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CHOIX DE QUELQUES PROBLÈMES DE GÉOMÉTRIE
COMBINATOIRE DANS LE PLAN1

PAR

H. Hadwiger et H. Debrunner, Berne.

Il existe des domaines des sciences mathématiques où l'on
passe sans transition de théories élémentaires à des problèmes
plus difficiles qui ne sont même encore que partiellement résolus.
C'est ainsi que des propriétés très simples enseignées dans les

classes s'apparentent à d'autres d'un grand intérêt scientifique
et abordées seulement par des spécialistes. Il y a donc un certain
avantage à ne pas séparer, comme on le fait habituellement, ces
deux domaines en utilisant des théories difficiles, longuement
développées et formées de toute une gamme de notions empilées
les unes sur les autres.

Il en est ainsi de la géométrie combinatoire, qui, limitée au
plan, présente un caractère particulièrement simple. Ses
problèmes sont en rapport étroit avec les propriétés de la géométrie
élémentaire et ne font intervenir que les opérations et les
relations primordiales: recouvrements, intersections, décompositions...

ainsi que le dénombrement des combinaisons.
C'est un domaine proche de la topologie, mais les notions

générales de topologie y sont moins nécessaires et les problèmes
peuvent s'y résoudre par des méthodes élémentaires. On trouvera

dans H. Hopf [22] un exposé plus détaillé de la corrélation
entre les points de vue topologique et métrique en géométrie
combinatoire.

i L'article allemand a paru dans le Tome I, 2me Série de L'Enseignement
mathématique, 1955, pages 56 à 89. La traduction française a été assurée par le « Service de
documentation du Centre national français de la Recherche scientifique ». Elle a été
revue et légèrement adaptée à la langue mathématique française par J. Chatelet.
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Le rapprochement que nous avons entrepris entre de
nombreux problèmes n'est pas d'ailleurs strictement limité au cadre
de cette géométrie combinatoire. C'est un petit noyau de tout un
ensemble de questions qui peut exercer une impulsion singulière
en raison de la simplicité des propriétés et de l'aspect purement
combinatoire de leurs hypothèses.

C'est pour suivre cette directive et pour nous conformer à la
tendance qui fait passer méthodiquement et rationnellement du
domaine des mathématiques classiques à des procédés plus
modernes et à des possibilités attrayantes, que nous présentons au
lecteur les exemples qui suivent.

Ils ne supposent, en plus des principes généraux de la
géométrie élémentaire et de la théorie des nombres réels, que peu
de connaissances préalables. Il est utile cependant d'être
familiarisé avec la notion d'ensemble et plus spécialement avec celle
des ensembles de points. Quelques définitions sont, éventuellement,

précisées dans le texte.
Dans la première partie on a donné un choix de théorèmes,

groupés par énoncés, sans démonstration, mais avec un commentaire

et des références. Dans la deuxième partie, on trouvera les

démonstrations, ou tout au moins leurs esquisses. Les lecteurs
qui s'y intéresseront particulièrement, pourront se reporter aux
nombreux travaux indiqués et poursuivre eux-mêmes la recherche

des problèmes qui ne sont pas encore résolus et dont nous
avons signalé quelques-uns.

Nous espérons avoir ainsi éveillé chez les lecteurs un intérêt
plus grand pour des questions passionnantes et avoir augmenté
l'efficacité des liens qui existent entre les connaissances élémentaires

de la géométrie et la recherche scientifique.

lre Partie

Un premier groupe de quatre théorèmes concerne des conditions

d'appartenance de points à une droite ou à une circonférence.

1. Pour que les points (Pun ensemble, en nombre fini (au moins

égal à trois), soient alignés, il suffit (et il faut, manifestement)
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que, pour chaque couple d'entre eux, la droite qui les joint
contienne au moins un troisième point, distinct, de Vensemble.

De ce théorème, entrevu en 1893 par J. J. Sylvester [55], il
existe une brève démonstration de T. Gallai (Grunwald) citée

par N. G. de Bruijn-P. Erdos[6]; elle en fait une application
d'un théorème purement combinatoire. On trouvera d'autres
démonstrations ainsi que des généralisations et des variantes
dans les travaux cités de P. Erdös [11]; H. S. M. Coxeter [7];
G. A. Dirac [9] et Th. Motzkin [39].

2. Pour que les droites dun ensemble, en nombre fini (au moins
égal à trois), soient concourantes, il suffit (et il faut, manifestement)

que, pour chaque couple d'entre elles, passe par leur
point dintersection au moins une troisième droite, distincte,
de Vensemble.

Les conclusions de ces théorèmes 1 et 2 ne sont plus vraies
lorsque les ensembles de points ou de droites ont un nombre
infini d'éléments. C'est ce que montre, pour les deux énoncés
à la fois, l'exemple de la figure 1 qui représente un ensemble
infini dénombrable de points et de droites.
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3. Pour que les points d'un ensemble, en nombre fini (au moins
égal à quatre), appartiennent à une même circonférence, il
suffit (et il faut, manifestement) que pour chaque combinaison
de trois dentre eux, la circonférence (qui peut être dégénérée

en droite) qui les contient, contienne au moins un quatrième
point, distinct de Vensemble.

Etroitement apparenté au théorème 3, dans ses hypothèses et
sa conclusion, le théorème suivant concerne un ensemble de

points, borné (c'est-à-dire contenu dans un cercle de rayon fini)
et fermé (c'est-à-dire contenant ses points d'accumulation).

4. Pour que les points dun ensemble borné et fermé, en nombre

fini ou infini, appartiennent à une même circonférence, il
suffit (sans que cela soit nécessaire) que Vaxe de symétrie
de chaque couple dentre eux soit axe de symétrie de tout
V ensemble.

Les conclusions des théorèmes 3 et 4 ne sont plus vraies
lorsque l'ensemble de points n'est pas borné. L'ensemble de

tous les points du plan en est un exemple. On peut aussi
constituer un ensemble dénombrable de points, non fermé, qui
vérifieles autres hypothèses des théorèmes 3 et 4 sans que ces

points appartiennent à une même circonférence:
En partant d'un système A0 de quatre points, qui ne sont ni

alignés ni sur une même circonférence, on construit par récurrence

une suite ascendante d'ensembles de points An 9 (An_t).
L'expression 9 (A) désigne la réunion des ensembles symétriques
de A relativement à chacun des axes de symétrie de tous les

couples de points de A. On voit aisément que la réunion des An
est un ensemble dénombrable de points, en nombre infini, qui
possède la propriété de symétrie du théorème 4. En outre, toute

circonférence passant par trois points de l'ensemble contient
un quatrième point distinct, sauf si ces trois points forment
un triangle équilatéral. On peut même éviter cette exception
par une généralisation très simple de la construction 9 (A).

*
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Nous indiquons maintenant une série de théorèmes dans

lesquels les longueurs ont pour mesures des nombres entiers

ou rationnels.
On appelle « réseau » plan l'ensemble des points dont les

coordonnées relatives à deux, axes rectangulaires d'un plan sont
des nombres entiers.

5. Le carré est le seul polygone régulier qui peut être inscrit dans

un réseau; c'est-à-dire dont on peut choisir les sommets parmi
les points d'un réseau.

Une démonstration originale a été donnée par W. Scher-
rer [52]; en ce qui concerne l'impossibilité d'inscrire un triangle
dans un réseau, on peut voir aussi le problème 238 de G. Polya-
G. Szegö [43] Vol. 2, p. 156.

La possibilité d'inscription d'un carré, en dehors du cas

trivial, est en évidence dans la figure 2.

Le théorème suivant concerne les angles d'un losange inscrit
dans un réseau.

6. Pour tout losange, non carré, d'angle aigu oc, inscrit dans un
réseau, le rapport cc/n est irrationnel. Autrement dit, le carré
est le seul losange inscrit dans un réseau dont les angles sont
commensurables avec iz.

En relation étroite avec le précédent, l'énoncé suivant
concerne les triangles de Pythagore, c'est-à-dire les triangles rec-
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tangles dont les trois côtés ont des longueurs proportionnelles
à des nombres entiers.

7. Dans tout triangle de Pythagore les angles aigus sont incom¬

mensurables avec 7t.

Les théorèmes 6 et 7 sont des expressions géométriques de

la propriété trigonométrique suivante: (Cf. H. Hadwiger [18]) :

8. Le seul angle aigu commensurable avec n dont le cosinus est

un nombre rationnel est a tt/3.

Le théorème suivant dû à P. Erdös [12] (Voir aussi A. Delachet

[8] p. 50 et E. Trost [57]) est un exemple particulièrement
typique d'énoncés d'un type nouveau en ce sens que d'hypothèses

très simples résulte une conséquence inattendue et précise.

9. Pour que les points d'un ensemble, en nombre infini, soient

alignés, il suffit que, pour chaque couple d'entre eux, la longueur
de leur segment soit un nombre entier.

Il y a lieu de remarquer que cette conclusion ne subsiste pas
si les points sont en nombre fini /c, même très grand. On peut
même, pour toute valeur de /c, construire un ensemble de k points
dont les distances mutuelles sont mesurées par des nombres
entiers, sans qu'aucune des combinaisons de trois d'entre eux
n'appartienne à une droite. De telles constructions ont été faites
à maintes reprises, notamment par M. Altwegg [1], A. Müller

[40] et F. Steiger [53].
D'après A. Müller, on peut construire un ensemble dénom-

brable de points, dense sur une circonférence de rayon 1 et tel
que la longueur du segment de chaque couple d'entre eux soit

un nombre rationnel. Ce sont les points Pn de coordonnées

polaires: p— 1 cp 2n% avec cos 0 4/5.
D'après le théorème 8, l'angle 0 est incommensurable avec

7i; tous les points Pn sont différents sur la circonférence de

rayon 1 ; ils forment un ensemble dense qui est même de répartition

uniforme d'après le théorème d'équipartition de H. Weyl
(ce qui est toutefois sans importance pour le théorème considéré).

La distance de deux points est:

d (Pn, Pm) 2 ] sin (^ — m) 0 | avec sin 0 3/5, cos 0 4/5.
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Elle est rationnelle par application des formules de multiplication

des arcs. Dans un tel ensemble il suffit de prendre k

points. Avec un choix convenable de l'unité les longueurs des

segments qui joignent ces points deux à deux sont des nombres

entiers et cependant aucune combinaison de trois de ces points

n'appartient à une droite.

** *

Les théorèmes du groupe suivant sont relatifs aux enveloppes

et à la séparation des ensembles de points. Précisons d'abord
quelques notions: un ensemble de points est convexe si, pour
chaque couple de ses points, tous les points du segment
joignant les points du couple appartiennent à l'ensemble.

L'enveloppe convexe d'un ensemble de points est le plus petit
ensemble convexe qui le contient; il est équivalent de dire que
c'est l'intersection de tous les ensembles convexes qui le

contiennent.

10. Pour qu'un point appartienne à Vensemble convexe d'un
ensemble de points, en nombre fini ou infini, il faut (et il
suffit) qu'on puisse trouver un, deux ou trois points de

l'ensemble dont l'enveloppe convexe contienne ce point.

Il résulte de cet énoncé que l'enveloppe convexe d'un ensemble

de points est la réunion des domaines triangulaires (triangles,
périmètres compris) définis par toutes les combinaisons de

trois points de l'ensemble. (Y compris les combinaisons avec
répétition.)

11. Pour qu'un point soit « intérieur » à l'enveloppe convexe d'un
ensemble de points (non alignés), il faut et il suffit qu'on
puisse trouver trois ou quatre points de l'ensemble tels que
le point considéré soit intérieur à leur enveloppe convexe.

Les énoncés 10 et 11 sont des cas particuliers, dans le plan,
de théorèmes généraux établis par E. Steinitz [54] et W. Güstin

[17]. Cf aussi 0. Hanner-H. Radström [20] et C. V.
Robinson [49].
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Deux ensembles sont « séparables » s'il est possible de trouver
une droite qui ne traverse aucun des deux et les sépare l'un de

l'autre. Il est équivalent de dire qu'ils sont situés dans chacun
des demi-plans limités par la droite (limite exclue). Cette
propriété est caractérisée par le critère suivant établi par P. Kmcn-
berger[29]. (Cf. aussi H. Rademacher-I. J. Schoenberg [44]) :

12. Pour que deux ensembles, fermés et bornés, soient séparables,
il suffit (et il faut) qu'il en soit de même pour chacun des

couples de leurs sous-ensembles respectifs dont la réunion
comprend au plus quatre points.

13. Tout ensemble de points, comprenant au moins quatre points,
peut être regardé comme la réunion de deux sous-ensembles,

non vides, sans point commun et non-séparables.
Voir à ce sujet F. W. Levi [36] et R. Rado [46].

** *

Les propriétés suivantes gravitent autour du célèbre théorème

de Helly. Les nombreuses variantes de même type,
concernant en général des « ovales », forment une théorie
caractéristique de la géométrie combinatoire convexe. On appellera
« ovale » (Eibereich) un ensemble de points convexe, borné et
fermé.

14. Pour que tous les ovales d'un ensemble (en nombre fini ou

infini) aient (au moins) un point commun, il suffit (et il
faut) qu'il en soit ainsi pour chaque combinaison de trois
d'entre eux.

C'est l'application au plan du théorème connu de Helly-
Cf. E. Helly [21], J. Radon [48], D. König [35]... etc. Des

exemples simples montrent qu'il est impossible de remplacer les

combinaisons de trois ovales par des couples; sauf s'il existe
des conditions supplémentaires sur la forme des ovales.

C'est le cas de l'énoncé suivant:

15. Pour que tous les rectangles (ou les parallélogrammes), à

côtés respectivement parallèles, d'un ensemble (en nombre
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fini ou infini) aient (au moins) un point commun, il suffit (et

il faut) qu'il en soit ainsi pour chaque couple d'entre eux.

En déplaçant par translation un ovale qui n'est pas un
parallélogramme, on peut obtenir trois ovales n'ayant pas de point
commun mais tel que chaque couple de ces trois ovales aient
au moins un point commun. Toutefois cela est impossible pour
des parallélogrammes. L'énoncé 15, légèrement modifié, est

donc une propriété caractéristique des parallélogrammes. Cf. à

ce sujet B. Sz.-Nagy [41].

L'application à la droite du théorème de Helly est un cas

particulier du théorème 15.

16. Pour que les segments, appartenant à une même droite, d'un
ensemble (en nombre fini ou infini) aient (au moins) un
point commun, il suffit (et il faut) qu'il en soit ainsi pour
chaque couple d'entre eux.

On peut facilement, et en vue de nombreuses applications,
établir pour la circonférence un théorème du même type que
celui de Helly. On y remplace les ovales par des arcs « fermés »,

c'est-à-dire extrémités comprises, appartenant, bien entendu, à

une même circonférence.

17. Pour que les arcs, inférieurs à une demi-circonférence, d'un
ensemble (en nombre fini ou infini), appartenant à une même

circonférence, aient (au moins) un point commun, il suffit
qu'il en soit ainsi pour chaque combinaison de trois d'entre
eux.

La condition de longueur des arcs est essentielle, car la
propriété n'est plus vraie pour un ensemble de demi-circonférences.
Il suffit, en effet, de considérer les quatre demi-circonférences
limitées par deux couples de points diamétralement opposés.
Elles n'ont pas de point commun et cependant chacune des
combinaisons de trois d'entre elles en a au moins un.

De même la propriété n'est plus vraie, sans modifications,
pour des couples d'arcs. Il suffit de considérer le découpage
d'une circonférence en trois arcs égaux: ceux-ci sont sans point
commun et cependant chaque couple a un point commun.
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La propriété peut devenir vraie pour les couples par une
limitation plus stricte de la longueur des arcs :

18. Pour que les arcs, inférieurs à un tiers de circonférence, d'un
ensemble (en nombre fini ou infini), appartenant à une
même circonférence, aient (au moins) un point commun, il
suffit qu'il en soit ainsi pour chaque couple d'entre eux.

On peut encore énoncer une propriété analogue, de conclusion

un peu différente, sans condition de limitation de longueur
des arcs.

19. Pour qu'il existe (au moins) un diamètre qui coupe tous les

arcs d'un ensemble, appartenant à une même circonférence,
il suffit que chaque couple de ces arcs ait (au moins) un point
commun.

Il est équivalent de dire que si cette condition suffisante est

remplie, on peut trouver deux points diamétralement opposés
tels que tout arc de l'ensemble contienne (au moins) l'un des

deux. Des théorèmes analogues ont été établis, entre autres, par
C. V. Robinson [49] et A. Horn-A. Valentine [25]. De belles

applications, signalées ci-dessous, ont été données par P. Vin-
CENSINI [59].

20. Pour qu'on puisse trouver une translation amenant un ovale

donné à être contenu dans l'intersection d'un ensemble d'ovales

il suffit que, pour chaque combinaison de trois ovales de

l'ensemble il existe une telle translation.

21. Pour qu'on puisse trouver une translation amenant un ovale

donné à rencontrer tous les ovales d'un ensemble, il suffit que,

pour chaque combinaison de trois ovales de l'ensemble il
existe une telle translation.

22. Pour qu'on puisse trouver une translation amenant un ovale

donné à contenir tous les ovales d'un ensemble (ou leur
réunion), il suffit que, pour chaque combinaison de trois ovales

de l'ensemble il existe une telle translation.

Ce sont des applications au plan de variantes plus générales
du théorème de Helly énoncées par P. Vincensini [58] et
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V. L. Klee jr. [32] pour des hyper-espaces. Les théorèmes ne

sont vrais, dans le plan, que pour des déplacements de translation

et ne s'appliquent plus pour des rotations.
Voici notamment, un contre-exemple du théorème 21. On

considère un ensemble de n cercles (n > 2) dont les centres ont

Fig. 3

pour coordonnées polaires: p 1 et 9 2kizjn (k — 1, n)
et dont les rayons sont r cos2 (7r/ft) si n est pair et

r cos2 (tu/n) + cos2 (tc/2n) — 1

si n est impair. On peut alors vérifier qu'il est toujours possible,

par un déplacement, non réductible à une translation, d'amener
un segment de droite de longueur 2 (ce qui est un ovale aplati)
à traverser chacune des combinaisons de ft — 1 cercles; mais

qu'il est impossible de lui faire traverser les n cercles en même

temps.
La figure 3 illustre cet exemple pour n — 8.

23. Pour que, par un point quelconque du plan1 on puisse tou¬

jours faire passer une droite rencontrant tous les ovales d*un
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ensemble, il suffit que chaque couple de ces ovales ait (au
moins) un point commun.

24. Pour que, parallèlement à une direction quelconque du plan,
on puisse toujours mener une droite rencontrant tous les

ovales dun ensemble, il suffit que chaque couple de ces ovales

ait (au moins) un point commun.

Ces deux énoncés sont aussi des cas particuliers, pour le plan,
de théorèmes plus généraux de A. Horn [24] et de V. L. Klee
jr [30]. Ils donnent des exemples de propriétés entraînées par
«une condition suffisante de Helly» vérifiée par des couples
au lieu de combinaisons de trois ovales.

On peut aussi se demander s'il est possible d'obtenir un
théorème analogue à celui de Helly en remplaçant la recherche
d'un point commun par celle d'une sécante commune. L'existence

d'une droite rencontrant tous les ovales d'un ensemble

peut-elle résulter de l'existence d'une sécante commune à chaque
combinaison d'un certain nombre h de ces ovales

Une telle propriété n'existe pas. Et c'est ainsi que L. A. San-
talô [50] a montré qu'il est possible de construire un ensemble
de n ovales, sans sécante commune et tel cependant qu'il en
existe une pour chaque combinaison de n — 1 de ces ovales.

C'est aussi ce que prouve l'exemple indiqué à propos de

l'énoncé 21. On peut cependant obtenir des théorèmes de ce

genre en ajoutant des conditions supplémentaires pour la forme
et pour la position des ovales. C'est ainsi que L. A. Santalo [50]
a démontré que, pour un ensemble de rectangles à côtés parallèles,

il existe une sécante commune s'il en existe une pour
chaque combinaison de six de ces rectangles. C'est aussi le cas de

l'énoncé suivant:

25. Pour qu'il existe une droite « montante » traversant tous les

rectangles à côtés parallèles d'un ensemble, il suffit qu'il en

soit ainsi pour chaque combinaison de trois rectangles de

V ensemble.

Par droite « montante » on entend une droite qui a un coefficient

angulaire positif par rapport à un système d'axes parallèles

aux côtés des rectangles, comme l'indique la figure 4.
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Dans l'exemple de la figure 3 qui prouve qu'il n'existe pas,

dans le cas général, de nombre de Helly pour une condition

suffisante d'existence d'une sécante commune à un ensemble

d'ovales, on peut remarquer que les ovales se recouvrent partiellement

les uns les autres. On peut se demander si cette circonstance

n'est pas trop particulière et étudier le cas où les ovales

n'ont, deux à deux, aucun point commun. A cette question qui

a été posée par V. L. Klee [33] la réponse est négative.

Fig. 4

Pour le montrer, on peut construire une rosace de segments
circulaires. Sur 2n (n > 1) circonférences concentriques
(i de 1 à 2n) de centre Z et de rayons R^ (0 < R^ < Fq+i) on
construit des couples de segments et S* symétriques par
rapport à Z. Chaque segment est défini par les coordonnées
polaires des points de l'arc qui le limite sur le cercle R^:

Si p Rt; (i — n 1) nj2n <cp < (i -f- n — 1) tc/2n

S* p R^ ; (i + n + 1) tu/2n <cp < (i -f- 3n — 1) nßn.

Cette rosace vérifie les propriétés suivantes:

A. En choisissant convenablement l'accroissement des rayons
Ri? on peut construire des segments sans point commun
deux à deux. La figure 5 en donne un exemple pour n 2.
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B. Il n'existe aucune droite traversant les 4n segments. Un
diamètre d'angle polaire compris dans l'intervalle 0, rc/2n
ne rencontre aucun des deux segments Sn et S* et même
les sépare. Il en résulte que l'un au moins de ces segments
n'est pas traversé par une droite parallèle à ce diamètre.
Par des rotations d'angle nßn on complète le raisonnement.

G. (Quels que soient les RJ il n'existe aucun point commun
aux 4n segments. C'est une conséquence évidente de B.

D. Si tous les sont égaux à R, pour chaque combinaison de

2n — 1 couples de segments, il existe au moins un couple de

points diamétralement opposés qui leur soit commun. Il
suffît de considérer tous les couples de segments sauf Sn et S*.

Les deux points d'angle polaire 0 et iz leurs sont communs.
Les rotations d'angle multiples de tu/2n, qui échangent les

segments, montrent qu'il en est de même pour chaque combinaison

de 2n — 1 couples.

E. Si tous les Ri sont égaux à R, il n'existe aucun couple de

points diamétralement opposés appartenant aux 2n couples
de segments. C'est une conséquence évidente de B.
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F. De D on déduit que toute combinaison de 2n — 1 couples
de segments est traversée par un diamètre. Mais cette
propriété reste vraie même si les rayons ne sont plus égaux et,

en particulier, lorsque les segments pris, deux à deux, n'ont
pas de point commun (comme dans la propriété A).

G. Si tous les Ri sont égaux à R, pour chaque combinaison de

2n — 1 segments, il existe deux points tels que chacun de ces

segments contienne au moins l'un des deux points. C'est une

conséquence de D.

H. On ne peut pas trouver de couple de points tel que chacun
des 4n segments contienne au moins l'un des points de ce

couple. C'est une conséquence évidente de B.

Les propriétés A, B et F fournissent une réponse négative
à la question posée ci-dessus. La même rosace permet de montrer
l'impossibilité de diverses propriétés analogue à celle de Helly.

A l'occasion d'un travail de L. A. Santalô [51], Th. Motzkin
a donné un contre-exemple de l'énoncé suivant: pour que tous
les couples d'un ensemble de couples d'ovales aient au moins
un point commun, il suffirait qu'il en soit ainsi pour chaque
combinaison d'un certain nombre h de ces couples. C'est également

ce que montre l'exemple de la rosace; propriétés D et E
(dans le cas de rayons égaux).

V. L. Klee jr. [31] a cherché à trouver un nombre h de Helly
vérifiant l'énoncé suivant: Pour que chacun des ovales d'un
ensemble contienne au moins l'un des deux points d'un couple
il suffirait qu'il en soit ainsi pour chaque combinaison de h de
ces ovales. L'exemple de la rosace montre encore qu'il n'en
existe pas. Il suffit de considérer les propriétés G et H.

On ne sait pas encore s'il existe un nombre h de Helly dans
le cas d'un ensemble d'ovales « congruents » (ou déduits de l'un
d'eux par translation), deux à deux sans point commun, et
dont on cherche s'ils ont une sécante commune, s'il en est ainsi
pour chaque combinaison de h de ces ovales. On peut d'abord
se poser la question pour des cercles; l'existence de h apparaît
alors plausible, mais on n'en a pas de preuve. Il faudrait en
tout cas, que h soit au moins égal à 5 ainsi que le montre
la figure 6.

L'Enseignement mathém., t. III, fasc. 1. 4
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En revanche, on a pu établir le théorème suivant pour des

ensembles d'ovales homothétiques:

26. Pour que, relativement à un ensemble d'ovales homothétiques,
il existe un système de quatre droites formant un rectangle,
telles que chaque ovale soit traversé par au moins l'une
d'entre elles, il suffit que, pour chaque combinaison de quatre
ovales de l'ensemble, il existe (au moins) une sécante

commune.

Nous terminerons ce groupe de théorèmes en indiquant un
énoncé du type de Helly, découvert par P. Vincensini [59].
On dira qu'un ensemble d'ovales est « totalement séparable »

lorsqu'il existe une direction de droite, telle que toute droite
parallèle à cette direction ne traverse au plus qu'un seul ovale de
l'ensemble. On peut alors tracer, dans le plan, des bandes à

bords parallèles à cette direction, deux à deux sans point
commun, et telles que chaque bande contienne un et un seul ovale

(comme l'indique la figure 7).

27. Pour qu'il existe une droite traversant tous les ovales d'un
ensemble totalement séparable, il suffit qu'il en soit ainsi pour
chaque combinaison de trois ovales de l'ensemble.
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La propriété avait été établie par P. Vincensini pour des

combinaisons de h 4 ovales. V. L. Klee jr. [34] a montré

qu'elle était vraie pour h seulement égal à trois. Cette propriété
a pour cas particulier le théorème suivant énoncé par L. A. San-

talô [50] (Voir aussi H. Rademacher-I. J. Schœnberg [44]):

Pour qu'il existe une sécante commune à un ensemble de

segments de droites, strictement parallèles entre eux (donc
totalement séparables) il suffit que la propriété soit vraie pour
chaque combinaison de trois segments de l'ensemble.

Au sujet du théorème 27, on peut modifier la condition de la
séparation totale pour des ovales suffisamment clairsemés, ce qui
peut être exprimé par les grandeurs des angles apparents comme
l'indiquent la figure 8 et le théorème suivant.

28. Pour qu'un ensemble d'ovales soit totalement séparable, il
suffit que de tout point du plan on ne puisse voir plus d'un
ovale sous un angle apparent au moins égal à k/3 et que,
pour chaque combinaison de quatre ovales de l'ensemble, il
existe (au moins) une sécante commune.

** *

On termine par quelques énoncés, plus ou moins apparentés
au théorème connu de H. W. Jung [26] sur la grandeur de
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l'enveloppe circulaire d'un ensemble de points de diamètre donné.
Précisons d'abord quelques notions:

Un ensemble de points est « borné » s'il peut être recouvert
par un cercle fermé.

En vue des théorèmes suivants nous dirons qu'un ensemble
de droites est « borné » lorsqu'il ne contient pas de couple de

droites parallèles, et que les points d'intersection de tous les

couples de droites forment un ensemble borné.

Le « rayon de recouvrement » d'un ensemble borné de points
est le rayon du plus petit cercle (fermé) qui contient tous les

points de l'ensemble. Par analogie on appellera « rayon d'intersection

» d'un ensemble borné de droites, le rayon du plus petit
cercle (fermé) coupé par toutes les droites de l'ensemble.

Le « diamètre » d'un ensemble borné de points est la limite
supérieure des distances de ses couples de points. Par analogie,
on appellera diamètre d'un ensemble borné de droites, le diamètre
de l'ensemble des points d'intersection.

29. Pour qu'il existe un cercle de rayon R recouvrant tous les

points d'un ensemble borné il suffit que, pour chaque
combinaison de trois de ces points, il existe au moins un cercle

de rayon R la recouvrant.
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30. Pour qu'il existe un cercle de rayon R rencontrant toutes les

droites d'un ensemble borné, il suffit que, pour toute combinaison

de trois de ces droites, il existe au moins un cercle

de rayon R les rencontrant.
Ce sont des conséquences du théorème 21.

31. Le rayon de recouvrement d'un ensemble borné de points dont

le diamètre est égal à 1, est au plus égal à 1:\/3>

C'est un cas particulier, pour le plan, du théorème de Jung.
H. Rademacher et 0. Tœplitz [45] en donnent un exposé
détaillé.

32. Le rayon d'intersection d'un ensemble borné de droites dont le

diamètre est égal à 1, est au plus égal à 1/2^/3-
C'est la transformation par dualité du théorème de Jung.

33. Tout ensemble borné de points dont le diamètre est égal à 2,

peut être recouvert par un triangle équilatéral de côté \f~3.

34. Tout ensemble borné de points dont le diamètre est égal à 2,

peut être recouvert par un hexagone de côté 1: -\f3-

Un domaine qui peut recouvrir tout ensemble de points dont
le diamètre est égal à 1, est appellé «couvercle» (normal). Le
cercle de rayon l/-\/3 est le couvercle de Jung. Le triangle
équilatéral et l'hexagone circonscrits au cercle de diamètre égal à 1

sont des couvercles. L'énoncé 33 est un cas particulier pour le
plan, d'un théorème établi par D. Gale [15], correspondant au
théorème de Jung. Le théorème 34 est dû à S. Pal [42].

35. Tout ensemble borné de points dont le diamètre est égal à 2,

peut être recouvert par trois ensembles de points dont les

diamètres ne dépassent pas <\f3/2-

C'est une forme plus précise, donnée par D. Gale [15] d'un
théorème dû à K. Borsuk [5] qui exprime que, dans le plan, tout
ensemble de points peut être considéré comme la réunion de
trois sous-ensembles de diamètres inférieurs. K. Borsuk avait
suggéré qu'un ensemble de points, dans un espace de k dimensions

pourrait être décomposé en k + 1 sous-ensembles de
diamètres inférieurs. Cette propriété a été établie pour k — 3 par
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H. G. Eggleston [10]; elle n'a pas encore été démontrée pour
k > 3.

Le théorème ci-dessus de K. Borsuk, non compris la précision

de D. Gale, est aussi une conséquence, dans le cas d'un
ensemble d'un nombre fini de points du plan, du théorème
suivant sur le nombre de couples de points dont la distance est
égale au diamètre de l'ensemble.

36. Dans un ensemble, Pun nombre fini n de points, dont le

diamètre est égal à 11 il y a au plus n couples distincts de

points dont la distance est égale à 1.

On en trouve une brève démonstration dans P. Erdös[13]
— Cf. aussi H. Hopf et E. Pannwitz [23].

Les relations étroites entre tous ces groupes de théorèmes
sont mises en évidence par la conséquence suivante du théorème
34 énoncée sous une forme analogue à celle du théorème de

Helly.

37. Pour que, dans un ensemble de cercles de rayon égal à 2, on
puisse construire un triangle équilatéral de côté égal à 2,
dont chaque cercle de Vensemble contienne au moins Vun des

sommets, il suffit que chaque couple de cercles de Vensemble

ait au moins un point commun.

On trouve dans L. Fejes-Tôth [14] — page 97 — des énoncés

analogues qui ne sont encore que partiellement démontrés.

2me Partie

Nous donnons ci-dessous de courtes démonstrations des

théorèmes qui précèdent, d'après les sources indiquées. Nous nous
bornons souvent à la suite des idées. Les raisonnements ne

supposent que des propositions préalables élémentaires notamment

des considérations^ simples sur les ensembles de points.

1. On raisonne par l'absurde: on considère des points P!
vérifiant les conditions de l'hypothèse et non alignés. On peut,
en effectuant éventuellement une transformation projective
supposer l'un d'eux Px à l'infini. Les droites joignant tous les
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couples de points sont, d'une part des parallèles (au moins 2)

de direction Pl7 d'autre part des transversales (au moins une).

Si ces transversales étaient en nombre fini, il en existerait au

moins une G formant avec les parallèles un angle minimum
(au plus égal à tous les autres). Elle contiendrait au moins trois

points différents, soit Pi5 Pfe et P3- entre Pi et Pfe. La droite de

direction Px passant par P3- contiendrait au moins un point Pm

de l'ensemble (différent de P3- et à distance finie). L'une des

droites Pm Pi ou Pw Pk formerait avec les parallèles un angle

aigu inférieur (strictement) à celui de G, ce qui est absurde

(contraire à la construction de G ou au nombre fini de

transversales) 1.

2. C'est le transformé de 1 par dualité.

3. C'est une conséquence de 1. Il suffit de transformer la
figure par une inversion dont le pôle est un point de l'ensemble.
Les circonférences passant par le pôle deviennent des droites
vérifiant les conditions de 1, donc réduites à une seule. (On
continue ensuite de proche en proche.)

4. Le plus petit cercle de recouvrement (c'est-à-dire le plus
petit cercle contenant tous les points de l'ensemble) contient sur
son périmètre des points de l'ensemble, délimitant des arcs
tous inférieurs ou égaux à des demi-circonférences. Il ne peut
exister de point Q (strictement) intérieur au cercle car la symétrie
relativement à la médiatrice du segment joignant Q à l'un des

points précédents donnerait des points extérieurs (strictement)
au cercle.

Si le nombre des points de l'ensemble est fini (supérieur à 2),
on considère deux axes de symétrie dont l'angle 9 est minimum.
Le produit des symétries autour des axes est une rotation
d'angle 2 9 autour du centre du cercle, qui laisse l'ensemble
invariant. Cet ensemble est donc un polygone régulier d'angle
au centre 9 égal à 2 1z/n.

5. S'il existait des polygones réguliers de n sommets inscrits
dans un réseau, il en existerait un de côté minimum, puisque la

1 Cette légère modification de la démonstration met en évidence la nécessité de
l'hypothèse du nombre fini d'éléments de l'ensemble de points. (Note des traducteurs.)
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longueur d'un côté est égale à une expression \/p* q2 (p et q

entiers). Supposons construit un tel polygone P2 Pn et à

partir de chaque sommet, portons un vecteur défini par les

équipollences:

Pi Pi P2 P3 P2 P2 P3 P4 Pn Pn Px P2

Les extrémités de ces vecteurs seraient encore des points du
réseau et pour n — 5 et n > 7, ils formeraient un polygone
régulier de n sommets plus petit que le précédent qui ne pourrait
donc être minimum. Pour établir l'impossibilité d'inscrire un
triangle régulier de côté s, il suffit de remarquer que son aire est

égale à s2 (V3/4). Elle serait donc irrationnelle puisque s2 serait
rationnelle. Or le calcul de cette aire en fonction des coordonnées
des sommets, par exemple au moyen d'un déterminant, donnerait
un nombre rationnel. Il y a donc absurdité. On démontre de

même l'impossibilité d'inscrire un hexagone régulier de côté s

dont l'aire est s2 (3^3/2).

6. Pour un losange inscrit dans le réseau, d'angle aigu a

et de côté s, la surface qui est égale à s2 sin oc peut être exprimée
en fonction des coordonnées des sommets, ce qui donne un
nombre entier. La valeur de sin a est donc rationnelle. D'après
la propriété 8, pour a commensurable avec tt ceci n'est possible

que pour oc égal à tu/6 ou à tt/2. Le premier cas est à rejeter:
par une rotation de tc/2 autour d'un sommet du losange, point
du réseau, on transformerait les autres sommets en de nouveaux
points du réseau. Il apparaîtrait alors un triangle équilatéral
inscrit, ce qui est contraire à la propriété 5.

7. Conséquence immédiate de 8.

8. La démonstration du théorème 5 pour les polygones
réguliers dont le nombre des sommets est n 5 ou n > 7,

reste valable pour un réseau rectangulaire (points de coordonnées

Ax et By où A et B sont-des nombres fixes et x et y des entiers

quelconques.) Le théorème 8 résultera de l'énoncé suivant qui
est plus général: « Les seuls polygones réguliers qui peuvent être
inscrits dans un réseau rectangulaire sont les triangles, les carrés

et les hexagones. »
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Considérons, en effet, un angle a 2n(m[n) défini par une

fraction mjn irréductible. Les formules de trigonométrie
permettent de calculer en fonction rationnelle (à coefficients rationnels)

de cos a les nombres av et bv tels que cos ca — av;
sin ca bv sin a (e 1, 2,..., n). Ces nombres sont donc rationnels

si cos a l'est. En désignant par N le dénominateur commun
des 2n quantités av et èv, on construit un réseau rectangulaire
avec les points de coordonnées (1/N) x et (sin a/N) y\ x et y
entiers. Sur une circonférence de rayon 1 ayant pour centre un
point du réseau, tous les points d'angle polaire ea sont des points
du réseau. Puisque a 2n (mjn) ces points forment un polygone
régulier de n sommets. Ceci n'est possible, d'après l'extension du
théorème 5 aux réseaux rectangulaires, que pour n égal à 1 ou
à 2 ou à 3 ou à 4 ou à 6. Comme a est aigu, il en résulte que
a — tu/3.

9. On démontre le théorème par l'absurde: en considérant
trois points non alignés A, B, C dont les distances mutuelles
sont des nombres entiers et en désignant par k la plus grande
des distances d (A, B) et d (B, C). Les distances d'un point P

aux points A, B, C vérifient les relations:

| d (P, A) — d (P, B) | < d (A, B)

'/ (l\ B) — d(P, C) j < d(B, C).

Si ces distances sont des nombres entiers, les différences des
premiers membres ne peuvent prendre au plus que les valeurs
0, 1, 2, k.Un point P est donc situé sur une des k -j- 1 hyperboles

de foyers A et B et sur une des -p 1 hyperboles des
foyers B et C. Il n'y a donc qu'un nombre fini, au plus égal à
4 (k + l)2, de points P possibles.

10. La condition est évidemment suffisante. Elle est
manifestement nécessaire pour un ensemble d'un nombre fini de points
dont l'enveloppe convexe est alors un polygone convexe (intérieur

et périmètre compris) dont les sommets appartiennent à
1 ensemble. Il suffit de décomposer ce polygone en triangles en
joignant un de ses sommets à chacun des autres. Un point
appartenant au polygone appartient à au moins un de ces
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triangles (éventuellement à deux). Reste à considérer un ensemble
M d'un nombre infini de points. On forme la réunion N de toutes
les enveloppes convexes des combinaisons d'un nombre fini de

points de M. Cette réunion contient l'enveloppe M de M car elle
contient tous les points de M et tous les points de chaque segment
joignant deux points de M. Or M est le plus petit ensemble qui
possède ces deux propriétés. Donc tout point contenu dans M
l'est dans N et par suite dans au moins une enveloppe triangulaire

de trois points de M.

11. La condition est encore évidemment suffisante. Si un
point P est intérieur 1 à l'enveloppe convexe M d'un ensemble
de points (non alignés) M, il est intérieur à un triangle (non
aplati) dont les sommets appartiennent à M. D'après la propriété
10 chacun de ces sommets appartient à l'enveloppe convexe
d'un sous-ensemble de trois points de M; de sorte que le triangle
appartient à l'enveloppe convexe (polygone) d'un nombre fini
de points de M, qu'on peut décomposer en triangles en joignant
un de ses sommets à chacun des autres. Le point P est intérieur
soit à l'un de ces triangles, soit à la réunion de deux triangles
adjacents (s'il est sur leur côté commun); il est donc intérieur
à l'enveloppe convexe d'au plus quatre points de M.

12. La condition est évidemment nécessaire. On démontre
qu'elle est suffisante par l'absurde, en considérant deux ensembles,
fermés et bornés, M et N non séparables et en construisant
deux sous-ensembles respectifs M' et N' également non
séparables, dont la réunion comprend au plus quatre points. Si M et
N ne sont pas séparables, leurs enveloppes convexes M et N ont
au moins un point commun P 2. D'après la propriété 10 on

peut associer à ce point P des sous-ensembles M" et N" (de M et
de N) de chacun trois points, dont les enveloppes convexes
M77 et N77 contiennent P. Alors: ou l'une ou l'autre de ces enve-

1 On remarquera la distinction entre un point qui appartient à un ensemble et un
point qui est intérieur à un ensemble convexe. Dans le second cas le point est intérieur
(appartient, périmètre exclu) à un triangle (non aplati) dont tous les points (périmètre
inclus) appartiennent à l'ensemble convexe (Note des traducteurs).

2 Si les ovales M et N n'ont pas de point commun, la distance de M et N est réalisée

par deux points distincts de M et N. La médiatrice (Mittelsenkrechte) de ces points
sépare M et N.
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loppes est incluse dans l'autre, par exemple M" C N"; ou
certains des côtés de M" et N" sont des segments sécants. Dans
le premier cas on peut constituer M' avec l'un des points de M"
et prendre N' — N". Dans le second cas, on peut prendre pour
M' et N' les extrémités de chacun de deux côtés sécants. Il est
visible que, dans les deux cas, M' et N' ne sont pas séparables;
leurs enveloppes convexes ont d'ailleurs des points communs.

13. Il suffît de considérer dans l'ensemble M un sous-
ensemble de quatre points. Si leur enveloppe convexe n'est pas
un quadrilatère (non dégénéré) l'un des points N est contenu
dans l'enveloppe convexe des trois autres, et, a fortiori, dans

l'enveloppe convexe de M — N. Les deux ensembles N et
M — N sont sans points communs (disjoints ou formant partition
de M) et ils ne sont pas séparables. Si, au contraire, l'enveloppe
convexe des quatre points est un quadrilatère (convexe) on peut
prendre pour N deux sommets opposés; N et M—N sont
encore deux sous-ensembles sans point commun et non
séparables.

14. Pour un système d'ovales en nombre fini, le théorème
de Helly se déduit par récurrence sur n du lemme suivant:

Pour que k ovales (k > 4) aient un point commun, il
suffit qu'il en soit ainsi pour chacune des combinaisons de
k — 1 de ces ovales.

Appelons P. un point contenu dans les ovales Cl5 C2, Ck
sauf, peut-être dans Q. D'après la propriété 13 les k points
P{ (i 1, k) peuvent être répartis en deux ensembles
M' (P(1, Pim) et M" (P^, P^n) sans point commun et
dont les enveloppes convexes M7 et M77 ont un point commun P0.
Mais alors tout point de M7 appartient aux ovales sauf peut-être
à Ca, Cim et tout point de M" appartient aux ovales sauf
peut-être à C^, Cjn. Le point P0 qui appartient à M7 et à M"
appartient donc à tous les ovales, sans exception.

Pour un ensemble d'ovales en nombre infini, on raisonne par
l'absurde. S'ils n'avaient pas de point commun, à tout point P
d'un ovale Gx, on pourrait faire correspondre au moins un ovale
Q ne contenant pas P ni même aucun point d'un cercle de
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centre P et de rayon convenable. Mais d'après le théorème de

Heine-Borel, on pourrait, dans tous ces cercles, en choisir un
nombre fini qui recouvriraient l'ovale C^ A ces cercles
correspondraient des ovales Q, en nombre fini, formant avec Gx un
ensemble d'ovales, en nombre fini, vérifiant les conditions
suffisantes énoncées, et cependant sans point commun.

15. Le théorème 14 étant acquis, il suffit d'établir que trois
rectangles, à côtés parallèles, Rx, R2, R3 ont nécessairement un
point commun lorsqu'il en est ainsi pour chacun de leurs trois
couples. On prend des axes parallèles aux côtés des rectangles
et on appelle xi1yi (i 1 ou 2 ou 3) les coordonnées d'un point
Pj commun aux deux rectangles d'indices différents de i. Les

points Pi et P-, ainsi que le segment qui les joint et le
rectangle de côtés parallèles aux axes qui a ce segment pour
diagonale sont contenus dans le rectangle Rk (k différent de i
et /). Donc tout point P de coordonnées x et y appartient à

Rk lorsque x est compris entre xi et x- et y compris entre yi et y-.
On peut choisir les indices de telle sorte que: % < x% < x3 et

Vi < Vj < yk (g /, k différents). Alors le point P de coordonnées

x2 et yj vérifie les conditions précédentes pour qu'il appartienne
à chacun des rectangles, donc aux trois.

16. Ce théorème est un cas particulier du précédent en
considérant des rectangles aplatis sur une même droite.

17. C'est une conséquence de la propriété 14. Il suffit de

considérer les segments circulaires (inférieurs à un demi-cercle)
qui ont pour bases les arcs de l'ensemble. Ce sont des ovales

qui ont un point commun s'il en est ainsi pour chaque combinaison

de trois d'entre eux. L'existence d'un point commun est

équivalente à la même propriété pour leurs arcs.

18. C'est une conséquence de la propriété 16. Si des arcs
inférieurs au tiers de la circonférence ont au moins un point
commun avec l'un d'eux, Q, aucun ne contient le point I
diamétralement opposé au milieu de Q. En coupant la
circonférence en I et en la développant sur une droite, on est ramené
à l'existence de points communs à des segments de cette droite.



GÉOMÉTBIE COMBINA TOIRE DANS LE PLAN 61

19. On considère une droite orientée G (a) passant par le

centre de la circonférence et d'angle a avec une direction fixe. En

projetant orthogonalement sur G (a) les arcs considérés, on

obtient des segments (dont certaines parties peuvent être obtenues

deux fois) dont chaque couple a (au moins) un point
commun. D'après la propriété 16, ils ont une intersection D (a),

peut-être réduite à un point, mais qui n'est pas vide. Lorsqu'on
passe de D (a) à D (a + 7r), les abscisses (relativement au centre
du cercle) des points de cette intersection prennent des valeurs

opposées. Comme ces abscisses varient de façon continue en

fonction de oc, il existe une valeur oc0 pour laquelle une de ces

abscisses est nulle; c'est-à-dire que le centre est alors commun
à tous les segments et la droite projetante G (a0 + tc/2) est un
diamètre qui rencontre tous les arcs.

Les énoncés 20 à 28 se déduisent par des transformations
géométriques convenables des théorèmes 14, 16, 17, 19.

20-21-22. La position d'un ovale A qui se déplace par
translation est caractérisée par celle d'un point P invariablement
lié à A. On démontre aisément que le point P décrit un ovale

ou B*2 ou Bg lorsque A se déplace par translation de toutes les

façons possibles en restant contenu dans un ovale B, ou en
rencontrant B, ou en contenant B. Cette association des ovales
B* au déplacement de A, ramène les énoncés 20 ou 21 ou 22

au théorème 14.

23. En projetant par rapport à un point 0 arbitraire les
ovales d'un ensemble, vérifiant la condition suffisante énoncée, sur
une circonférence de centre 0, on obtient un ensemble d'arcs
vérifiant la condition suffisante du théorème 19. Il existe un diamètre
qui les coupe tous et la droite qui le porte coupe tous les ovales.

24. Une projection orthogonale sur une droite quelconque
des ovales d'un ensemble, vérifiant la condition suffisante énoncée,
les transforme en segments vérifiant la condition suffisante du
théorème 16. Il existe un point commun à tous ces segments et
la droite projetant ce point coupe tous les ovales.

25. Lorsque, parmi les rectangles, il en existe deux qui ne
sont traversés que par une seule droite « montante », cette
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sécante unique rencontre, en raison de l'hypothèse, tout autre
rectangle et c'est une sécante commune.

Si cette condition particulière n'est pas réalisée, on peut
d'abord établir la propriété pour un ensemble d'un nombre fini
de rectangles. On mène deux parallèles orientées, distinctes, à

l'une des directions des côtés. On repère une droite montante
par les abscisses de ses points d'intersection avec ces parallèles
et on lui fait correspondre biunivoquement le point qui, dans

un plan auxiliaire, a ces abscisses pour coordonnées cartésiennes.
A l'ensemble des droites montantes qui traversent un rectangles
correspond ainsi, dans le plan auxiliaire, un ensemble de

points qui est manifestement convexe, fermé mais non borné.
Chaque combinaison de trois de ces domaines a au moins un
point commun à distance finie (correspondant à la sécante

commune aux trois rectangles correspondants). Pour un ensemble
d'un nombre fini de rectangles on peut tracer, dans le plan
auxiliaire, un cercle contenant tous les points communs aux
combinaisons de trois des domaines. Ses intersections avec les

domaines sont des ovales qui vérifient la condition suffisante du
théorème 14. Ils ont donc un point commun auquel correspond
une sécante commune à tous les rectangles.

Dans le cas d'un ensemble de rectangles en nombre infini,
on pourrait utiliser une variante plus précise du théorème 14.
On remarque seulement qu'en conséquence de ce qui vient
d'être démontré, chaque combinaison de quatre rectangles de

l'ensemble a au moins une sécante commune.
A toute droite montante on fait correspondre sur une

circonférence auxiliaire le point dont l'angle polaire 9 est égal à l'angle
de la droite avec les parallèles orientées considérées. A tout
couple de rectangles correspond l'ensemble des droites montantes
qui les rencontrent, et, par suite, un arc de la circonférence
inférieur au tiers de celle-ci. Dans l'ensemble de ces arcs, tout
couple a au moins un point commun, puisqu'il correspond à une
combinaison de quatre* rectangles. C'est la condition suffisante
du théorème 18; les arcs ont donc un point commun auquel
correspond une direction telle que chaque couple de rectangles
ait une sécante commune parallèle à cette direction.

Il suffit alors de projeter parallèlement à cette direction les
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rectangles de l'ensemble sur une transversale. On obtient des

segments pour lesquels chaque couple de segments à un point
commun au moins. C'est la condition suffisante du théorème 16;
il y a donc un point commun à tous ces segments et sa projetante
est une sécante commune à tous les rectangles.

26. Sur une circonférence où a été fixé un point P, on fait
correspondre biunivoquement à chaque direction de droite dans

le plan, le deuxième point d'intersection avec la circonférence de

la parallèle menée par P à cette direction. A l'ensemble des

sécantes communes à deux ovales correspond ainsi un arc de la
circonférence. Aux couples d'un ensemble d'ovales vérifiant la
condition du théorème, correspond un ensemble d'arcs tel que
tout couple d'entre eux ait au moins un point commun; ce qui
est la condition suffisante du théorème 19. Il existe donc un
diamètre qui coupe tous les arcs et à ses extrémités correspondent
deux directions orthogonales telles, que pour chaque couple
d'ovales, il existe au moins une sécante commune parallèle à

une de ces deux directions. Les ovales étant homothétiques entre
eux, on mène à l'un d'eux les deux couples de tangentes (ou de

droites d'appui) respectivement parallèles aux directions
déterminées. Tout autre ovale de l'ensemble, au moins égal (dans un
rapport d'homothétie au moins égal à 1), est nécessairement
traversé par une de ces quatre droites.

La propriété est alors démontrée lorsqu'il existe dans
l'ensemble un ovale minimum. Sinon on peut la démontrer par
quelques considérations supplémentaires sur les conditions de

convergence des ovales, en grandeur et en position.

27. On considère d'abord toutes les droites qui traversent
deux ovales A et B de l'ensemble. Les angles qu'elles font avec
la direction de séparation ont respectivement des déterminations
9 qui sont toutes les valeurs comprises, au sens large, entre deux
d'entre elles: oc-, < 9 < oc2 et 0 < < a2 < - puisqu'elles ne
comprennent ni 0 ni tt. Cet ensemble, assimilable à un segment
de droite, intérieur à un segment de longueur tt, sera désigné
par (AB).

Supposons, au moins provisoirement, que chaque couple des

segments (AB) a au moins un point (ou une valeur) commun.
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C'est la condition suffisante du théorème 16 et il y a une valeur
90 (intérieure à l'intervalle 0,7t) commune à tous les segments ou
intervalles (AB). C'est dire que pour chaque couple d'ovales il y
a une sécante commune de direction <p0.

Projetons les ovales de l'ensemble parallèlement à la direction
cp0 sur une droite de séparation. Les ovales se projettent suivant
des segments et chaque couple de ces segments a un point
commun.

En appliquant à nouveau le théorème 16, on en déduit que
tous ces segments ont un point commun P0 et la projetante (de
direction cp0) menée par P0 rencontre tous les ovales de l'ensemble.

Reste à prouver la supposition précédente, c'est-à-dire que,
dans un ensemble d'ovales vérifiant les conditions de l'énoncé,
il existe une valeur commune à tout couple d'intervalles (A1 A2)
et (Bx B2) défini par deux couples d'ovales A± et A2, Bx et B2.

(C'était la condition de P. Vincensini: existence d'une sécante

commune à quatre ovales). Cette existence résulte des hypothèses
lorsque les deux couples d'ovales ont un ovale commun, par
exemple, A et B, B et C, puisqu'il existe une sécante commune
aux trois ovales A, B et C.

Pour deux couples formés de quatre ovales distincts, on
raisonne par l'absurde. Si les deux segments (Ax A2) et (Bx B2)

intérieurs au segment 0, n étaient sans point commun, il
existerait un segment intermédiaire entre eux. Si 9' est une valeur
intérieure à ce segment, il existe au moins une droite de direction

cp' séparant Ax de A2 et une autre séparant Bx de B2. Ces

deux droites parallèles séparent de plus un autre des couples
constitués avec Alt A2, Bx, B2, soit A1 B2. Le segment (Ax B2)

a des points communs avec le segment (A2 A2) puisque les couples
A1? B2 et Ax, A2 ont un ovale commun. I] en a aussi avec le

segment (Bx B2). Il devrait donc contenir tout le segment
intermédiaire précédent et, en particulier la valeur <?'. Il y aurait
donc une sécante commune au moins à Ax et B2 de direction 9'
ce qui est contraire à h'hypothèse puisque la direction 9' sépare

Ax et B2.

28. On peut appliquer la transformation utilisée dans la
démonstration du théorème 26. On est ramené à comparer des
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arcs inférieurs à un tiers de circonférence, ayant deux à deux

des points communs. D'après la remarque faite dans la démonstration

du théorème 18, ils laissent à découvert un point de la

circonférence.

29. C'est un cas particulier de 21.

30. En remplaçant les droites par des segments de longueur
suffisante, on est ramené au théorème 21.

31. En raison du théorème 29, il suffit d'établir la propriété

pour un ensemble de trois points. Si ceux-ci forment un triangle
(éventuellement aplati) qui a un angle obtus le cercle de

recouvrement a pour diamètre le côté opposé à l'angle obtus, qui est

le plus grand donc égal au diamètre 1. Le rayon de recouvrement
est alors égal à 1/2.

Si les trois points forment un triangle (non aplati) qui a ses

trois angles aigus le cercle de recouvrement est le cercle circonscrit,

dont le rayon est la valeur commune de a/2 sin a où a est

la longueur d'un côté et a l'angle opposé. Dans tout triangle il
y a un angle au moins égal à tc/3. Donc a < 1; sin a > 3/2
donc a/2 sin a < 1/V3.

32. Il suffit encore, en raison du théorème 30, d'établir la

propriété pour un ensemble de trois droites de diamètre égal à 1.

Elles forment un triangle de périmètre au plus égal à 3 qui est
circonscrit au plus petit des cercles sécants. Comme le triàngle
équilatéral de périmètre 6r a/3 est le triangle de plus petit
périmètre circonscrit au cercle de rayon r on en déduit 3ta/3 < 3

et r < 1/2\/3.

33. L'ensemble étant borné, on peut construire deux triangles
équilatéraux S et S* circonscrits, à côtés respectivement parallèles

et disposés symétriquement; chacun de leurs côtés contenant
au moins un point de l'ensemble. En menant par un point
intérieur à chacun des triangles des perpendiculaires à leurs
côtés, on obtient des segments dont les sommes sont respectivement

égales aux hauteurs des triangles S et S*, d'après une
propriété bien connue de géométrie élémentaire. Mais chacune
des sommes de deux de ces segments opposés est au plus égale

L'Enseignement mathém., t. III, fasc. 1. 5
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au diamètre de l'ensemble qui est égal à 1. La somme des

hauteurs des deux triangles est donc au plus égale à trois. L'une
d'elles est au plus égale à 3/2 et le côté du triangle correspondant
est au plus égal à \/3.

34. En reprenant la démonstration du théorème 33, on voit
que les longueurs des côtés des triangles équilatéraux circonscrits
S et S* sont des fonctions continues de la direction de l'un des

côtés, choisi comme base. Après une rotation d'angle tu de

cette direction, la longueur des côtés de S se change en celle des

côtés de S*. Il y a donc une position pour laquelle ces deux
triangles sont égaux. Leur intersection dans laquelle est contenu
l'ensemble de diamètre égal à 1, est un hexagone convexe,
éventuellement dégénéré, qui a un centre de symétrie et des

côtés parallèles dont la distance est au plus égale à 1. Cette
intersection est contenue, entièrement, dans un hexagone régulier,

de même centre de symétrie, de côtés parallèles de distance
égale à 1. Il contient l'ensemble considéré et la longueur de ses

côtés est 1/V3.

35. C'est une conséquence de 34. Du centre de l'hexagone
régulier ainsi circonscrit à un ensemble de diamètre égal à 1,

il suffit d'abaisser des perpendiculaires sur trois de ses côtés non
consécutifs. On décompose ainsi l'hexagone en trois pentagones
égaux, chacun de diamètre égal à V3/2, dont la réunion recouvre
bien l'ensemble considéré.

36. La propriété est évidente pour n 3. On la démontre,

par récurrence sur w, pour un ensemble de points Px, P2, Pn

en nombre au moins égal à quatre, de diamètre égal à 1. On trace
tous les segments Pi Pfe de longueur effectivement égale à 1.

Si, à chaque point Pi correspondent au plus deux segments
ainsi tracés, qui l'ont pour origine commune, le nombre de tous
ces segments est bien au plus égal à n. Sinon, il existe un point Px

qui est une extrémité commune de trois segments P3 PiT Px P^
Pj Vk de longueur égale à 1, et dont les autres extrémités sont
de distances mutuelles au plus égales à 1. Les angles de ces

segments, pris deux à deux, sont inférieurs à tï/3 et l'un des segments
noté Px Pj- est contenu dans l'angle aigu des deux autres. On
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vérifie alors aisément que tout point Q du plan diffèrent de Px,

qui est à une distance égale à 1 de P3 est à une distance
supérieure à 1 d'au moins l'un des trois points Pl7 Pi7 Vk et par suite

n'appartient pas à l'ensemble. En supprimant P3 dans l'ensemble
considéré on n'y supprime qu'un seul segment de longueur 1,

d'où la récurrence.
De cette démonstration, il résulte encore que dans un

ensemble de n points, de diamètre égal à 1, il y a toujours au
moins un point Px à une distance égale à 1 de deux autres points
au plus, Pi et Pj-. Le théorème de Borsuk qui est évident pour
n — 3 s'en déduit encore par récurrence sur n. Car on peut
décomposer l'ensemble des n — 1 points, obtenu par suppression
de P1 en trois sous-ensembles de diamètre inférieur à 1. L'un
d'entre eux ne contient ni Pi ni P3-; en lui adjoignant Px, il
reste encore de diamètre inférieur à 1, et on obtient ainsi une
décomposition de l'ensemble primitif.

37. Puisque les cercles de rayon 1 ont deux à deux des points
communs, leurs centres forment un ensemble de diamètre au
plus égal à 2. D'après 34 on peut le recouvrir par un hexagone de
côté 2/a/3. Les milieux des côtés d'un triangle équilatéral
inscrit dans cet hexagone forment un triangle équilatéral de
côté égal à 1. Tout point de l'hexagone et, en particulier, tout
centre d'un cercle de l'ensemble est à une distance au plus
égale à 1 d'au moins l'un des sommets de ce triangle.
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