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SUR UN EXEMPLE DE FONCTION CONTINUE
SANS DERIVEE

PAR

G. ne Ruawm, Lausanne

Soit [y] le plus grand entier ne dépassant pas y et ¢ (z) =
ix — [x + %” la différence prise en valeur absolue entre x et

Pentier le plus voisin de x. La fonction

f(a) = D)2 o (2% )
=l

est continue et n’admet de dérivée pour aucune valeur de X.

La continuité résulte immédiatement de ce que f (x) est la
somme d’une série uniformément convergente de fonctions
continues. L’inexistence de la dérivée peut aussi s’établir tres
simplement. Pour cela, partons de la remarque que si f (z) était
dérivable pour z = z,, sa pente moyenne

flzs) — f (2,)

Ly 1

dans un int2rvalle (z;, z,) contenant z, tendrait vers une limite,
égale précisément a f’ (x,), lorsque la longueur de cet intervalle
tend vers zéro. En particulier, la pente moyenne r, de f (z) dans
I'intervalle i, = (272" z,], 27" [2" 2,] + 27) devrait tendre vers
une limite pour n -~ w. Or cela est impossible. En effet, la
fonction 27 ¢ (2* z) étant linéaire dans i,., avec une pente égale
a = 1 et sannulant aux extrémités de i, pour n < k, sa pente
moyenne dans ¢, est nulle pour n < k£ et a toujours la méme
valeur + 1 pour n > k; par suite, la différence de ses pentes
moyennes dans i, et dans i, est nulle pour £ 4 n et vaut + 1
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pour k£ = n; cela entraine immédiatement ., —r, = £+ 1, ce
qui montre que r, ne peut tendre vers une limite. C.Q.F.D.

Le méme raisonnement montre que, si a est un entier positif
pair,

fla) = a* g (dh2)

k=0

est une fonction continue sans dérivée. Pour a = 10, c’est
I’exemple introduit par M. B. L. vaAN pER WAERDEN [Math.
Zeitschr., 32 (1930), 474-475], qui prouve sa non dérivabilité
par un raisonnement également trés simple, dit & M. HEvTting,
mais qul ne convient pas pour a = 2.

Cette fonction satisfait a ’équation fonctionnelle

fla) —alflaz) = ¢ (2)

dont elle est 'unique solution bornée. Il est intéressant de
considérer plus généralement 1’équation

F (o) —bF (az) = g (a) ,

ou g (x) est une fonction donnée, a et b des constantes. Pour
0 < b <1, elle a une solution bornée, et une seule, qu’on
obtient par la méthode d’itération,

Cette fonction est évidemment continue si g (z) est continue.
Pour g () = cos z, a entier impair et ab > 1 + 19’21", on sait
qu’elle n’a pas de dérivée: c’est I'exemple de WEIERSTRASS

(voir par exemple Goursat, Cours d’analyse mathématique, I,
73-75); mais la démonstration n’est pas aussi simple que pour

f ().

Recu le 23 novembre 1956.
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