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36 H. HADWIGER ET H. DEBRUNNER

Le rapprochement que nous avons entrepris entre de
nombreux problèmes n'est pas d'ailleurs strictement limité au cadre
de cette géométrie combinatoire. C'est un petit noyau de tout un
ensemble de questions qui peut exercer une impulsion singulière
en raison de la simplicité des propriétés et de l'aspect purement
combinatoire de leurs hypothèses.

C'est pour suivre cette directive et pour nous conformer à la
tendance qui fait passer méthodiquement et rationnellement du
domaine des mathématiques classiques à des procédés plus
modernes et à des possibilités attrayantes, que nous présentons au
lecteur les exemples qui suivent.

Ils ne supposent, en plus des principes généraux de la
géométrie élémentaire et de la théorie des nombres réels, que peu
de connaissances préalables. Il est utile cependant d'être
familiarisé avec la notion d'ensemble et plus spécialement avec celle
des ensembles de points. Quelques définitions sont, éventuellement,

précisées dans le texte.
Dans la première partie on a donné un choix de théorèmes,

groupés par énoncés, sans démonstration, mais avec un commentaire

et des références. Dans la deuxième partie, on trouvera les

démonstrations, ou tout au moins leurs esquisses. Les lecteurs
qui s'y intéresseront particulièrement, pourront se reporter aux
nombreux travaux indiqués et poursuivre eux-mêmes la recherche

des problèmes qui ne sont pas encore résolus et dont nous
avons signalé quelques-uns.

Nous espérons avoir ainsi éveillé chez les lecteurs un intérêt
plus grand pour des questions passionnantes et avoir augmenté
l'efficacité des liens qui existent entre les connaissances élémentaires

de la géométrie et la recherche scientifique.

lre Partie

Un premier groupe de quatre théorèmes concerne des conditions

d'appartenance de points à une droite ou à une circonférence.

1. Pour que les points (Pun ensemble, en nombre fini (au moins

égal à trois), soient alignés, il suffit (et il faut, manifestement)



GÉOMÉTRIE COMBINATOIRE DANS LE PLAN 37

que, pour chaque couple d'entre eux, la droite qui les joint
contienne au moins un troisième point, distinct, de Vensemble.

De ce théorème, entrevu en 1893 par J. J. Sylvester [55], il
existe une brève démonstration de T. Gallai (Grunwald) citée

par N. G. de Bruijn-P. Erdos[6]; elle en fait une application
d'un théorème purement combinatoire. On trouvera d'autres
démonstrations ainsi que des généralisations et des variantes
dans les travaux cités de P. Erdös [11]; H. S. M. Coxeter [7];
G. A. Dirac [9] et Th. Motzkin [39].

2. Pour que les droites dun ensemble, en nombre fini (au moins
égal à trois), soient concourantes, il suffit (et il faut, manifestement)

que, pour chaque couple d'entre elles, passe par leur
point dintersection au moins une troisième droite, distincte,
de Vensemble.

Les conclusions de ces théorèmes 1 et 2 ne sont plus vraies
lorsque les ensembles de points ou de droites ont un nombre
infini d'éléments. C'est ce que montre, pour les deux énoncés
à la fois, l'exemple de la figure 1 qui représente un ensemble
infini dénombrable de points et de droites.
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3. Pour que les points d'un ensemble, en nombre fini (au moins
égal à quatre), appartiennent à une même circonférence, il
suffit (et il faut, manifestement) que pour chaque combinaison
de trois dentre eux, la circonférence (qui peut être dégénérée

en droite) qui les contient, contienne au moins un quatrième
point, distinct de Vensemble.

Etroitement apparenté au théorème 3, dans ses hypothèses et
sa conclusion, le théorème suivant concerne un ensemble de

points, borné (c'est-à-dire contenu dans un cercle de rayon fini)
et fermé (c'est-à-dire contenant ses points d'accumulation).

4. Pour que les points dun ensemble borné et fermé, en nombre

fini ou infini, appartiennent à une même circonférence, il
suffit (sans que cela soit nécessaire) que Vaxe de symétrie
de chaque couple dentre eux soit axe de symétrie de tout
V ensemble.

Les conclusions des théorèmes 3 et 4 ne sont plus vraies
lorsque l'ensemble de points n'est pas borné. L'ensemble de

tous les points du plan en est un exemple. On peut aussi
constituer un ensemble dénombrable de points, non fermé, qui
vérifieles autres hypothèses des théorèmes 3 et 4 sans que ces

points appartiennent à une même circonférence:
En partant d'un système A0 de quatre points, qui ne sont ni

alignés ni sur une même circonférence, on construit par récurrence

une suite ascendante d'ensembles de points An 9 (An_t).
L'expression 9 (A) désigne la réunion des ensembles symétriques
de A relativement à chacun des axes de symétrie de tous les

couples de points de A. On voit aisément que la réunion des An
est un ensemble dénombrable de points, en nombre infini, qui
possède la propriété de symétrie du théorème 4. En outre, toute

circonférence passant par trois points de l'ensemble contient
un quatrième point distinct, sauf si ces trois points forment
un triangle équilatéral. On peut même éviter cette exception
par une généralisation très simple de la construction 9 (A).

*



GÉOMÉTRIE COMBINATOIRE DANS LE PLAN 39

Nous indiquons maintenant une série de théorèmes dans

lesquels les longueurs ont pour mesures des nombres entiers

ou rationnels.
On appelle « réseau » plan l'ensemble des points dont les

coordonnées relatives à deux, axes rectangulaires d'un plan sont
des nombres entiers.

5. Le carré est le seul polygone régulier qui peut être inscrit dans

un réseau; c'est-à-dire dont on peut choisir les sommets parmi
les points d'un réseau.

Une démonstration originale a été donnée par W. Scher-
rer [52]; en ce qui concerne l'impossibilité d'inscrire un triangle
dans un réseau, on peut voir aussi le problème 238 de G. Polya-
G. Szegö [43] Vol. 2, p. 156.

La possibilité d'inscription d'un carré, en dehors du cas

trivial, est en évidence dans la figure 2.

Le théorème suivant concerne les angles d'un losange inscrit
dans un réseau.

6. Pour tout losange, non carré, d'angle aigu oc, inscrit dans un
réseau, le rapport cc/n est irrationnel. Autrement dit, le carré
est le seul losange inscrit dans un réseau dont les angles sont
commensurables avec iz.

En relation étroite avec le précédent, l'énoncé suivant
concerne les triangles de Pythagore, c'est-à-dire les triangles rec-
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tangles dont les trois côtés ont des longueurs proportionnelles
à des nombres entiers.

7. Dans tout triangle de Pythagore les angles aigus sont incom¬

mensurables avec 7t.

Les théorèmes 6 et 7 sont des expressions géométriques de

la propriété trigonométrique suivante: (Cf. H. Hadwiger [18]) :

8. Le seul angle aigu commensurable avec n dont le cosinus est

un nombre rationnel est a tt/3.

Le théorème suivant dû à P. Erdös [12] (Voir aussi A. Delachet

[8] p. 50 et E. Trost [57]) est un exemple particulièrement
typique d'énoncés d'un type nouveau en ce sens que d'hypothèses

très simples résulte une conséquence inattendue et précise.

9. Pour que les points d'un ensemble, en nombre infini, soient

alignés, il suffit que, pour chaque couple d'entre eux, la longueur
de leur segment soit un nombre entier.

Il y a lieu de remarquer que cette conclusion ne subsiste pas
si les points sont en nombre fini /c, même très grand. On peut
même, pour toute valeur de /c, construire un ensemble de k points
dont les distances mutuelles sont mesurées par des nombres
entiers, sans qu'aucune des combinaisons de trois d'entre eux
n'appartienne à une droite. De telles constructions ont été faites
à maintes reprises, notamment par M. Altwegg [1], A. Müller

[40] et F. Steiger [53].
D'après A. Müller, on peut construire un ensemble dénom-

brable de points, dense sur une circonférence de rayon 1 et tel
que la longueur du segment de chaque couple d'entre eux soit

un nombre rationnel. Ce sont les points Pn de coordonnées

polaires: p— 1 cp 2n% avec cos 0 4/5.
D'après le théorème 8, l'angle 0 est incommensurable avec

7i; tous les points Pn sont différents sur la circonférence de

rayon 1 ; ils forment un ensemble dense qui est même de répartition

uniforme d'après le théorème d'équipartition de H. Weyl
(ce qui est toutefois sans importance pour le théorème considéré).

La distance de deux points est:

d (Pn, Pm) 2 ] sin (^ — m) 0 | avec sin 0 3/5, cos 0 4/5.
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Elle est rationnelle par application des formules de multiplication

des arcs. Dans un tel ensemble il suffit de prendre k

points. Avec un choix convenable de l'unité les longueurs des

segments qui joignent ces points deux à deux sont des nombres

entiers et cependant aucune combinaison de trois de ces points

n'appartient à une droite.

** *

Les théorèmes du groupe suivant sont relatifs aux enveloppes

et à la séparation des ensembles de points. Précisons d'abord
quelques notions: un ensemble de points est convexe si, pour
chaque couple de ses points, tous les points du segment
joignant les points du couple appartiennent à l'ensemble.

L'enveloppe convexe d'un ensemble de points est le plus petit
ensemble convexe qui le contient; il est équivalent de dire que
c'est l'intersection de tous les ensembles convexes qui le

contiennent.

10. Pour qu'un point appartienne à Vensemble convexe d'un
ensemble de points, en nombre fini ou infini, il faut (et il
suffit) qu'on puisse trouver un, deux ou trois points de

l'ensemble dont l'enveloppe convexe contienne ce point.

Il résulte de cet énoncé que l'enveloppe convexe d'un ensemble

de points est la réunion des domaines triangulaires (triangles,
périmètres compris) définis par toutes les combinaisons de

trois points de l'ensemble. (Y compris les combinaisons avec
répétition.)

11. Pour qu'un point soit « intérieur » à l'enveloppe convexe d'un
ensemble de points (non alignés), il faut et il suffit qu'on
puisse trouver trois ou quatre points de l'ensemble tels que
le point considéré soit intérieur à leur enveloppe convexe.

Les énoncés 10 et 11 sont des cas particuliers, dans le plan,
de théorèmes généraux établis par E. Steinitz [54] et W. Güstin

[17]. Cf aussi 0. Hanner-H. Radström [20] et C. V.
Robinson [49].
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Deux ensembles sont « séparables » s'il est possible de trouver
une droite qui ne traverse aucun des deux et les sépare l'un de

l'autre. Il est équivalent de dire qu'ils sont situés dans chacun
des demi-plans limités par la droite (limite exclue). Cette
propriété est caractérisée par le critère suivant établi par P. Kmcn-
berger[29]. (Cf. aussi H. Rademacher-I. J. Schoenberg [44]) :

12. Pour que deux ensembles, fermés et bornés, soient séparables,
il suffit (et il faut) qu'il en soit de même pour chacun des

couples de leurs sous-ensembles respectifs dont la réunion
comprend au plus quatre points.

13. Tout ensemble de points, comprenant au moins quatre points,
peut être regardé comme la réunion de deux sous-ensembles,

non vides, sans point commun et non-séparables.
Voir à ce sujet F. W. Levi [36] et R. Rado [46].

** *

Les propriétés suivantes gravitent autour du célèbre théorème

de Helly. Les nombreuses variantes de même type,
concernant en général des « ovales », forment une théorie
caractéristique de la géométrie combinatoire convexe. On appellera
« ovale » (Eibereich) un ensemble de points convexe, borné et
fermé.

14. Pour que tous les ovales d'un ensemble (en nombre fini ou

infini) aient (au moins) un point commun, il suffit (et il
faut) qu'il en soit ainsi pour chaque combinaison de trois
d'entre eux.

C'est l'application au plan du théorème connu de Helly-
Cf. E. Helly [21], J. Radon [48], D. König [35]... etc. Des

exemples simples montrent qu'il est impossible de remplacer les

combinaisons de trois ovales par des couples; sauf s'il existe
des conditions supplémentaires sur la forme des ovales.

C'est le cas de l'énoncé suivant:

15. Pour que tous les rectangles (ou les parallélogrammes), à

côtés respectivement parallèles, d'un ensemble (en nombre
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fini ou infini) aient (au moins) un point commun, il suffit (et

il faut) qu'il en soit ainsi pour chaque couple d'entre eux.

En déplaçant par translation un ovale qui n'est pas un
parallélogramme, on peut obtenir trois ovales n'ayant pas de point
commun mais tel que chaque couple de ces trois ovales aient
au moins un point commun. Toutefois cela est impossible pour
des parallélogrammes. L'énoncé 15, légèrement modifié, est

donc une propriété caractéristique des parallélogrammes. Cf. à

ce sujet B. Sz.-Nagy [41].

L'application à la droite du théorème de Helly est un cas

particulier du théorème 15.

16. Pour que les segments, appartenant à une même droite, d'un
ensemble (en nombre fini ou infini) aient (au moins) un
point commun, il suffit (et il faut) qu'il en soit ainsi pour
chaque couple d'entre eux.

On peut facilement, et en vue de nombreuses applications,
établir pour la circonférence un théorème du même type que
celui de Helly. On y remplace les ovales par des arcs « fermés »,

c'est-à-dire extrémités comprises, appartenant, bien entendu, à

une même circonférence.

17. Pour que les arcs, inférieurs à une demi-circonférence, d'un
ensemble (en nombre fini ou infini), appartenant à une même

circonférence, aient (au moins) un point commun, il suffit
qu'il en soit ainsi pour chaque combinaison de trois d'entre
eux.

La condition de longueur des arcs est essentielle, car la
propriété n'est plus vraie pour un ensemble de demi-circonférences.
Il suffit, en effet, de considérer les quatre demi-circonférences
limitées par deux couples de points diamétralement opposés.
Elles n'ont pas de point commun et cependant chacune des
combinaisons de trois d'entre elles en a au moins un.

De même la propriété n'est plus vraie, sans modifications,
pour des couples d'arcs. Il suffit de considérer le découpage
d'une circonférence en trois arcs égaux: ceux-ci sont sans point
commun et cependant chaque couple a un point commun.
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La propriété peut devenir vraie pour les couples par une
limitation plus stricte de la longueur des arcs :

18. Pour que les arcs, inférieurs à un tiers de circonférence, d'un
ensemble (en nombre fini ou infini), appartenant à une
même circonférence, aient (au moins) un point commun, il
suffit qu'il en soit ainsi pour chaque couple d'entre eux.

On peut encore énoncer une propriété analogue, de conclusion

un peu différente, sans condition de limitation de longueur
des arcs.

19. Pour qu'il existe (au moins) un diamètre qui coupe tous les

arcs d'un ensemble, appartenant à une même circonférence,
il suffit que chaque couple de ces arcs ait (au moins) un point
commun.

Il est équivalent de dire que si cette condition suffisante est

remplie, on peut trouver deux points diamétralement opposés
tels que tout arc de l'ensemble contienne (au moins) l'un des

deux. Des théorèmes analogues ont été établis, entre autres, par
C. V. Robinson [49] et A. Horn-A. Valentine [25]. De belles

applications, signalées ci-dessous, ont été données par P. Vin-
CENSINI [59].

20. Pour qu'on puisse trouver une translation amenant un ovale

donné à être contenu dans l'intersection d'un ensemble d'ovales

il suffit que, pour chaque combinaison de trois ovales de

l'ensemble il existe une telle translation.

21. Pour qu'on puisse trouver une translation amenant un ovale

donné à rencontrer tous les ovales d'un ensemble, il suffit que,

pour chaque combinaison de trois ovales de l'ensemble il
existe une telle translation.

22. Pour qu'on puisse trouver une translation amenant un ovale

donné à contenir tous les ovales d'un ensemble (ou leur
réunion), il suffit que, pour chaque combinaison de trois ovales

de l'ensemble il existe une telle translation.

Ce sont des applications au plan de variantes plus générales
du théorème de Helly énoncées par P. Vincensini [58] et
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V. L. Klee jr. [32] pour des hyper-espaces. Les théorèmes ne

sont vrais, dans le plan, que pour des déplacements de translation

et ne s'appliquent plus pour des rotations.
Voici notamment, un contre-exemple du théorème 21. On

considère un ensemble de n cercles (n > 2) dont les centres ont

Fig. 3

pour coordonnées polaires: p 1 et 9 2kizjn (k — 1, n)
et dont les rayons sont r cos2 (7r/ft) si n est pair et

r cos2 (tu/n) + cos2 (tc/2n) — 1

si n est impair. On peut alors vérifier qu'il est toujours possible,

par un déplacement, non réductible à une translation, d'amener
un segment de droite de longueur 2 (ce qui est un ovale aplati)
à traverser chacune des combinaisons de ft — 1 cercles; mais

qu'il est impossible de lui faire traverser les n cercles en même

temps.
La figure 3 illustre cet exemple pour n — 8.

23. Pour que, par un point quelconque du plan1 on puisse tou¬

jours faire passer une droite rencontrant tous les ovales d*un
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ensemble, il suffit que chaque couple de ces ovales ait (au
moins) un point commun.

24. Pour que, parallèlement à une direction quelconque du plan,
on puisse toujours mener une droite rencontrant tous les

ovales dun ensemble, il suffit que chaque couple de ces ovales

ait (au moins) un point commun.

Ces deux énoncés sont aussi des cas particuliers, pour le plan,
de théorèmes plus généraux de A. Horn [24] et de V. L. Klee
jr [30]. Ils donnent des exemples de propriétés entraînées par
«une condition suffisante de Helly» vérifiée par des couples
au lieu de combinaisons de trois ovales.

On peut aussi se demander s'il est possible d'obtenir un
théorème analogue à celui de Helly en remplaçant la recherche
d'un point commun par celle d'une sécante commune. L'existence

d'une droite rencontrant tous les ovales d'un ensemble

peut-elle résulter de l'existence d'une sécante commune à chaque
combinaison d'un certain nombre h de ces ovales

Une telle propriété n'existe pas. Et c'est ainsi que L. A. San-
talô [50] a montré qu'il est possible de construire un ensemble
de n ovales, sans sécante commune et tel cependant qu'il en
existe une pour chaque combinaison de n — 1 de ces ovales.

C'est aussi ce que prouve l'exemple indiqué à propos de

l'énoncé 21. On peut cependant obtenir des théorèmes de ce

genre en ajoutant des conditions supplémentaires pour la forme
et pour la position des ovales. C'est ainsi que L. A. Santalo [50]
a démontré que, pour un ensemble de rectangles à côtés parallèles,

il existe une sécante commune s'il en existe une pour
chaque combinaison de six de ces rectangles. C'est aussi le cas de

l'énoncé suivant:

25. Pour qu'il existe une droite « montante » traversant tous les

rectangles à côtés parallèles d'un ensemble, il suffit qu'il en

soit ainsi pour chaque combinaison de trois rectangles de

V ensemble.

Par droite « montante » on entend une droite qui a un coefficient

angulaire positif par rapport à un système d'axes parallèles

aux côtés des rectangles, comme l'indique la figure 4.
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Dans l'exemple de la figure 3 qui prouve qu'il n'existe pas,

dans le cas général, de nombre de Helly pour une condition

suffisante d'existence d'une sécante commune à un ensemble

d'ovales, on peut remarquer que les ovales se recouvrent partiellement

les uns les autres. On peut se demander si cette circonstance

n'est pas trop particulière et étudier le cas où les ovales

n'ont, deux à deux, aucun point commun. A cette question qui

a été posée par V. L. Klee [33] la réponse est négative.

Fig. 4

Pour le montrer, on peut construire une rosace de segments
circulaires. Sur 2n (n > 1) circonférences concentriques
(i de 1 à 2n) de centre Z et de rayons R^ (0 < R^ < Fq+i) on
construit des couples de segments et S* symétriques par
rapport à Z. Chaque segment est défini par les coordonnées
polaires des points de l'arc qui le limite sur le cercle R^:

Si p Rt; (i — n 1) nj2n <cp < (i -f- n — 1) tc/2n

S* p R^ ; (i + n + 1) tu/2n <cp < (i -f- 3n — 1) nßn.

Cette rosace vérifie les propriétés suivantes:

A. En choisissant convenablement l'accroissement des rayons
Ri? on peut construire des segments sans point commun
deux à deux. La figure 5 en donne un exemple pour n 2.
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B. Il n'existe aucune droite traversant les 4n segments. Un
diamètre d'angle polaire compris dans l'intervalle 0, rc/2n
ne rencontre aucun des deux segments Sn et S* et même
les sépare. Il en résulte que l'un au moins de ces segments
n'est pas traversé par une droite parallèle à ce diamètre.
Par des rotations d'angle nßn on complète le raisonnement.

G. (Quels que soient les RJ il n'existe aucun point commun
aux 4n segments. C'est une conséquence évidente de B.

D. Si tous les sont égaux à R, pour chaque combinaison de

2n — 1 couples de segments, il existe au moins un couple de

points diamétralement opposés qui leur soit commun. Il
suffît de considérer tous les couples de segments sauf Sn et S*.

Les deux points d'angle polaire 0 et iz leurs sont communs.
Les rotations d'angle multiples de tu/2n, qui échangent les

segments, montrent qu'il en est de même pour chaque combinaison

de 2n — 1 couples.

E. Si tous les Ri sont égaux à R, il n'existe aucun couple de

points diamétralement opposés appartenant aux 2n couples
de segments. C'est une conséquence évidente de B.
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F. De D on déduit que toute combinaison de 2n — 1 couples
de segments est traversée par un diamètre. Mais cette
propriété reste vraie même si les rayons ne sont plus égaux et,

en particulier, lorsque les segments pris, deux à deux, n'ont
pas de point commun (comme dans la propriété A).

G. Si tous les Ri sont égaux à R, pour chaque combinaison de

2n — 1 segments, il existe deux points tels que chacun de ces

segments contienne au moins l'un des deux points. C'est une

conséquence de D.

H. On ne peut pas trouver de couple de points tel que chacun
des 4n segments contienne au moins l'un des points de ce

couple. C'est une conséquence évidente de B.

Les propriétés A, B et F fournissent une réponse négative
à la question posée ci-dessus. La même rosace permet de montrer
l'impossibilité de diverses propriétés analogue à celle de Helly.

A l'occasion d'un travail de L. A. Santalô [51], Th. Motzkin
a donné un contre-exemple de l'énoncé suivant: pour que tous
les couples d'un ensemble de couples d'ovales aient au moins
un point commun, il suffirait qu'il en soit ainsi pour chaque
combinaison d'un certain nombre h de ces couples. C'est également

ce que montre l'exemple de la rosace; propriétés D et E
(dans le cas de rayons égaux).

V. L. Klee jr. [31] a cherché à trouver un nombre h de Helly
vérifiant l'énoncé suivant: Pour que chacun des ovales d'un
ensemble contienne au moins l'un des deux points d'un couple
il suffirait qu'il en soit ainsi pour chaque combinaison de h de
ces ovales. L'exemple de la rosace montre encore qu'il n'en
existe pas. Il suffit de considérer les propriétés G et H.

On ne sait pas encore s'il existe un nombre h de Helly dans
le cas d'un ensemble d'ovales « congruents » (ou déduits de l'un
d'eux par translation), deux à deux sans point commun, et
dont on cherche s'ils ont une sécante commune, s'il en est ainsi
pour chaque combinaison de h de ces ovales. On peut d'abord
se poser la question pour des cercles; l'existence de h apparaît
alors plausible, mais on n'en a pas de preuve. Il faudrait en
tout cas, que h soit au moins égal à 5 ainsi que le montre
la figure 6.
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En revanche, on a pu établir le théorème suivant pour des

ensembles d'ovales homothétiques:

26. Pour que, relativement à un ensemble d'ovales homothétiques,
il existe un système de quatre droites formant un rectangle,
telles que chaque ovale soit traversé par au moins l'une
d'entre elles, il suffit que, pour chaque combinaison de quatre
ovales de l'ensemble, il existe (au moins) une sécante

commune.

Nous terminerons ce groupe de théorèmes en indiquant un
énoncé du type de Helly, découvert par P. Vincensini [59].
On dira qu'un ensemble d'ovales est « totalement séparable »

lorsqu'il existe une direction de droite, telle que toute droite
parallèle à cette direction ne traverse au plus qu'un seul ovale de
l'ensemble. On peut alors tracer, dans le plan, des bandes à

bords parallèles à cette direction, deux à deux sans point
commun, et telles que chaque bande contienne un et un seul ovale

(comme l'indique la figure 7).

27. Pour qu'il existe une droite traversant tous les ovales d'un
ensemble totalement séparable, il suffit qu'il en soit ainsi pour
chaque combinaison de trois ovales de l'ensemble.
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La propriété avait été établie par P. Vincensini pour des

combinaisons de h 4 ovales. V. L. Klee jr. [34] a montré

qu'elle était vraie pour h seulement égal à trois. Cette propriété
a pour cas particulier le théorème suivant énoncé par L. A. San-

talô [50] (Voir aussi H. Rademacher-I. J. Schœnberg [44]):

Pour qu'il existe une sécante commune à un ensemble de

segments de droites, strictement parallèles entre eux (donc
totalement séparables) il suffit que la propriété soit vraie pour
chaque combinaison de trois segments de l'ensemble.

Au sujet du théorème 27, on peut modifier la condition de la
séparation totale pour des ovales suffisamment clairsemés, ce qui
peut être exprimé par les grandeurs des angles apparents comme
l'indiquent la figure 8 et le théorème suivant.

28. Pour qu'un ensemble d'ovales soit totalement séparable, il
suffit que de tout point du plan on ne puisse voir plus d'un
ovale sous un angle apparent au moins égal à k/3 et que,
pour chaque combinaison de quatre ovales de l'ensemble, il
existe (au moins) une sécante commune.

** *

On termine par quelques énoncés, plus ou moins apparentés
au théorème connu de H. W. Jung [26] sur la grandeur de
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l'enveloppe circulaire d'un ensemble de points de diamètre donné.
Précisons d'abord quelques notions:

Un ensemble de points est « borné » s'il peut être recouvert
par un cercle fermé.

En vue des théorèmes suivants nous dirons qu'un ensemble
de droites est « borné » lorsqu'il ne contient pas de couple de

droites parallèles, et que les points d'intersection de tous les

couples de droites forment un ensemble borné.

Le « rayon de recouvrement » d'un ensemble borné de points
est le rayon du plus petit cercle (fermé) qui contient tous les

points de l'ensemble. Par analogie on appellera « rayon d'intersection

» d'un ensemble borné de droites, le rayon du plus petit
cercle (fermé) coupé par toutes les droites de l'ensemble.

Le « diamètre » d'un ensemble borné de points est la limite
supérieure des distances de ses couples de points. Par analogie,
on appellera diamètre d'un ensemble borné de droites, le diamètre
de l'ensemble des points d'intersection.

29. Pour qu'il existe un cercle de rayon R recouvrant tous les

points d'un ensemble borné il suffit que, pour chaque
combinaison de trois de ces points, il existe au moins un cercle

de rayon R la recouvrant.
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30. Pour qu'il existe un cercle de rayon R rencontrant toutes les

droites d'un ensemble borné, il suffit que, pour toute combinaison

de trois de ces droites, il existe au moins un cercle

de rayon R les rencontrant.
Ce sont des conséquences du théorème 21.

31. Le rayon de recouvrement d'un ensemble borné de points dont

le diamètre est égal à 1, est au plus égal à 1:\/3>

C'est un cas particulier, pour le plan, du théorème de Jung.
H. Rademacher et 0. Tœplitz [45] en donnent un exposé
détaillé.

32. Le rayon d'intersection d'un ensemble borné de droites dont le

diamètre est égal à 1, est au plus égal à 1/2^/3-
C'est la transformation par dualité du théorème de Jung.

33. Tout ensemble borné de points dont le diamètre est égal à 2,

peut être recouvert par un triangle équilatéral de côté \f~3.

34. Tout ensemble borné de points dont le diamètre est égal à 2,

peut être recouvert par un hexagone de côté 1: -\f3-

Un domaine qui peut recouvrir tout ensemble de points dont
le diamètre est égal à 1, est appellé «couvercle» (normal). Le
cercle de rayon l/-\/3 est le couvercle de Jung. Le triangle
équilatéral et l'hexagone circonscrits au cercle de diamètre égal à 1

sont des couvercles. L'énoncé 33 est un cas particulier pour le
plan, d'un théorème établi par D. Gale [15], correspondant au
théorème de Jung. Le théorème 34 est dû à S. Pal [42].

35. Tout ensemble borné de points dont le diamètre est égal à 2,

peut être recouvert par trois ensembles de points dont les

diamètres ne dépassent pas <\f3/2-

C'est une forme plus précise, donnée par D. Gale [15] d'un
théorème dû à K. Borsuk [5] qui exprime que, dans le plan, tout
ensemble de points peut être considéré comme la réunion de
trois sous-ensembles de diamètres inférieurs. K. Borsuk avait
suggéré qu'un ensemble de points, dans un espace de k dimensions

pourrait être décomposé en k + 1 sous-ensembles de
diamètres inférieurs. Cette propriété a été établie pour k — 3 par
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H. G. Eggleston [10]; elle n'a pas encore été démontrée pour
k > 3.

Le théorème ci-dessus de K. Borsuk, non compris la précision

de D. Gale, est aussi une conséquence, dans le cas d'un
ensemble d'un nombre fini de points du plan, du théorème
suivant sur le nombre de couples de points dont la distance est
égale au diamètre de l'ensemble.

36. Dans un ensemble, Pun nombre fini n de points, dont le

diamètre est égal à 11 il y a au plus n couples distincts de

points dont la distance est égale à 1.

On en trouve une brève démonstration dans P. Erdös[13]
— Cf. aussi H. Hopf et E. Pannwitz [23].

Les relations étroites entre tous ces groupes de théorèmes
sont mises en évidence par la conséquence suivante du théorème
34 énoncée sous une forme analogue à celle du théorème de

Helly.

37. Pour que, dans un ensemble de cercles de rayon égal à 2, on
puisse construire un triangle équilatéral de côté égal à 2,
dont chaque cercle de Vensemble contienne au moins Vun des

sommets, il suffit que chaque couple de cercles de Vensemble

ait au moins un point commun.

On trouve dans L. Fejes-Tôth [14] — page 97 — des énoncés

analogues qui ne sont encore que partiellement démontrés.

2me Partie

Nous donnons ci-dessous de courtes démonstrations des

théorèmes qui précèdent, d'après les sources indiquées. Nous nous
bornons souvent à la suite des idées. Les raisonnements ne

supposent que des propositions préalables élémentaires notamment

des considérations^ simples sur les ensembles de points.

1. On raisonne par l'absurde: on considère des points P!
vérifiant les conditions de l'hypothèse et non alignés. On peut,
en effectuant éventuellement une transformation projective
supposer l'un d'eux Px à l'infini. Les droites joignant tous les


	1re Partie

