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36 H. HADWIGER ET H. DEBRUNNER

Le rapprochement que nous avons entrepris entre de nom-
breux problemes n’est pas d’ailleurs strictement limité au cadre
de cette géométrie combinatoire. C’est un petit noyau de tout un
ensemble de questions qui peut exercer une impulsion singuliére
en raison de la simplicité des propriétés et de ’aspect purement
combinatoire de leurs hypotheses.

C’est pour suivre cette directive et pour nous conformer & la
tendance qui fait passer méthodiquement et rationnellement du
domaine des mathématiques classiques a des procédés plus mo-
dernes et a des possibilités attrayantes, que nous présentons au
lecteur les exemples qui suivent.

Ils ne supposent, en plus des principes généraux de la géo-
métrie élémentaire et de la théorie des nombres réels, que peu
de connaissances préalables. Il est utile cependant d’étre fami-
liarisé avec la notion d’ensemble et plus spécialement avec celle
des ensembles de points. Quelques définitions sont, éventuelle-
ment, précisées dans le texte.

Dans la premiére partie on a donné un choix de théorémes,
groupés par énonceés, sans démonstration, mais avec un commen-
taire et des références. Dans la deuxiéme partie, on trouvera les
démonstrations, ou tout au moins leurs esquisses. Les lecteurs
qui 8’y intéresseront particuliérement, pourront se reporter aux
nombreux travaux indiqués et poursuivre eux-mémes la recher-
che des problémes qui ne sont pas encore résolus et dont nous
avons signalé quelques-uns.

Nous espérons avoir ainsi éveillé chez les lecteurs un intérét
~ plus grand pour des questions passionnantes et avoir augmenté
Iefficacité des liens qui existent entre les connaissances élémen-
taires de la géométrie et la recherche scientifique.

1re PARTIE

Un premier groupe de quatre théorémes concerne des condi-
tions d’appartenance de points & une droite ou a une circonfé-
rence.

1. Pour que les points d’'un ensemble, en nombre fint (au moins
égal a trois), sotent alignés, il suffit (et il faut, manifestement)
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que, pour chaque couple d’entre eux, la droite qui les joint
contienne au moins un troisiéme point, distinct, de I'ensemble.

De ce théoréeme, entrevu en 1893 par J. J. SyLvesTER [55], il
existe une bréve démonstration de T. Garral (Grunwald) citée
par N. G. pE Bruisn-P. Erpo6s [6]; elle en fait une application
d’'un théoréme purement combinatoire. On trouvera d’autres
démonstrations ainsi que des généralisations et des variantes
dans les travaux cités de P. Ernos[11]; H. S. M. CoxETER [7];
G. A. Dirac[9] et Th. Morzkin [39].

2. Pour que les droites d’un ensemble, en nombre fini (au moins
égal a trois), sotent concourantes, il suffit (et il faut, manifes-
tement) que, pour chaque couple d’entre elles, passe par leur
point d’tntersection au moins une troisiéme droite, distincte,
de l'ensemble.

Les conclusions de ces théorémes 1 et 2 ne sont plus vraies
lorsque les ensembles de points ou de droites ont un nombre
infini d’éléments. C’est ce que montre, pour les deux énoncés
a la fois, 'exemple de la figure 1 qui représente un ensemble
infini dénombrable de points et de droites.

G
W/\NW
g

Fig. 1
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3. Pour que les poinis d’un ensemble, en nombre fini (au moins
égal a quatre), appartiennent d une méme circonférence, il
suffit (et il faut, manifestement) que pour chagque combinaison
de trois d’entre eux, la circonférence (qui peut étre dégénérée
en drotte) qui les contient, contienne au moins un quatriéme
point, distinct de I’ensemble.

Etroitement apparenté au théoréme 3, dans ses hypothéses et
sa conclusion, le théoréme suivant concerne un ensemble de
points, borné (c’est-a-dire contenu dans un cercle de rayon fini)
et fermé (c’est-a-dire contenant ses points d’accumulation).

4. Pour que les points d'un ensemble borné et fermé, en nombre
fini ou infini, appartiennent @ une méme circonférence, il
suffit (sans que cela soit nécessaire) que lUaxe de symétrie
de chaque couple d’entre eux soit axe de symétrie de tout
I'ensemble.

Les conclusions des théorémes 3 et 4 ne sont plus vraies
lorsque l’ensemble de points n’est pas borné. L’ensemble de
tous les points du plan en est un exemple. On peut aussi cons-
tituer un ensemble dénombrable de points, non fermé, qui
vérifieles autres hypothéses des théorémes 3 et 4 sans que ces
points appartiennent a une méme circonférence:

En partant d’un systéme A, de quatre points, qui ne sont ni
alignés ni sur une méme circonférence, on construit par récur-
rence une suite ascendante d’ensembles de points A, = ¢ (A, ;).
L’expression ¢ (A) désigne la réunion des ensembles symétriques
de A relativement a chacun des axes de symétrie de tous les
couples de points de A. On voit aisément que la réunion des A
est un ensemble dénombrable de points, en nombre infini, qui
posséde la propriété de symétrie du théoreme 4. En outre, tou-
te circonférence passant par trois points de ’ensemble contient
un quatriéme point distinct, sauf si ces trois points forment
un triangle équilatéral. On peut méme éviter cette exception
par une généralisation trés simple de la construction ¢ (A).
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Nous indiquons maintenant une série de théorémes dans
lesquels les longueurs ont pour mesures des nombres entiers
ou rationnels.

On appelle « réseau» plan ’ensemble des points dont les
coordonnées relatives & deux axes rectangulaires d’un plan sont
des nombres entiers.

5. Le carré est le seul polygone régulier qui peut étre inscrit dans
un réseau ; c’est-da-dire dont on peut choisir les sommets parmi
les points d’un réseau.

Une démonstration originale a été donnée par W. ScCHER-
RER [D2]; en ce qui concerne I'impossibilité d’inscrire un triangle
dans un réseau, on peut voir aussi le probleme 238 de G. P6Lya-
G. SzeGO [43] Vol. 2, p. 156.

La possibilité d’inscription d’un carré, en dehors du cas
trivial, est en évidence dans la figure 2.
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Fic. 2

Le théoreme suivant concerne les angles d’un losange inscrit
dans un réseau.

6. Pour tout losange, non carré, d’angle aigu o, inscrit dans un
réseau, le rapport a|m est irrationnel. Autrement dit, le carré
est le seul losange inscrit dans un réseau dont les angles sont
commensurables avec .

En relation étroite avec le précédent, I’énoncé suivant con-
cerne les triangles de Pythagore, c’est-a-dire les triangles rec-
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tangles dont les trois cotés ont des longueurs proportionnelles
a des nombres entiers.

7. Dans tout triangle de Pythagore les angles aigus sont itncom-
mensurables avec .

Les théorémes 6 et 7 sont des expressions géométriques de
la propriété trigonométrique suivante: (Cf. H. HApwiGer [18]):

8. Le seul angle aigu commensurable avec w dont le cosinus est
un nombre rationnel est o = t/3.

Le théoréme suivant di a P. Erp6s [12] (Voir aussi A. DELA-
CHET [8] p. b0 et E. Trost [57]) est un exemple particulierement
typique d’énoncés d’un type nouveau en ce sens que d’hypo-
theses tres simples résulte une conséquence inattendue et précise.

9. Pour que les points d’un ensemble, en nombre infini, soient
alignés, il suffit que, pour chaque couple d’entre eux, la longueur
de leur segment soit un nombre entier.

Il y a lieu de remarquer que cette conclusion ne subsiste pas
si les points sont en nombre fin1 &, méme trés grand. On peut
méme, pour toute valeur de k&, construire un ensemble de £ points
dont les distances mutuelles sont mesurées par des nombres
entiers, sans qu’aucune des combinaisons de trois d’entre eux
n’appartienne a une droite. De telles constructions ont été faites
a maintes reprises, notamment par M. ALtweca [1], A. MUL-
LER [40] et F. STEIGER [53].

D’aprés A. MULLER, on peut construire un ensemble dénom-
brable de points, dense sur une circonférence de rayon 1 et tel
que la longueur du segment de chaque couple d’entre eux soit
un nombre rationnel. Ce sont les points P, de coordonnées
polaires: p= 1 ¢ = 2n0 avec cos 0 = 4/0.

D’aprés le théoréeme 8, I'angle 6 est incommensurable avec
7; tous les points P, sont différents sur la circonférence de
rayon 1; ils forment un ensemble dense qui est méme de répar-
tition uniforme d’aprés le théoréme d’équipartition de H. WeyL
(ce qui est toutefois sans importance pour le théoréme consi-
déré). La distance de deux points est:

dP,, P,)=2 ] sin (n — m) 9 ] avec sin 0 = 3/5, cos 6 = 4/b.
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Elle est rationnelle par application des formules de multipli-
cation des arcs. Dans un tel ensemble il suffit de prendre £
points. Avec un choix convenable de I'unité les longueurs des
segments qui joignent ces points deux & deux sont des nombres
entiers et cependant aucune combinaison de trois de ces points
n’appartient & une droite.

Les théoremes du groupe suivant sont relatifs aux envelop-
pes et & la séparation des ensembles de points. Précisons d’abord
quelques notions: un ensemble de points est convexe si, pour
chaque couple de ses points, tous les points du segment joi-
gnant les points du couple appartiennent a I’ensemble.

L’enveloppe convexe d’un ensemble de points est le plus petit
ensemble convexe qui le contient; il est équivalent de dire que
c’est 'intersection de tous les ensembles convexes qui le con-
tiennent.

10. Pour qu’'un point appartienne a l'ensemble convexe d’un
ensemble de points, en nombre fini ou infint, il faut (et il
suffit) qu’'on puisse trouver un, deuxr ou trots poinls de
Uensemble dont Uenveloppe convexe contienne ce point.

Il résulte de cet énoncé que I’enveloppe convexe d’un ensem-
ble de points est la réunion des domaines triangulaires (triangles,
périmetres compris) définis par toutes les combinaisons de
trois points de I'ensemble. (Y compris les combinaisons avec
répétition.)

11.  Pour qu’un point soit « intérieur » a U'enveloppe convexe d’un
ensemble de points (non alignés), il faut et il suffit quon
puisse trouver trois ou quatre points de I'ensemble tels que
le point considéré soit intérieur a leur enveloppe convexe.

Les énoncés 10 et 11 sont des cas particuliers, dans le plan,
de théorémes généraux établis par E. StriniTz [54] et W. Gus-
TIN [17]. Cf aussi O. HaNNER-H. Rapstrom [20] et C. V. Ro-
BINSON [49].
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Deux ensembles sont « séparables » §’il est possible de trouver
une droite qui ne traverse aucun des deux et les sépare I'un de
Iautre. Il est équivalent de dire qu’ils sont situés dans chacun
des demi-plans limités par la droite (limite exclue). Cette pro-
priété est caractérisée par le critére suivant établi par P. KircH-
BERGER [29]. (Cf. aussi H. RapEmMAcHER-I. J. SCHOENBERG [44]):

12.  Pour que deux ensembles, fermés et bornés, sotent séparables,
il suffit (et il faut) qu’il en soit de méme pour chacun des
couples de leurs sous-ensembles respectifs dont la réunion
comprend au plus quatre points.

13. Tout ensemble de points, comprenant au moins quatre points,
peut étre regardé comme la réunion de deux sous-ensembles,
non vides, sans point commun et non-séparables.

Voir a ce sujet F. W. Levi[36] et R. Rapo [46].

Les propriétés suivantes gravitent autour du céléebre théo-
reme de HELLy. Les nombreuses variantes de méme type, con-
cernant en général des « ovales», forment une théorie carac-
téristique de la géométrie combinatoire convexe. On appellera
«ovale» (Eibereich) un ensemble de points convexe, borné et
fermé.

14. Pour que tous les ovales d’un ensemble (en nombre fint ou
infint) aient (auw moins) un point commun, il suffit (et il
faut) qu’il en soit ainsi pour chaque combinaison de trois
d’entre eux.

C’est Papplication au plan du théoréme connu de HELLY-
Cf. E. HerLry [21], J. Rapon[48], D. Konic [35]... ete. Des
exemples simples montrent qu’il est impossible de remplacer les
combinaisons de trois ovales par des couples; sauf s’il existe
des conditions supplémentaires sur la forme des ovales.

C’est le cas de 1’énoncé suivant:

15. Pour que tous les rectangles (ou les parallélogrammes), a
cotés respectivement paralléles, d’un ensemble (en nombre
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fini ou infini) aient (au moins) un point commun, il suffit (et
il faut) qu’il en soit ainsi pour chaque couple d’entre eux.

En déplacant par translation un ovale qui n’est pas un paral-
lélogramme, on peut obtenir trois ovales n’ayant pas de point
commun mais tel que chaque couple de ces trois ovales aient
au moins un point commun. Toutefois cela est impossible pour
des parallélogrammes. L’énoncé 15, légérement modifié, est
donc une propriété caractéristique des parallélogrammes. Cf. &
ce sujet B. Sz.-Nacy [41].

L’application a la droite du théoréme de Helly est un cas
particulier du théoréeme 15.

16. Pour que les segments, appartenant a une méme drotte, d’'un
ensemble (en nombre fini ou infint) atent (au moins) un
point commun, il suffit (et il faut) qu’il en soit ainst pour
chaque couple d’entre euz.

On peut facilement, et en vue de nombreuses applications,
établir pour la circonférence un théoréeme du méme type que
celui de Helly. On y remplace les ovales par des arcs « fermés »,
c’est-a-dire extrémités comprises, appartenant, bien entendu, a
une méme circonférence.

17.  Pour que les arcs, inférieurs a une demi-circonférence, d’un
ensemble (en nombre fini ou infini), appartenant a une méme
circonférence, aient (au moins) un point commun, il suffit
qu’il en soit ainsi pour chaque combinaison de trois d’entre
euz.

La condition de longueur des arcs est essentielle, car la pro-
priété n’est plus vraie pour un ensemble de demi-circonférences.
Il suffit, en effet, de considérer les quatre demi-circonférences
limitées par deux couples de points diamétralement opposés.
Elles n’ont pas de point commun et cependant chacune des
combinaisons de trois d’entre elles en a au moins un.

De méme la propriété n’est plus vraie, sans modifications,
pour des couples d’arcs. Il suffit de considérer le découpage
d’une circonférence en trois arcs égaux: ceux-ci sont sans point
commun et cependant chaque couple a un point commun.
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La propriété peut devenir vraie pour les couples par une
limitation plus stricte de la longueur des ares:

18. Pour que les arcs, inférieurs a un tiers de circonférence, d’un
ensemble (en nombre fini ou infini), appartenant a une
méme circonférence, aient (au moins) un point commun, il
suffit qu’il en soit ainsi pour chaque couple d’entre eux.

On peut encore énoncer une propriété analogue, de conclu-
sion un peu différente, sans condition de limitation de longueur
des arcs.

19. Pour qu’il existe (au moins) un diamétre qui coupe tous les
arcs d’un ensemble, appartenant a une méme circonférence,
Ul suffit que chaque couple de ces arcs ait (au moins) un point
commun.

Il est équivalent de dire que si cette condition suffisante est
remplie, on peut trouver deux points diamétralement opposés
tels que tout arc de ’ensemble contienne (au moins) I'un des
deux. Des théorémes analogues ont été établis, entre autres, par
C. V. RoBinson [49] et A. HorN-A. VALENTINE [25]. De belles
applications, signalées ci-dessous, ont été données par P. Vin-
CENSINI [59].

20. Pour qu’on puisse trouver une translation amenant un ovale
donné a étre contenu dans 'intersection d’un ensemble d’ovales
il suffit que, pour chaque combinaison de trois ovales de l'en-
semble il existe une telle translation.

21. Pour qu’on puisse trouver une translation amenant un ovale

donné d rencontrer tous les ovales d’un ensemble, il suffit que

7 Y

pour chaque combinaison de trois ovales de Uensemble 1l
existe une telle translation.

22, Pour qu’on puisse trouver une translation amenant un ovale
donné a contenir tous les ovales d’un ensemble (ou leur réu-
nion ), il suffit que, pour chaque combinaison de trois ovales
de Uensemble il existe une telle translation.

Ce sont des applications au plan de variantes plus générales
du théoréme de Helly énoncées par P. VINCENSINI[D8] et
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V. L. KLeE jr. [32] pour des hyper-espaces. Les théoremes ne
sont vrais, dans le plan, que pour des déplacements de trans-
lation et ne s’appliquent plus pour des rotations.

Voici notamment, un contre-exemple du théoréme 21. On
considére un ensemble de n cercles (n > 2) dont les centres ont

Fic. 3

pour coordonnées polaires: p = 1 et ¢ = 2kn/n(k =1,...,n)
et dont les rayons sont r = cos? (w/n) si n est pair et

r = cos? (w/n) + cos? (w/2n) — 1

si n est impair. On peut alors vérifier qu’il est toujours possible,
par un déplacement, non reductible & une translation, d’amener
un segment de droite de longueur 2 (ce qui est un ovale aplati)
a traverser chacune des combinaisons de n — 1 cercles; mais
qu’il est impossible de lul faire traverser les n cercles en méme
temps.

La figure 3 1llustre cet exemple pour n = 8.

23.  Pour que, par un point quelconque du plan, on puisse tou-
jours faire passer une droite rencontrant tous les ovales d’un
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ensemble, il suffit que chaque couple de ces ovales ait (au
moins) un point commun.

24. Pour que, parallélement a une direction quelconque du plan,
on puisse toujours mener une droite renconirant tous les
ovales d’un ensemble, il suffit que chaque couple de ces ovales
ait (au moins) un point commun.

Ces deux énoncés sont aussi des cas particuliers, pour le plan,
de théoréemes plus généraux de A. Horn [24] et de V. L. KLEE
Jr [30]. Ils donnent des exemples de propriétés entrainées par
«une condition suffisante de Helly» vérifiée par des couples
au lieu de combinaisons de trois ovales.

On peut aussi se demander s’il est possible d’obtenir un
théoréeme analogue a celui de Helly en remplacant la recherche
d’un point commun par celle d’'une sécante commune. L’exis-
tence d’une droite rencontrant tous les ovales d’'un ensemble
peut-elle résulter de ’existence d’une sécante commune a chaque
combinaison d’'un certain nombre . de ces ovales ?

Une telle propriété n’existe pas. Et ¢’est ainsi que L. A. SAN-
TALO [D0] a montré qu’il est possible de construire un ensemble
de n ovales, sans sécante commune et tel cependant qu’il en
existe une pour chaque combinaison de n — 1 de ces ovales.

(C’est aussi ce que prouve l'exemple indiqué a propos de
I’énoncé 21. On peut cependant obtenir des théoremes de ce
genre en ajoutant des conditions supplémentaires pour la forme
et pour la position des ovales. Cest ainsi que L. A. SANTALO [50]
a démontré que, pour un ensemble de rectangles a cotés paral-
leles, il existe une sécante commune s’il en existe une pour
chaque combinaison de six de ces rectangles. C’est aussi le cas de
I’énoncé suivant:

25. Pour qu’il existe une droite « montante» traversant tous les
rectangles d cotés paralléles d’un ensemble, il suffit qu’il en
soit ainst pour chaque combinaison de trois rectangles de
'ensemble.

Par droite « montante » on entend une droite qui a un coeffi-
cient angulaire positif par rapport & un systéme d’axes paral-
leles aux cotés des rectangles, comme I'indique la figure 4.
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Dans Pexemple de la figure 3 qui prouve qu’il n’existe pas,
dans le cas général, de nombre de Helly pour une condition
suffisante d’existence d’une sécante commune a un ensemble
d’ovales, on peut remarquer que les ovales se recouvrent partiel-
lement les uns les autres. On peut se demander si cette circons-
tance n’est pas trop particuliére et étudier le cas ou les ovales
n’ont, deux & deux, aucun point commun. A cette question qui
a été posée par V. L. KiLEE [33] la réponse est négative.

‘ /

/

A

/

Fic. 4

Pour le montrer, on peut construire une rosace de segments
circulaires. Sur 2n (n > 1) circonférences concentriques Ki
(t de 1 & 2n) de centre Z et de rayons R; (0 < R; < R;;) o
construit des couples de segments S, et S symétriques par
rapport & Z. Chaque segment est défini par les coordonnées
polaires des points de I’arc qui le limite sur le cercle R;:

S, e=R;0—n+1)n2n<oe<(t+nrn—1) n/2n
SSe=R;0C+nrn+1=x2n<¢ <@+ 3n—1)x/2n.

Cette rosace vérifie les propriétés suivantes:

A. En choisissant convenablement ’accroissement des rayons
R,, on peut construire des segments sans point commun
deux & deux. La figure 5 en donne un exemple pour n = 2.
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B.

C.

D.

H. HADWIGER ET H. DEBRUNNER

Il n’existe aucune droite traversant les 4n segments. Un
diameétre d’angle polaire compris dans l'intervalle 0, w/2n
ne rencontre aucun des deux segments S et S, et méme
les sépare. Il en résulte que 'un au moins de ces segments
n’est pas traversé par une droite parallele a ce diameéetre.
Par des rotations d’angle =/2n on complete le raisonnement.

o

~_ | 7

Fic. 5

(Quels que soient les R;) il n’existe aucun point commun
aux 4n segments. C’est une conséquence évidente de B.

Si tous les R, sont égaux & R, pour chaque combinaison de
2n — 1 couples de segments, il existe au moins un couple de
points diamétralement opposés qui leur soit commun. Il
suffit de considérer tous les couples de segments sauf S, et S;.
Les deux points d’angle polaire 0 et = leurs sont communs.
Les rotations d’angle multiples de =/2r, qui échangent les
segments, montrent qu’il en est de méme pour chaque combi-
naison de 2n — 1 ‘couples.

Si tous les R; sont égaux a R, il n’existe aucun couple de
points diamétralement opposés appartenant aux 2n couples

de segments. C’est une conséquence évidente de B.
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F. De D on déduit que toute combinaison de 2n — 1 couples
de segments est traversée par un diamétre. Mais cette pro-
priété reste vraie méme si les rayons ne sont plus égaux et,
en particulier, lorsque les segments pris, deux a deux, n’ont
pas de point commun (comme dans la propriété A).

G. Si tous les R, sont égaux a R, pour chaque combinaison de
2n — 1 segments, il existe deux points tels que chacun de ces
segments contienne au moins I'un des deux points. C’est une
conséquence de D.

H. On ne peut pas trouver de couple de points tel que chacun
des 4n segments contienne au moins 'un des points de ce
couple. C’est une conséquence évidente de B.

Les propriétés A, B et F fournissent une réponse négative
a la question posée ci-dessus. La méme rosace permet de montrer
I'impossibilité de diverses propriétés analogue a celle de Helly.

A loccasion d’un travail de L. A. SANTALO [51], Th. MoTzKIN
a donné un contre-exemple de I’énoncé suivant: pour que tous
les couples d'un ensemble de couples d’ovales aient au moins
un point commun, il suffirait qu’il en soit ainsi pour chaque
combinaison d’un certain nombre 2 de ces couples. Cest égale-
ment ce que montre ’exemple de la rosace; propriétés D et E
(dans le cas de rayons égaux).

V. L. KLEE jr.[31] a cherché & trouver un nombre % de Helly
vérifiant 1’énoncé suivant: Pour que chacun des ovales d’un
ensemble contienne au moins I'un des deux points d’un couple
1l suffirait qu’il en soit ainsi pour chaque combinaison de % de
ces ovales. L’exemple de la rosace montre encore qu’il n’en
existe pas. Il suffit de considérer les propriétés G et H.

On ne sait pas encore s’il existe un nombre 4 de Helly dans
le cas d’un ensemble d’ovales « congruents » (ou déduits de 'un
d’eux par translation), deux a deux sans point commun, et
dont on cherche s’ils ont une sécante commune, s’il en est ainsi
pour chaque combinaison de % de ces ovales. On peut d’abord
se poser la question pour des cercles; I'existence de A apparait
alors plausible, mais on n’en a pas de preuve. Il faudrait en
tout cas, que £ soit au moins égal a 5 ainsi que le montre
la figure 6.

L’Enseignement mathém., t. III, fasc. I.

s
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En revanche, on a pu établir le théoréme suivant pour des
ensembles d’ovales homothétiques:

26. Pour que, relativement & un ensemble d’ovales homothétiques,
il existe un systéme de quatre droites formant un rectangle,
telles que chaque ovale soit traversé par au moins ['une
d’entre elles, il suffit que, pour chaque combinaison de quatre
ovales de Uensemble, il existe (au moins) une sécante
commune.

Fi1Gc. 6

Nous terminerons ce groupe de théorémes en indiquant un
énoncé du type de Helly, découvert par P. VinceENsini[H9].
On dira qu’un ensemble d’ovales est « totalement séparable »
lorsqu’il existe une direction de droite, telle que toute droite
paralléle a cette direction ne traverse au plus qu’un seul ovale de
I’ensemble. On peut alors tracer, dans le plan, des bandes a
bords paralleles a cette direction, deux & deux sans point com-
mun, et telles que chaque bande contienne un et un seul ovale
(comme 'indique la figure 7).

27. Pour qu’il existe une droite traversant tous les ovales d’un
ensemble totalement séparable, il suffit qu’il en soit ainst pour
chaque combinaison de trois ovales de l'ensemble.
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La propriété avait été établie par P. VINCENSINI pour des
combinaisons de & = 4 ovales. V. L. KLEE jr.[34] a montré
qu’elle était vraie pour & seulement égal a trois. Cette propriété
a pour cas particulier le théoréme suivant énoncé par L. A. SAN-
TaL6 [50] (Voir aussi H. RapemacHER-I. J. Scn@®NBERG [44]):

\

Fic. 7

Pour qu’il existe une sécante commune & un ensemble de
segments de droites, strictement paralleles entre eux (donc tota-
lement séparables) il suffit que la propriété soit vraie pour
chaque combinaison de trois segments de 1’ensemble.

Au sujet du théoréme 27, on peut modifier la condition de la
séparation totale pour des ovales suffisamment clairsemés, ce qui
peut étre exprimé par les grandeurs des angles apparents comme
I'indiquent la figure 8 et le théoréme suivant.

28. Pour qu'un ensemble d’ovales soit totalement séparable, il
suffit que de tout point du plan on ne puisse voir plus d’un
ovale sous un angle apparent au moins égal a =/3 et que,
pour chaque combinaison de quatre ovales de ensemble, il
existe (au moins) une sécante commune.

On termine par quelques énoncés, plus ou moins apparentés
au théoreme connu de H. W. Jun[26] sur la grandeur de
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Penveloppe circulaire d’un ensemble de points de diamétre donné.
Précisons d’abord quelques notions:

Un ensemble de points est « borné» §’il peut étre recouvert
par un cercle fermé.

En vue des théoremes suivants nous dirons qu’un ensemble
de droites est « borné» lorsqu’il ne contient pas de couple de
droites paralleles, et que les points d’intersection de tous les
couples de droites forment un ensemble borné.

Fic. 8

Le « rayon de recouvrement » d’un ensemble borné de points
est le rayon du plus petit cercle (fermé) qui contient tous les
points de ’ensemble. Par analogie on appellera « rayon d’inter-
section » d’'un ensemble borné de droites, le rayon du plus petit
cercle (fermé) coupé par toutes les droites de 'ensemble.

Le « diameétre» d’un ensemble borné de points est la limite
supérieure des distances de ses couples de points. Par analogie,
on appellera diametre d’un ensemble borné de droites, le diameétre
de I’ensemble des points d’intersection.

29, Pour qu'il existe un cercle de rayon R recouvrant tous les
points d’un ensemble borné il suffit que, pour chaque combi-
naison de trois de ces points, il existe au moins un cercle
de rayon R la recouvrant.
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30. Pour qu'il existe un cercle de rayon R rencontrant toutes les
droites d’un ensemble borné, il suffit que, pour toute combi-
naison de trois de ces droites, il existe au moins un cercle
de rayon R les rencontrant.

Ce sont des conséquences du théoréme 21.

31. Le rayon de recousrement d’un ensemble borné de points dont
le diamétre est égal a 1, est au plus égal a 1:4/3.

C’est un cas particulier, pour le plan, du théoréme de Junc.
H. RapemacHER et O. T@priTz[45] en donnent un expose
détaillé.
32. Le rayon d’intersection d’un ensemble borné de droites dont le
diamétre est égal a 1, est au plus égal d 1/2+/3.
C’est la transformation par dualité du théoreme de Juna.

33. Tout ensemble borné de points dont le diamétre est égal a 1,
peut étre recouvert par un triangle équilatéral de coté +/3.

34. Tout ensemble borné de points dont le diamétre est égal a I,
peul éire recouvert par un hexagone de coté 1: 4/ 3.

Un domaine qui peut recouvrir tout ensemble de points dont
le diameétre est égal a 1, est appellé « couvercle» (normal). Le
cercle de rayon 1/4/3 est le couvercle de Juna. Le triangle équi-
latéral et I’hexagone circonscrits au cercle de diametre égal a 1
sont des couvercles. L’énoncé 33 est un cas particulier pour le
plan, d’un théoreme établi par D. GaLE [15], correspondant au
théoréme de Juwa. Le théoréme 34 est di a S. PAvL[42].

35. Tout ensemble borné de points dont le diamétre est égal a 1,
peut étre recouvert par trois ensembles de points dont les
diamétres ne dépassent pas 4/ 3/2.

(est une forme plus précise, donnée par D. Gark [15] d’un
théoréme di & K. Borsuk [5] qui exprime que, dans le plan, tout
ensemble de points peut étre considéré comme la réunion de
trois sous-ensembles de diameétres inférieurs. K. Borsuk avait
suggéré qu’'un ensemble de points, dans un espace de k& dimen-
sions pourrait étre décomposé en k& + 1 sous-ensembles de dia-
metres inférieurs. Cette propriété a été établie pour £ = 3 par
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H. G. EccLEsTon [10]; elle n’a pas encore été démontrée pour
k> 3.

Le théoréme ci-dessus de K. Borsuk, non compris la préci-
sion de D. GALE, est aussi une conséquence, dans le cas d’un
ensemble d’'un nombre fini de points du plan, du théoréme
suivant sur le nombre de couples de points dont la distance est,
égale au diametre de I’ensemble.

36. Dans un ensemble, d’'un nombre fini n de points, dont le
diameétre est égal a 1, il y a au plus n couples distincts de
points dont la distance est égale a 1.

On en trouve une bréve démonstration dans P. Erpos [13]
— Cf. aussi H. Hopr et E. PanNwiTz [23].

Les relations étroites entre tous ces groupes de théorémes
sont mises en évidence par la conséquence suivante du théoréme

34 énoncée sous une forme analogue & celle du théoréeme de
Helly.

37. Pour que, dans un ensemble de cercles de rayon égal a 1, on
puisse construire un triangle équilatéral de coté égal a 1,
dont chaque cercle de l'ensemble contienne au moins l'un des
sommets, il suffit que chaque couple de cercles de I’ensemble
ait au moins un point commun.

On trouve dans L. FEsEs-TOTH [14] — page 97 — des énoncés
analogues qui ne sont encore que partiellement démontrés.

2me PARTIE

Nous donnons ci-dessous de courtes démonstrations des
théorémes qui précédent, d’apres les sources indiquées. Nous nous
bornons souvent a la suite des idées. Les raisonnements ne
supposent que des propositions préalables élémentaires notam-
ment des considérations simples sur les ensembles de points.

1. On raisonne par I'absurde: on considere des points P,
vérifiant les conditions de ’hypothése et non alignés. On peut,
en effectuant éventuellement une transformation projective

supposer 'un d’eux P; a I'infini. Les droites joignant tous les
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