h~x h2 et hhx
soient des homéomorphismes co-difïérentiables de la demi-droite

Première structure: elle est définie par hx (t) tx et
h2 (t) t2.

Deuxième structure: elle est définie par hx(t) tx et

h (t) t\.

Pour la première structure, la fonction qui au point tx ou t2

prend la valeur t est une fonction co-différentiable sur V partout
de rang 1. Par contre, pour la deuxième structure, tout fonction
co-différentiable / sur V est de rang 0 au point t 0. En effet,
soient fx fhx et /2 /A2; de fx (t) /2 hx (t) résulte

priété 16. Remarquons que les deux structures définies ci-dessus
sont même analytiques.

Il est clair qu'on pourrait multiplier les exemples. On
comprendra facilement à partir de l'exemple précédent comment
construire une structure différentiable de classe C00 sur une
plume composée qui mette en évidence la propriété suivante:

6 Dans un article récent [4], Milnor a construit deux structures difïérentiables non
isomorphes sur la sphère S7. Le résultat de Milnor est global; il s'agit ici au contraire
d'une propriété locale, relative à un voisinage arbitraire d'un couple de points non
séparés.

]— », 0[.

Cette dernière circonstance établit la pro-
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Propriété 2: Il existe des variétés à une dimension (par
exemple: la plume composée) susceptibles d'une structure
difïérentiable de classe C00 telle que toutes les fonctions
continûment difîérentiables sur ces variétés se réduisent à des

constantes.

Les propriétés pathologiques mises en évidence ci-dessus
conduisent à une notion de structure difïérentiable plus stricte

pour laquelle les propriétés précédentes ne soient plus valables.

Définition 2: Une structure difïérentiable de classe Cr sur
une variété Vn est dite régulière si pour toute fonction r-difïéren-
tiable définie sur un voisinage de x G Vn, il existe une fonction
r-difïérentiable f définie sur Vn telle que / et /' coïncident sur
un voisinage de x.

Toute structure difïérentiable de classe Cr sur une variété
séparée Vn est régulière. La deuxième structure difïérentiable
définie sur le branchement simple n'est pas régulière.

Nous utiliserons dans la démonstration de la proposition 1

ci-dessous le

Lemme: Soit V une variété munie d'une structure difïérentiable

régulière de classe Cr. Si une fonction r-difïérentiable /
sur V est de rang 1 en un point x de V, elle est également de

rang 1 en tout point y non séparé de x.
Pour simplifier les notations, nous démontrerons ce lemme

dans le cas où V est une variété à une dimension. Soient h± et h2

deux cartes de R dans V telles que /q (0) x et h2 (0) y.
L'application h Ax est un homéomorphisme r-difïéren-
tiable, ainsi que son inverse, d'un ouvert Ux de R sur un ouvert
U2 de R, l'origine 0 appartenant à l'adhérence de Ux et U2; les

fonctions /x fhx et /2 fh2 sont r-difïérentiables dans R et la
dérivée f (0) de f1 à l'origine n'est pas nulle. Soit l3, £2, tn,

une suite de points de U3 tels que lim tn 0 ; en posant tn h (tn)f
n-> =o

on a aussi lim tn 0. Comme f (tn) f (tn) h' (tn) pour tout n,
n-> oo 12si la lim f (tn) f (0) était nulle, alors lim h' (tn) serait infinie;

n->°o 2 2 n~> oo

mais alors si g est une fonction r-difïérentiable sur V et de rang 1

en y (une telle fonction existe toujours en vertu de l'hypothèse
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de régularité), avec les notations correspondantes, lim gi (tn)

serait infinie, ce qui est impossible. Donc (0) 7^ 0.

La proposition 1 de 1.2 peut être précisée de la manière

suivante :

Proposition 1: Sur toute variété à une dimension V munie

d'une structure différentiable régulière de classe Cr, simplement

connexe et à base dénombrable, il existe une jonction r-différen-
tiable f partout de rang 1.

Autrement dit, la variété V peut être étalée dans R par une

application r-différentiable / partout de rang 1.

Nous supposerons connu le lemme suivant:

Lemme: Soit / (t) une fonction r-différentiable définie sur un
ouvert P de la droite numérique R et dont la dérivée est
différente de zéro en tout point d'un intervalle fermé I < P; la
restriction de / à I peut se prolonger suivant une fonction
r-différentiable sur R et de dérivée non nulle en tout point
de R.

Soit A l'atlas de R sur V qui définit la structure différentiable

de classe Cr sur V. La marche générale de la démonstration

est celle de la proposition 1 de 1.2. Reprenons les mêmes
notations en supposant cette fois que chaque 0i est l'image de

l'intervalle I: ]— 1, -f- 1[ par un homéomorphisme \ qui se

prolonge suivant un homéomorphisme ht G A de R dans V.
On suppose définie sur £ln une fonction r-différentiable fn
partout de rang 1 et telle que pour tout 0i; 1 < < la fonction
fn h{ qui est définie sur I se prolonge suivant une fonction
r-différentiable sur R partout de rang 1. On va montrer que jn
peut se prolonger suivant une fonction r-différentiable fn+i sur
£în+1 jouissant des mêmes propriétés.

Comme ûn D 0n+1 est connexe, fn hn+i est une fonction
r-différentiable sur un intervalle ] t0, t± [ contenu dans I et à
dérivée non nulle. Les ensembles k£+i (0t), 1 < i < n sont des
intervalles ouverts qui recouvrent ] £0, [ ; soit 0^ un ouvert tel
que kn+[ (0ft) soit un intervalle de la forme ] £0, t2 [, (t2 < t±). Par
l'hypothèse de récurrence, la fonction fnhk se prolonge sur R
suivant une fonction fk partout de rang 1. Soit t'Q le point de
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l'intervalle [— 1, + 1] défini par t{) — lim hkl hn+i (t) et soit
t-t0

x hk (L); le point x hn+i (t0) n'est pas séparé de x'. Il existe

une fonction r-difîérentiable g dans V qui coïncide avec fk h

sur un voisinage de x' ; comme g est de rang 1 en xf elle l'est

également en x (lemme 1). La fonction qui est égale à ghn+i sur
l'intervalle ] — go, t0] et à fnhn+{ sur ] tQ h[ est r-difîérentiable

sur ] — go, t1 [ car les deux fonctions ghn+i et fn hnA coïncident
dans un intervalle ] t0l t2 [. En répétant la même construction
pour Zj, on obtient une fonction définie sur R de rang 1 sur
l'intervalle [£0, et dont la restriction à ] t0, tx [ coïncide avec
fn hn+i ; d'après le lemme 2, il existe une fonction r-difîérentiable

fn+l qui prolonge fnhn+i et qui est partout de rang 1. La fonction

/n+1 cherchée est égale à fn sur £ln et à /n+1 h~Al sur 0n.

Corollaire: Toutes les structures dilîérentiables sur la
droite numérique R sont équivalentes.

Soit R la droite numérique munie de sa structure difïéren-
tiable ordinaire et Rr la droite numérique munie d'une structure
difïérentiable de classe Cr. D'après la proposition, il existe une
application r-difîérentiable partout de rang 1 de R' sur R (en
faisant au besoin une homothétie convenable). Comme cette
application est biunivoque, c'est un isomorphisme de classe Cr

de R' sur R (muni de sa structure difïérentiable ordinaire de

classe Cr).

2. Les structures feuilletées du plan.

2.1. Rappel de définitions et de propriétés classiques.

Définition 1: Une structure feuilletée (F) sur une variété
à deux dimensions V2 est définie par un atlas A& R2 sur V2 tel

que si hi et h?- sont deux cartes quelconques de A, le changement de

cartes h3i Iq1 h{ est un homéomorphisme d'un ouvert U3i de R2

sur un ouvert de R2 qui, au voisinage de tout point de U3i s'exprime

par des équations de la forme:

gji U, y) y' kji iy) R)
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Si les changements de cartes h3i sont r-différentiables (respectivement

analytiques), on dira que la structure feuilletée (F) est diffé-
rentiable de classe Cr (respectivement analytique) 7.

Disons qu'une carte / de R2 dans V2 est compatible avec A,
si pour toute carte A G A, le changement de carte f~{ h est aussi

de la forme (1) (et de plus est r-difîérentiable ou analytique dans
le cas où (F) est une structure difîérentiable de classe Cr ou

analytique). L'ensemble de toutes les cartes compatibles avec A
forme l'atlas maximal engendré par A et définissant sur V2 la
structure feuilletée (F). Nous supposerons dans ce qui suit que
A est déjà un atlas maximal.

Soit U un ouvert de V2. L'ensemble des cartes de A dont le

but est dans U forme un atlas de R2 sur U qui définit la structure
feuilletée (Fv) induite par (F) sur U.

Si (F) et (F') sont des structures feuilletées sur V2 et V,
respectivement, définies par les atlas maximaux A et A', un
isomorphisms de (F) sur (F') est un homéomorphisme ^ de V2

sur Vg tel que A' tyA (c'est-à-dire que toute carte de A' est
de la forme jh, où A G A).

Dans le but 0i de chaque carte h{ G A est définie une relation
d'équivalence pi dont les classes sont les images par Ai des droites
y Cte. Des relations (1) il résulte que pour tout point
x G 0,^ fl 0j, les relations d'équivalence induites par pi et p3- dans
un voisinage suffisamment petit de x coïncident. Soit p la relation

d'équivalence engendrée par les pt.

Définition 2: Les classes de p dans V2 sont appelées les

feuilles de la structure feuilletée (F).
L'espace des feuilles, c'est-à-dire l'espace quotient de V2 par

la relation d'équivalence p (muni de la topologie quotient de
celle de V2), jouera un rôle essentiel dans la suite.

On remarquera que la relation d'équivalence p est ouverte
puisqu'elle est engendrée par les relations p{ qui sont ouvertes.

Rappelons qu'à tout champ de vecteurs E défini sur une
variété V2 séparée vérifiant les deux conditions suivantes:
(i) E est difîérentiable de classe Cr (ou analytique), (ii) E (z) ^ 0

* Pour une définition générale des variétés feuilletées, voir [6].
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en tout point z de V2, est associée une structure feuilletée difîé-
rentiable de classe Cr (ou analytique). Les feuilles sont alors les

trajectoires du champ de vecteurs E. Réciproquement à toute
structure feuilletée difïérentiable (F) de la classe Cr dans R2,

on peut faire correspondre un champ de vecteurs E sur V2 dont
les trajectoires sont les feuilles de (F).

Exemple: Les courbes qui sont solutions de l'équation
différentielle (en coordonnées polaires r et co): dr/dcù r (1 —r2)
sont les feuilles d'une structure feuilletée analytique du plan
privé de l'origine. Le cercle r 1 est une feuille autour de laquelle
les autres feuilles s'enroulent asymptotiquement.

L'espace quotient de R2 — 0 par la relation d'équivalence p

associée à la structure feuilletée admet dans ce cas une partition
en un sous-espace ouvert homéomorphe à deux cercles et un
point admettant comme seul voisinage l'espace tout entier.

Définition 3: Le couple (0j, h{) formé d'une carte ht G A
et de son but 0^ s'appelle un ouvert distingué de la structure feuilletée

(F).
Enonçons les principaux résultats relatifs aux structures

feuilletées du plan. Le théorème 1 qui suit est classique; sa

démonstration repose sur le théorème de Jordan (dans une
version particulièrement facile à établir) ; elle utilise donc
essentiellement le fait que le plan R2 est simplement connexe
(ou plus précisément que son premier nombre de Betti modulo 2

est nul).

Théorème 1 (Poincaré [5], Bendixon [1]): Soit (0^, h{) un
ouvert distingué d'une structure feuilletée du plan; l'image par
Kde l'intersection de avec une feuille quelconque se réduit
à l'ensemble vide ou à une droite y Cte.

Théorème 2 (Kaplan [3]): A toute structure feuilletée du
plan R2 on peut associer une fonction numérique ^ définie dans
R2 qui vérifie les propriétés suivantes:

(i) ^ est continue et n'admet pas de maximum ou de minimum
(au sens large);

(ii) <]; est constante sur les feuilles de la structure feuilletée.
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Théorème 3 (Kamke [2]): Soit (F) une structure feuilletée
de classe Cr du plan R2. Soit £1 un ouvert borné du plan. Il
existe une fonction numérique définie dans Cl et qui vérifie
les propriétés suivantes:

(i) ^ est r-difïérentiable et le gradient de ^ est différent de 0

en tout point de Ü;

(ii) ^ est constante sur les feuilles de la structure feuilletée
induite par (F) sur Cl.

Théorème 4 (Wazewsky [7]): On peut munir le plan R2

d'une structure feuilletée de classe C00 telle que toute fonction
r-difîérentiable sur R2 et qui est constante sur les feuilles de la
structure feuilletée se réduise à une constante.

Nous ne reproduirons pas la démonstration du théorème 1,

mais nous montrerons dans 2.2 et 2.3 que les théorèmes 2, 3

et 4 sont des conséquences du théorème 1 et des propriétés des

variétés à une dimension établies dans la première partie.

Exemples de structures feuilletées du plan:
1. Les droites y — Gte sont évidemment les feuilles d'une

structure feuilletée du plan;
2. Soit C une courbe de Jordan dans le plan R2. La structure

feuilletée précédente induit sur l'ouvert limité par C et qui
est homéomorphe à R2 une structure feuilletée analytique;

3. Le complémentaire U dans R2 de l'ensemble des points de
coordonnées x — 0, y > 0 est homéomorphe à R2. Les
composantes connexes des lignes de niveau de la fonction
4» xy sont les feuilles d'une structure feuilletée analytique
de U.

2.2. L'espace des feuilles d'une structure feuilletée
du plan.

La proposition suivante est une conséquence essentielle du
théorème 1 de 2.1.

Proposition 1: Soit (F) une structure feuilletée du plan R2.
L espace quotient V de R2 par la relation d'équivalence p associée
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au feuilletage (cf. définition 2 de 2 A) est une variété à une dimension

à base dénombrable et simplement connexe. Si (F) est une
structure feuilletée différentiable de classe Cr (ou analytique),
Vespace des feuilles V est muni canoniquement d'une structure de

variété à une dimension différentielle de classe Cr (ou analytique).
Comme R2 est connexe et à base dénombrable, V est également

connexe et à base dénombrable. Pour montrer que V est
une variété à une dimension, il suffit de vérifier que tout point z

de V admet un voisinage ouvert homéomorphe à la droite numé-
tique. Soit n la projection canonique de R2 sur V; la feuille n~l (z)
rencontre au moins un ouvert distingué 0^. La relation
d'équivalence induite par p dans (f est, d'après le théorème 1, la relation

p^. Donc 7t (Off qui est un voisinage ouvert de z, puisque p

est une relation d'équivalence ouverte, est homéomorphe à
c'est-à-dire à la droite numérique.

En vertu du théorème de Jordan, le complémentaire de

toute feuille (qui est un sous-ensemble fermé de R2) a deux
composantes connexes; le complémentaire de tout point de V
a donc également deux composantes connexes. Cette propriété
est équivalente au fait que V est simplement connexe (cf. 1.2,
lemme).

Soit A un atlas définissant sur R2 la structure feuilletée
différentiable considérée et soit \ la restriction de la carte A
à la droite x 0. L'ensemble des cartes Tzh{ de R dans V est un
atlas qui définit sur V une structure différentiable.

Le lecteur pourra construire à titre d'exercice l'espace des

feuilles des structures feuilletées du plan définies dans les

exemples ci-dessus.

2.3. Application des résultats de 1. aux structures feuilletées
du plan.

Démonstration du théorème 2.

Le théorème 2 de 2:1 (Kaplan) est une conséquence immédiate

de la proposition 1 de 2.2 et de la proposition 1 de 1.2.
Soit / une application qui étale l'espace quotient R2/p dans R;
l'application cp /rc est une fonction numérique sur R2 qui
satisfait aux conditions du théorème 2.
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Démonstration du théorème 3.

Si le théorème est vrai pour les ouverts bornés et simplement
connexes de R2, il le sera également pour tout ouvert £1 borné;
il suffît de considérer l'ouvert C limité par un cercle qui
contient Q; si 9 est une fonction dans G qui satisfait aux conditions
du théorème, il en sera évidemment de même de sa restriction
à £L

Ainsi le théorème de Kamke est une conséquence de la
proposition 1 de 1.3 et de la proposition suivante:

Proposition: L'espace des feuilles V' O/p' de la structure

feuilletée (F') induite par (F) sur Q est munie d'une structure

de variété difïérentiable régulière de classe Cr.

Soient m et respectivement les projections canoniques de

R2 sur R2/p V et Q/p' V'. L'injection canonique Û R2

définit par passage aux quotients une application continue 9
de V dans V. Comme tout ouvert distingué de £1 est un ouvert
distingué de R2, l'application ^ étale V' dans V; elle est r-difïé-
rentiable et partout de rang 1.

Soit x' un point de V' et soit x le point 9 (x'), Comme O est
relativement compact, l'intersection de la feuille F *= iz~l (x)

avec l'adhérence Q de Q est compacte. On peut alors trouver
un ouvert distingué W dans R2 suffisamment étroit et allongé

pour contenir F H Q et tel que WHO soit saturé par des

feuilles de Q. Il est appliqué par ~ sur un ouvert U homéomorphe
à un intervalle et contenant x. Soit /' une fonction r-difïéren-
tiable définie sur un voisinage U' homéomorphe à un intervalle
de x' dans V' suffisamment petit pour que vj; (U') C U. L'application

/ obtenue en composant l'inverse de la restriction de ^
à U' avec l'application f est une fonction r-difïérentiable définie
sur un voisinage de x. Comme U est homéomorphe à un intervalle,

il est possible de construire une fonction r-difïérentiable g

sur U qui coïncide avec / sur un voisinage de x et qui s'annule

en dehors d'un compact K contenu dans U. Comme
tT1 (K) n W fl Ü est un fermé dans Q et qu'il est saturé par
des feuilles de £î, la fonction égale à g- sur W H Q et à zéro
aux autres points de û est r-difïérentiable et définit par passage
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aux quotients une fonction r-difïérentiable g' sur V' qui coïncide
avec /' au voisinage de x'.

Démonstration du théorème 4.

Il est en général nécessaire de supposer que Q est borné pour
que le théorème de Kamke soit vrai, comme le montre l'exemple
suivant.

Soient 01 et 02 deux exemplaires du plan R2; dans l'espace
somme 0X + 02 considérons la relation d'équivalence qui identifie

les points (xXl yx) et (x2, y2) tels que x2 x1 + l/yx, y2 y\
pour tout yx < 0 et qui se réduit à l'identité pour les points
tels que yx > 0 ou y2 > 0. L'espace quotient E est homéomorphe
au plan R2; les deux cartes (t, et 02 forment un atlas qui définit
sur E une structure feuilletée analytique dont l'espace des

feuilles est le branchement simple muni de la deuxième structure
difîérentiable définie dans 1.3, propriété 1.

Cet exemple permet de bien comprendre la construction de

l'exemple de Wazewsky. En particulier, il est facile d'imaginer
une structure feuilletée de classe C00 dont l'espace des feuilles
soit une plume composée V (cf. 1.1, ex. 5) munie d'une structure
difîérentiable de classe C00 telle que toute fonction difîérentiable

sur V se réduise à une constante.

Classification des structures feuilletées du plan.

Le problème de la classification des structures feuilletées du

plan a été résolu complètement par Kaplan [3]. Nous allons

indiquer brièvement et sans démonstration comment nos
méthodes permettent également de résoudre ce problème.

La seule considération de l'espace quotient V associé au
feuilletage ne suffit pas à le caractériser. Pour cela, il faut
introduire une relation d'ordre parmi les points de branchement.
Soit V une variété à une dimension simplement connexe et
orientée, et soit A un atlas de R sur V définissant une orientation
de V. Soient xx et x2 deux points de V qui ne sont pas séparés.
Nous dirons que xx et x2 ne sont pas séparés à droite (respectivement

à gauche) et nous écrirons xx ~ x2 mod. X+ (respectivement

X") si, étant données deux cartes hx et h2 de A telles
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que h2 (0) xx et h2 (0) x2, h~£ hx est défini pour des points
d'abscisse > 0 (respectivement < 0). Ces deux relations sont
des relations d'équivalence. Chaque classe contient un nombre
fini ou dénombrable de points.

Appelons structure feuilletée orientée du plan R2 une structure
feuilletée du plan orienté R2 avec une orientation cohérente des

feuilles et disons que deux structures feuilletées orientées du
plan sont équivalentes s'il existe un homéomorphisme de R2 sur
R2 qui transporte la première structure munie de son orientation
sur la seconde structure munie de son orientation. (Remarquons
que toute structure feuilletée du plan peut être orientée.)

On montre alors que l'espace des feuilles V de toute structure
orientée du plan est une variété à une dimension orientée pour
laquelle un ordre est déterminé canoniquement dans chaque
classe d'équivalence modulo A+ ou A". On dira que la variété
orientée V est munie d'une structure d'ordre.

Deux structures feuilletées orientées du plan sont équivalentes

si et seulement s'il existe un homéomorphisme de l'espace
des feuilles de la première structure sur l'espace des feuilles
de la deuxième structure qui conserve la structure d'ordre.

Enfin, à toute variété à une dimension à base dénombrable,
simplement connexe, orientée et munie d'une structure d'ordre,
correspond une structure feuilletée du plan.

Reçu le 6 décembre 1956.
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