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ok H. HADWIGER ET H. DEBRUNNER

H. G. EccLEsTon [10]; elle n’a pas encore été démontrée pour
k> 3.

Le théoréme ci-dessus de K. Borsuk, non compris la préci-
sion de D. GALE, est aussi une conséquence, dans le cas d’un
ensemble d’'un nombre fini de points du plan, du théoréme
suivant sur le nombre de couples de points dont la distance est,
égale au diametre de I’ensemble.

36. Dans un ensemble, d’'un nombre fini n de points, dont le
diameétre est égal a 1, il y a au plus n couples distincts de
points dont la distance est égale a 1.

On en trouve une bréve démonstration dans P. Erpos [13]
— Cf. aussi H. Hopr et E. PanNwiTz [23].

Les relations étroites entre tous ces groupes de théorémes
sont mises en évidence par la conséquence suivante du théoréme

34 énoncée sous une forme analogue & celle du théoréeme de
Helly.

37. Pour que, dans un ensemble de cercles de rayon égal a 1, on
puisse construire un triangle équilatéral de coté égal a 1,
dont chaque cercle de l'ensemble contienne au moins l'un des
sommets, il suffit que chaque couple de cercles de I’ensemble
ait au moins un point commun.

On trouve dans L. FEsEs-TOTH [14] — page 97 — des énoncés
analogues qui ne sont encore que partiellement démontrés.

2me PARTIE

Nous donnons ci-dessous de courtes démonstrations des
théorémes qui précédent, d’apres les sources indiquées. Nous nous
bornons souvent a la suite des idées. Les raisonnements ne
supposent que des propositions préalables élémentaires notam-
ment des considérations simples sur les ensembles de points.

1. On raisonne par I'absurde: on considere des points P,
vérifiant les conditions de ’hypothése et non alignés. On peut,
en effectuant éventuellement une transformation projective

supposer 'un d’eux P; a I'infini. Les droites joignant tous les
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couples de points sont, d’une part des paralléles (au moins 2)
de direction P;, d’autre part des transversales (au moins une).
Si ces transversales étaient en nombre fini, il en existerait au
moins une G formant avec les paralleles un angle minimum
(au plus égal & tous les autres). Elle contiendrait au moins trois
points différents, soit P;, P, et P, entre P; et P,. La droite de
direction P, passant par P; contiendrait au moins un point P,
de I’ensemble (différent de P; et a distance finie). L'une des
droites P, P, ou P, P, formerait avec les paralléles un angle
aigu inférieur (strictement) & celui de G, ce qui est absurde
(contraire & la construction de G ou au nombre fini de trans-
versales) 1.

2. Clest le transformé de 1 par dualité.

3. (est une conséquence de 1. Il suffit de transformer la
figure par une inversion dont le p6le est un point de I’ensemble.
Les circonférences passant par le pdle deviennent des droites
vérifiant les conditions de 1, donc réduites a une seule. (On
continue ensuite de proche en proche.)

4. Le plus petit cercle de recouvrement (c¢’est-a-dire le plus
petit cercle contenant tous les points de ’ensemble) contient sur
son périmeétre des points de l’ensemble, délimitant des arcs
tous inférieurs ou égaux a des demi-circonférences. 11 ne peut
exister de point Q (strictement) intérieur au cercle car la symétrie
relativement a la médiatrice du segment jolgnant Q & 'un des
points précédents donnerait des points extérieurs (strictement)
au cercle.

Si le nombre des points de ’ensemble est fini (supérieur a 2),
on considere deux axes de symétrie dont I'angle ¢ est minimum.
Le produit des symétries autour des axes est une rotation
d’angle 2 ¢ autour du centre du cercle, qui laisse I’ensemble
invariant. Cet ensemble est donc un polygone régulier d’angle
au centre ¢ égal a 2 «/n.

5. S'il existait des polygones réguliers de n sommets inscrits
dans un réseau, 1l en existerait un de c6té minimum, puisque la

1 Cette légére modification de la démonstration met en évidence la nécessité de
I’hypothése du nombre fini d’éléments de I’ensemble de points. (Note des traducteurs.)




o6 H. HADWIGER ET H. DEBRUNNER

longueur d’un c6té est égale & une expression 4/p% + ¢2 (p et ¢
entiers). Supposons construit un tel polygone P; P, ... P, et a
partir de chaque sommet, portons un vecteur défini par les
équipollences:

P1PI:P2P37 P2P;:P3P4a e g PnPT/L:PIPZ

Les extrémités de ces vecteurs seraient encore des points du
réseau et pour n = 5 et n > 7, ils formeraient un polygone
regulier de n sommets plus petit que le précédent qui ne pourrait
donc étre minimum. Pour établir I'impossibilité d’inscrire un
triangle régulier de coté s, 1l suffit de remarquer que son aire est,
égale & s2 (4/3/4). Elle serait donc irrationnelle puisque s? serait
rationnelle. Or le calcul de cette aire en fonction des coordonnées
des sommets, par exemple au moyen d’un déterminant, donnerait
un nombre rationnel. Il y a donc absurdité. On démontre de
méme l'impossibilité d’inscrire un hexagone régulier de coOté s
dont 1aire est s2 (34/3/2).

6. Pour un losange inscrit dans le réseau, d’angle aigu «
et de coté s, la surface qui est égale a s2 sin o peut étre exprimée
en fonction des coordonnées des sommets, ce qui donne un
nombre entier. La valeur de sin o est donc rationnelle. D’apres
la propriété 8, pour « commensurable avec w ceci n’est possible
que pour « égal & =/6 ou & w/2. Le premier cas est a rejeter:
par une rotation de =/2 autour d’un sommet du losange, point
du réseau, on transformerait les autres sommets en de nouveaux
points du réseau. Il apparaitrait alors un triangle équilatéral
inscrit, ce qui est contraire a la propriété 5.

7. Conséquence immédiate de 8.

8. La démonstration du théoréeme 5 pour les polygones
réguliers dont le nombre des sommets est n =5 ou n > 7,
reste valable pour un réseau rectangulaire (points de coordonnées
Az et By ot A et B sont-des nombres fixes et x et y des entiers
quelconques.) Le théoréeme 8 résultera de I’énoncé suivant qui
est plus général: « Les seuls polygones réguliers qui peuvent étre
inserits dans un réseau rectangulaire sont les triangles, les carrés
et les hexagones.»
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Considérons, en effet, un angle « = 2= (m/n) défini par une
fraction m/n irréductible. Les formules de trigonométrie per-
mettent de calculer en fonction rationnelle (& coefficients ration-
nels) de cos o les nombres a, et b, tels que cos va = a,;
sin ¢ = b, sin « (¢v = 1, 2, ..., n). Ces nombres sont donc ration-
nels si cos o I'est. En désignant par N le dénominateur commun
des 2n quantités a, et b, on construit un réseau rectangulaire
avec les points de coordonnées (1/N)x et (sin «/N)y; z et y
entiers. Sur une circonférence de rayon 1 ayant pour centre un
point du réseau, tous les points d’angle polaire v sont des points
du réseau. Puisque « = 27 (m/n) ces points forment un polygone
régulier de n sommets. Ceci n’est possible, d’aprés I’extension du
théoréeme 5 aux réseaux rectangulaires, que pour »n égal a 1 ou
a2ouadouasouaib Comme o est aigu, il en résulte que
o = /3.

9. On démontre le théoréeme par ’absurde: en considérant
trois points non alignés A, B, C dont les distances mutuelles
sont des nombres entiers et en désignant par % la plus grande
des distances d (A, B) et d (B, C). Les distances d’un point P
aux points A, B, C vérifient les relations:

Si ces distances sont des nombres entiers, les différences des
premiers membres ne peuvent prendre au plus que les valeurs
0,1,2, ...,k Un point P est donc situé sur une des k + 1 hyper-
boles de foyers A et B et sur une des k -+ 1 hyperboles des
foyers B et C. Il n’y a donc qu'un nombre fini, au plus égal a
4(k 4 1)%, de points P possibles.

10. La condition est évidemment suffisante. Elle est mani-
festement nécessaire pour un ensemble d’un nombre fini de points
dont I’enveloppe convexe est alors un polygone convexe (inté-
rieur et périmétre compris) dont les sommets appartiennent &
Pensemble. Il suffit de décomposer ce polygone en triangles en
joignant un de ses sommets & chacun des autres. Un point
appartenant au polygone appartient & au moins un de ces
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triangles (éventuellement a deux). Reste & considérer un ensemble
M d’un nombre infini de points. On forme la réunion N de toutes
les enveloppes convexes des combinaisons d’un nombre fini de
points de M. Cette réunion contient ’enveloppe M de M car elle
contient tous les points de M et tous les points de chaque segment
joignant deux points de M. Or M est le plus petit ensemble qui
possede ces deux propriétés. Donc tout point contenu dans M
I'est dans N et par suite dans au moins une enveloppe triangu-
laire de trois points de M.

11. La condition est encore évidemment suffisante. Si un
point P est intérieur ! a ’enveloppe convexe M d’un ensemble
de points (non alignés) M, il est intérieur & un triangle (non
aplati) dont les sommets appartiennent & M. D’apres la propriété
10 chacun de ces sommets appartient & I’enveloppe convexe
d’un sous-ensemble de trois points de M; de sorte que le triangle
appartient a I’enveloppe convexe (polygone) d’'un nombre fini
de points de M, qu’on peut décomposer en triangles en joignant
un de ses sommets a chacun des autres. L.e point P est intérieur
soit & 'un de ces triangles, soit a la réunion de deux triangles
adjacents (s’il est sur leur coté commun); il est donc intérieur
a 'enveloppe convexe d’au plus quatre points de M.

12. La condition est évidemment nécessaire. On démontre
qu’elle est suffisante par’absurde, en considérant deux ensembles,
fermés et bornés, M et N non séparables et en construisant
deux sous-ensembles respectifs M’ et N’ également non sépa-
rables, dont la réunion comprend au plus quatre points. Si M et
N ne sont pas séparables, leurs enveloppes convexes M et N ont
au moins un point commun P 2. D’aprés la propriété 10 on
peut associer a ce point P des sous-ensembles M"* et N” (de M et
de N) de chacun trois points, dont les enveloppes convexes
M et N’ contiennent P. Alors: ou ’une ou I’autre de ces enve-

-

1 On remarquera la distinction entre un point qui appartient & un ensemble et un
point qui est intérieur & un ensemble convexe. Dans le second cas le point est intérieur
(appartient, périmeétre exclu) & un triangle (non aplati) dont tous les points (périmetre
inclus) appartlennent a 1’ensemble convexe (Note des traducteurs).

2 Si les ovales M et N n’ont pas de point commun, la distance de M et N est réalisée

par deux points distincts de M et N. La médiatrice (Mittelsenkrechte) de ces points
sépare M et N.
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loppes est incluse dans Dlautre, par exemple M” C N'’; ou
certains des cOtés de M’’ et N’ sont des segments sécants. Dans
le premier cas on peut constituer M’ avec I'un des points de M”’
et prendre N’ = N’’. Dans le second cas, on peut prendre pour
M’ et N’ les extrémités de chacun de deux cotés sécants. Il est
visible que, dans les deux cas, M' et N’ ne sont pas séparables;
leurs enveloppes convexes ont d’ailleurs des points communs.

13. Il suffit de considérer dans l’ensemble M un sous-
ensemble de quatre points. Si leur enveloppe convexe n’est pas
un quadrilatere (non dégénéré) I'un des points N est contenu
dans l'enveloppe convexe des trois autres, et, a fortiori, dans
Ienveloppe convexe de M — N. Les deux ensembles N et
M — N sont sans points communs (disjoints ou formant partition
de M) et ils ne sont pas séparables. Si, au contraire, 'enveloppe
convexe des quatre points est un quadrilatére (convexe) on peut
prendre pour N deux sommets opposés; N et M — N sont
encore deux sous-ensembles sans point commun et non sépa-
rables.

14. Pour un systéeme d’ovales en nombre fini, le théoréme
de Helly se déduit par récurrence sur n du lemme suivant:

Pour que k ovales (£ > 4) aient un point commun, il
suffit qu’il en soit ainsi pour chacune des combinaisons de
k— 1 de ces ovales.

Appelons P; un point contenu dans les ovales Cy, C,, ..., C,
sauf, peut-étre dans C;. D’aprés la propriété 13 les k& points
P, (z = 1, ..., k) peuvent étre répartis en deux ensembles
M" = (Pyy, .o, Pip) et M” = (Pyq, ... P;,) sans point commun et
dont les enveloppes convexes M’ et M” ont un point commun P,.
Mais alors tout point de M’ appartient aux ovales sauf peut-étre
a Gy, ..oy Gy, et tout point de M” appartient aux ovales sauf
peut-étre a Gy, ..., G;,. Le point Py qui appartient & M’ et a M”
appartient donc a tous les ovales, sans exception.

Pour un ensemble d’ovales en nombre infini, on raisonne par
'absurde. S’ils n’avaient pas de point commun, a tout point P
d’un ovale C;, on pourrait faire correspondre au moins un ovale
C; ne contenant pas P ni méme aucun point dun cercle de
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centre P et de rayon convenable. Mais d’aprés le théoreme de
Heine-Borel, on pourrait, dans tous ces cercles, en choisir un
nombre fini qui recouvriraient I’ovale C;. A ces cercles corres-
pondraient des ovales C;, en nombre fini, formant avec C; un
ensemble d’ovales, en nombre fini, vérifiant les conditions suffi-
santes énoncées, et cependant sans point commun.

15. Le théoréme 14 étant acquis, il suffit d’établir que trois
rectangles, a cOtés paralléles, R;, R,, R; ont nécessairement un
point commun lorsqu’il en est ainsi pour chacun de leurs trois
couples. On prend des axes paralléles aux cdtés des rectangles
et on appelle z;, , (1 = 1 ou 2 ou 3) les coordonnées d’un point
P, commun aux deux rectangles d’indices différents de i. Les
points P; et P, ainsi que le segment qui les joint et le rec-
tangle de cotés paralleles aux axes qui a ce segment pour
diagonale sont contenus dans le rectangle R, (£ différent de i
et 7). Donc tout point P de coordonnées z et y appartient a
R, lorsque x est compris entre x; et x; et y compris entre y; et y,.
On peut choisir les indices de telle sorte que: z; < x; < 73 et
Y < Y; <Yy (1], k différents). Alors le point P de coordonnées
T, et y; vérifie les conditions précédentes pour qu’il appartienne
a chacun des rectangles, donc aux trois.

16. Ce théoréeme est un cas particulier du précédent en
considérant des rectangles aplatis sur une méme droite.

17. (C’est une conséquence de la propriété 14. Il suffit de
considérer les segments circulaires (inférieurs & un demi-cercle)
qui ont pour bases les arcs de I'ensemble. Ce sont des ovales
qui ont un point commun s’il en est ainsi pour chaque combinai-
son de trois d’entre eux. L’existence d’'un point commun est
équivalente a la méme propriété pour leurs arcs.

18. C(C’est une conséquence de la propriété 16. Si des arcs
inférieurs au tiers de la circonférence ont au moins un point
commun avec 'un d’eux, C;, aucun ne contient le point I
diamétralement opposé au milieu de C;. En coupant la circon-
férence en I et en la développant sur une droite, on est ramené
a Pexistence de points communs a des segments de cette droite.
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19. On considére une droite orientée G («) passant par le
centre de la circonférence et d’angle « avec une direction fixe. En
projetant orthogonalement sur G («) les arcs considérés, on
obtient des segments (dont certaines parties peuvent étre obte-
nues deux fois) dont chaque couple a (au moins) un point
commun. D’aprés la propriété 16, ils ont une intersection D (o),
peut-étre réduite & un point, mais qui n’est pas vide. Lorsqu’on
passe de D («) & D (« 4 m), les abscisses (relativement au centre
du cercle) des points de cette intersection prennent des valeurs
opposées. Comme ces abscisses varient de facon continue en
fonction de «, il existe une valeur «, pour laquelle une de ces
abscisses est nulle; c’est-a-dire que le centre est alors commun
& tous les segments et la droite projetante G (xy, + 7/2) est un
diameétre qui rencontre tous les arcs.

Les énoncés 20 a 28 se déduisent par des transformations
géométriques convenables des théoréemes 14, 16, 17, 19.

20-21-22. La position d’'un ovale A qui se déplace par
translation est caractérisée par celle d’un point P invariablement
lié & A. On démontre aisément que le point P décrit un ovale
B; ou B; ou Bj lorsque A se déplace par translation de toutes les
facons possibles en restant contenu dans un ovale B, ou en
rencontrant B, ou en contenant B. Cette association des ovales
B* au déplacement de A, raméne les énoncés 20 ou 21 ou 22
au théoreme 14. ‘

23. En projetant par rapport a un point O arbitraire les
ovales d'un ensemble, vérifiant la condition suffisante énoncée, sur
une circonférence de centre O, on obtient un ensemble d’arcs véri-
fiant la condition suffisante du théoreme 19. Il existe un diameétre
qul les coupe tous et la droite qui le porte coupe tous les ovales.

24. Une projection orthogonale sur une droite quelconque
des ovales d'un ensemble, vérifiant la condition suffisante énoncée,
les transforme en segments vérifiant la condition suffisante du
théoreme 16. II existe un point commun a tous ces segments et
la droite projetant ce point coupe tous les ovales.

25. Lorsque, parmi les rectangles, il en existe deux qui ne
sont traversés que par une seule droite « montante», cette
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sécante unique rencontre, en raison de ’hypothese, tout autre
rectangle et c¢’est une sécante commune.

Si cette condition particuliére n’est pas réalisée, on peut
d’abord établir la propriété pour un ensemble d’un nombre fini
de rectangles. On mene deux paralleles orientées, distinctes, &
I'une des directions des cotés. On repére une droite montante
par les abscisses de ses points d’intersection avec ces paralleles
et on lui fait correspondre biunivoquement le point qui, dans
un plan auxiliaire, a ces abscisses pour coordonnées cartésiennes.
A Tensemble des droites montantes qui traversent un rectangles
correspond ainsi, dans le plan auxiliaire, un ensemble de
points qui est manifestement convexe, fermé mais non borné.
Chaque combinaison de trois de ces domaines a au moins un
point commun a distance finie (correspondant a la sécante
commune aux trois rectangles correspondants). Pour un ensemble
d’un nombre fini de rectangles on peut tracer, dans le plan
auxiliaire, un cercle contenant tous les points communs aux
combinaisons de trois des domaines. Ses intersections avec les
domaines sont des ovales qui vérifient la condition suffisante du
théoréeme 14. Ils ont donc un point commun auquel correspond
une sécante commune a tous les rectangles.

Dans le cas d’un ensemble de rectangles en nombre infini,
on pourrait utiliser une variante plus précise du théoréeme 14.
On remarque seulement qu’en conséquence de ce qui vient
d’étre démontré, chaque combinaison de quatre rectangles de
I’ensemble a au moins une sécante commune.

A toute droite montante on fait correspondre sur une circon-
férence auxiliaire le point dont I’angle polaire ¢ est égal a ’angle
de la droite avec les paralléles orientées considérées. A tout
couple de rectangles correspond ’ensemble des droites montantes
qui les rencontrent, et, par suite, un arc de la circonférence
inférieur au tiers de celle-ci. Dans I'ensemble de ces arcs, tout
couple a au moins un point commun, puisqu’il correspond a une
combinaison de quatre  rectangles. C’est la condition suffisante
du théoréme 18; les arcs ont donc un point commun auquel
correspond une direction telle que chaque couple de rectangles
ait une sécante commune parallele a cette direction.

I1 suffit alors de projeter parallelement a cette direction les
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rectangles de I’ensemble sur une transversale. On obtient des
segments pour lesquels chaque couple de segments & un point
commun au moins. C’est la condition suffisante du théoréme 16;
il y a donc un point commun & tous ces segments et sa projetante
est une sécante commune a tous les rectangles.

26. Sur une circonférence ou a été fixé un point P, on fait
correspondre biunivoquement a chaque direction de droite dans
le plan, le deuxiéme point d’intersection avec la circonférence de
la parallele menée par P a cette direction. A I’ensemble des
sécantes communes & deux ovales correspond ainsi un arc de la
circonférence. Aux couples d’un ensemble d’ovales vérifiant la
condition du théoréme, correspond un ensemble d’arcs tel que
tout couple d’entre eux ait au moins un point commun; ce qul
est la condition suffisante du théoreme 19. Il existe donc un
diametre qui coupe tous les arcs et a ses extrémités correspondent
deux directions orthogonales telles, que pour chaque couple
d’ovales, 1l existe au moins une sécante commune paralléle a
une de ces deux directions. Les ovales étant homothétiques entre
eux, on mene a I'un d’eux les deux couples de tangentes (ou de
droites d’appui) respectivement paralleles aux directions déter-
minées. Tout autre ovale de I’ensemble, au moins égal (dans un
rapport d’homothétie au moins égal a 1), est nécessairement
traversé par une de ces quatre droites.

La propriété est alors démontrée lorsqu’il existe dans l’en-
semble un ovale minimum. Sinon on peut la démontrer par
quelques considérations supplémentaires sur les conditions de
convergence des ovales, en grandeur et en position.

27. On considere d’abord toutes les droites qui traversent
deux ovales A et B de 'ensemble. Les angles qu’elles font avec
la direction de séparation ont respectivement des déterminations
¢ qui sont toutes les valeurs comprises, au sens large, entre deux
d’entre elles: oy < o < oyet 0 < oy < oy < = puisqu’elles ne
comprennent ni 0 ni =. Cet ensemble, assimilable & un segment
de droite, intérieur & un segment de longueur =, sera désigné
par (AB).

Supposons, au moins provisoirement, que chaque couple des
segments (AB) a au moins un point (ou une valeur) commun.
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(C’est la condition suffisante du théoréme 16 et il y a une valeur
@, (Intérieure a 'intervalle 0, ) commune a tous les segments ou
intervalles (AB). C’est dire que pour chaque couple d’ovales il y
a une sécante commune de direction gq,.

Projetons les ovales de ’ensemble parallelement a la direction
¢, sur une droite de séparation. Les ovales se projettent suivant
des segments et chaque couple de ces segments a un point
commun.

En appliquant & nouveau le théoréme 16, on en déduit que
tous ces segments ont un point commun P, et la projetante (de
direction ¢,) menée par P, rencontre tous les ovales de I’ensemb]e.

Reste & prouver la supposition précédente, c’est-a-dire que,
dans un ensemble d’ovales vérifiant les conditions de 1’énoncé,
il existe une valeur commune a tout couple d’'intervalles (A; A,)
et (B; B,) défini par deux couples d’ovales A; et A, B; et B,.
(C’était la condition de P. VINCENSINI: existence d’une sécante
commune a quatre ovales). Cette existence résulte des hypothéses
lorsque les deux couples d’ovales ont un ovale commun, par
exemple, A et B, B et C; puisqu’il existe une sécante commune
aux trois ovales A, B et C.

Pour deux couples formés de quatre ovales distincts, on
raisonne par l’absurde. Si les deux segments (A; A,) et (B B,)
intérieurs au segment 0, = étalent sans point commun, 1l exis-
terait un segment intermédiaire entre eux. Si ¢’ est une valeur
intérieure & ce segment, il existe au moins une droite de direc-
tion ¢’ séparant A; de A, et une autre séparant B; de B,. Ces
deux droites paralléles séparent de plus un autre des couples
constitués avec A, A,, B, By, soit A; B,. Le segment (A; B,)
a des points communs avec le segment (A; A,) puisque les couples
A, B, et A;, A, ont un ovale commun. II en a aussi avec le
segment (B; B,). Il devrait donc contenir tout le segment inter-
médiaire précédent et, en particulier la valeur ¢’. Il y aurait
donc une sécante commune au moins a A; et B, de direction ¢’
ce qui est contraire & Fhypothese puisque la direction ¢’ sépare
A, et B,.

28. On peut appliquer la transformation utilisée dans la
démonstration du théoréme 26. On est ramené a comparer des
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arcs inférieurs & un tiers de circonférence, ayant deux & deux
des points communs. D’aprés la remarque faite dans la démons-
tration du théoréme 18, ils laissent & découvert un point de la

- circonférence.
29. (C’est un cas particulier de 21.

30. En remplacant les droites par des segments de longueur
suffisante, on est ramené au théoreme 21.

31. En raison du théoréme 29, il suffit d’établir la propriéte
pour un ensemble de trois points. Si ceux-ci forment un triangle
(éventuellement aplati) qui a un angle obtus le cercle de recou-
vrement a pour diamétre le c6té opposé a I'angle obtus, qui est
le plus grand donc égal au diameétre 1. Le rayon de recouvrement
est alors égal a 1/2.

Si les trois points forment un triangle (non aplati) qui a ses
trois angles aigus le cercle de recouvrement est le cercle circons-
crit, dont le rayon est la valeur commune de a/2 sin « ou a est
la longueur d’un coté et o 'angle opposé. Dans tout triangle il
y a un angle au moins égal & =/3. Donc a < 1; sin o« > 4/3/2
donc a/2 sin « < 1/4/3.

32. 1l suffit encore, en raison du théoréeme 30, d’établir la
propriété pour un ensemble de trois droites de diametre égal a 1.
Elles forment un triangle de périmetre au plus égal & 3 qui est
circonscrit au plus petit des cercles sécants. Comme le triangle
équilatéral de périmetre 6r /3 est le triangle de plus petit péri-
meétre circonscrit au cercle de rayon r on en déduit 6r4/3 < 3
et r < 1/24/3.

33. L’ensemble étant borné, on peut construire deux triangles
équilatéraux S et S* circonscrits, a cOtés respectivement paral-
leles et disposés symétriquement ; chacun de leurs c6tés contenant
au moins un point de I’ensemble. En menant par un point
intérieur & chacun des triangles des perpendiculaires a leurs
cOtés, on obtient des segments dont les sommes sont respecti-
vement égales aux hauteurs des triangles S et S*, d’aprés une
propriété bien connue de géométrie élémentaire. Mais chacune
des sommes de deux de ces segments opposés est au plus égale
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au diametre de l’ensemble qui est égal & 1. La somme des
hauteurs des deux triangles est donc au plus égale a trois. [.’une
d’elles est au plus égale a 3/2 et le c6té du triangle correspondant
est au plus égal & /3.

34. En reprenant la démonstration du théoréeme 33, on voit
que les longueurs des cotés des triangles équilatéraux circonscrits
S et S* sont des fonctions continues de la direction de I'un des
cOtés, choisi comme base. Aprés une rotation d’angle = de
cette direction, la longueur des cotés de S se change en celle des
cotés de S*. Il y a donc une position pour laquelle ces deux
triangles sont égaux. Leur intersection dans laquelle est contenu
I’ensemble de diameétre égal a 1, est un hexagone convexe,
éventuellement dégénéré, qui a un centre de symétrie et des
cOtés paralléles dont la distance est au plus égale a 1. Cette
intersection est contenue, entierement, dans un hexagone régu-
lier, de méme centre de symétrie, de cotés paralléles de distance
égale a 1. Il contient ’ensemble considéré et la longueur de ses
cOtés est 1/4/3.

35. (C’est une conséquence de 34. Du centre de ’hexagone
régulier ainsi circonscrit & un ensemble de diameétre égal a 1,
il suffit d’abaisser des perpendiculaires sur trois de ses c6tés non
consécutifs. On décompose ainsi I’hexagone en trois pentagones
égaux, chacun de diamétre égal & 4/3/2, dont la réunion recouvre
bien I’ensemble considéré.

36. La propriété est évidente pour » = 3. On la démontre,
par récurrence sur n, pour un ensemble de points Py, P,, ..., P,
en nombre au moins égal & quatre, de diametre égal a 1. On trace
tous les segments P, P, de longueur effectivement égale a 1.
Si, a chaque point P; correspondent au plus deux segments
ainsi tracés, qui I’ont pour origine commune, le nombre de tous
ces segments est bien au plus égal a n. Sinon, 1l existe un point P,
qui est une extrémité commune de trois segments P, P;, P, P,
P, P, de longueur égale a 1, et dont les autres extrémités sont -
de distances mutuelles au plus égales & 1. Les angles de ces seg-
ments, pris deux & deux, sont inférieurs & =/3 et I'un des segments
noté P, P; est contenu dans Pangle aigu des deux autres. On
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vérifie alors aisément que tout point Q du plan different de P,
qui est & une distance égale & 1 de P; est & une distance supe-
rieure & 1 d’au moins I'un des trois points P,, P;, P, et par suite
n’appartient pas a 'ensemble. En supprimant P; dans ensemble
considéré on n’y supprime qu’un seul segment de longueur 1,
d’ou la récurrence.

De cette démonstration, il résulte encore que dans un
ensemble de n points, de diameétre égal a 1, il y a toujours au
moins un point P; & une distance égale & 1 de deux autres points
au plus, P; et P,. Le théoréme de Borsuk qui est évident pour
n = 3 s’en déduit encore par récurrence sur n. Car on peut
décomposer 'ensemble des n — 1 points, obtenu par suppression
de P, en trois sous-ensembles de diameétre inférieur & 1. L’un
d’entre eux ne contient ni P, mi P;; en lui adjoignant Py, il
reste encore de diamétre inférieur a 1, et on obtient ainsi une
décomposition de I’ensemble primitif.

37. Puisque les cercles de rayon 1 ont deux a deux des points
communs, leurs centres forment un ensemble de diameétre au
plus égal & 2. D’aprés 34 on peut le recouvrir par un hexagone de
coté 2/4/3. Les milieux des coOtés d’un triangle équilatéral
inscrit dans cet hexagone forment un triangle équilatéral de
coté égal & 1. Tout point de I’hexagone et, en particulier, tout
centre d’un cercle de l'ensemble est a une distance au plus
égale & 1 d’au moins I'un des sommets de ce triangle.
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