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CHOIX DE QUELQUES PROBLEMES DE GEOMETRIE
COMBINATOIRE DANS LE PLAN!

PAR

H. Hapwicer et H. DEBRUNNER, Berne.

Il existe des domaines des sciences mathématiques ou l'on
passe sans transition de théories élémentaires & des problémes
plus difficiles qui ne sont méme encore que partiellement résolus.
C’est ainsi que des propriétés trés simples enseignées dans les
classes s’apparentent a d’autres d’un grand intérét scientifique
et abordées seulement par des spécialistes. Il y a donc un certain
avantage & ne pas séparer, comme on le fait habituellement, ces
deux domaines en utilisant des théories difficiles, longuement
développées et formées de toute une gamme de notions empilées
les unes sur les autres.

Il en est ainsi de la géométrie combinatoire, qui, limitée au
plan, présente un caractere particuliérement simple. Ses pro-
blémes sont en rapport étroit avec les propriétés de la géométrie
élémentaire et ne font intervenir que les opérations et les rela-
tions primordiales: recouvrements, intersections, décomposi-
tions... ainsi que le dénombrement des combinaisons.

(Vest un domaine proche de la topologie, mais les notions
générales de topologie y sont moins nécessaires et les problémes
peuvent s’y résoudre par des méthodes élémentaires. On trou-
vera dans H. Hopr [22] un exposé plus détaillé de la corrélation
entre les points de vue topologique et métrique en géométrie
combinatoire.

1 L’article allemand a paru dans le Tome I, 2me Série de L’Enseignement mathdé-
malique, 1955, pages 56 &4 89. La traduction francaise a été assurée par le « Service de
documentation du Centre national francais de 1a Recherche scientifique ». Elle a été
revue et légérement adaptée a la langue mathématique francaise par J. CHATELET.
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Le rapprochement que nous avons entrepris entre de nom-
breux problemes n’est pas d’ailleurs strictement limité au cadre
de cette géométrie combinatoire. C’est un petit noyau de tout un
ensemble de questions qui peut exercer une impulsion singuliére
en raison de la simplicité des propriétés et de ’aspect purement
combinatoire de leurs hypotheses.

C’est pour suivre cette directive et pour nous conformer & la
tendance qui fait passer méthodiquement et rationnellement du
domaine des mathématiques classiques a des procédés plus mo-
dernes et a des possibilités attrayantes, que nous présentons au
lecteur les exemples qui suivent.

Ils ne supposent, en plus des principes généraux de la géo-
métrie élémentaire et de la théorie des nombres réels, que peu
de connaissances préalables. Il est utile cependant d’étre fami-
liarisé avec la notion d’ensemble et plus spécialement avec celle
des ensembles de points. Quelques définitions sont, éventuelle-
ment, précisées dans le texte.

Dans la premiére partie on a donné un choix de théorémes,
groupés par énonceés, sans démonstration, mais avec un commen-
taire et des références. Dans la deuxiéme partie, on trouvera les
démonstrations, ou tout au moins leurs esquisses. Les lecteurs
qui 8’y intéresseront particuliérement, pourront se reporter aux
nombreux travaux indiqués et poursuivre eux-mémes la recher-
che des problémes qui ne sont pas encore résolus et dont nous
avons signalé quelques-uns.

Nous espérons avoir ainsi éveillé chez les lecteurs un intérét
~ plus grand pour des questions passionnantes et avoir augmenté
Iefficacité des liens qui existent entre les connaissances élémen-
taires de la géométrie et la recherche scientifique.

1re PARTIE

Un premier groupe de quatre théorémes concerne des condi-
tions d’appartenance de points & une droite ou a une circonfé-
rence.

1. Pour que les points d’'un ensemble, en nombre fint (au moins
égal a trois), sotent alignés, il suffit (et il faut, manifestement)
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que, pour chaque couple d’entre eux, la droite qui les joint
contienne au moins un troisiéme point, distinct, de I'ensemble.

De ce théoréeme, entrevu en 1893 par J. J. SyLvesTER [55], il
existe une bréve démonstration de T. Garral (Grunwald) citée
par N. G. pE Bruisn-P. Erpo6s [6]; elle en fait une application
d’'un théoréme purement combinatoire. On trouvera d’autres
démonstrations ainsi que des généralisations et des variantes
dans les travaux cités de P. Ernos[11]; H. S. M. CoxETER [7];
G. A. Dirac[9] et Th. Morzkin [39].

2. Pour que les droites d’un ensemble, en nombre fini (au moins
égal a trois), sotent concourantes, il suffit (et il faut, manifes-
tement) que, pour chaque couple d’entre elles, passe par leur
point d’tntersection au moins une troisiéme droite, distincte,
de l'ensemble.

Les conclusions de ces théorémes 1 et 2 ne sont plus vraies
lorsque les ensembles de points ou de droites ont un nombre
infini d’éléments. C’est ce que montre, pour les deux énoncés
a la fois, 'exemple de la figure 1 qui représente un ensemble
infini dénombrable de points et de droites.

G
W/\NW
g

Fig. 1
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3. Pour que les poinis d’un ensemble, en nombre fini (au moins
égal a quatre), appartiennent d une méme circonférence, il
suffit (et il faut, manifestement) que pour chagque combinaison
de trois d’entre eux, la circonférence (qui peut étre dégénérée
en drotte) qui les contient, contienne au moins un quatriéme
point, distinct de I’ensemble.

Etroitement apparenté au théoréme 3, dans ses hypothéses et
sa conclusion, le théoréme suivant concerne un ensemble de
points, borné (c’est-a-dire contenu dans un cercle de rayon fini)
et fermé (c’est-a-dire contenant ses points d’accumulation).

4. Pour que les points d'un ensemble borné et fermé, en nombre
fini ou infini, appartiennent @ une méme circonférence, il
suffit (sans que cela soit nécessaire) que lUaxe de symétrie
de chaque couple d’entre eux soit axe de symétrie de tout
I'ensemble.

Les conclusions des théorémes 3 et 4 ne sont plus vraies
lorsque l’ensemble de points n’est pas borné. L’ensemble de
tous les points du plan en est un exemple. On peut aussi cons-
tituer un ensemble dénombrable de points, non fermé, qui
vérifieles autres hypothéses des théorémes 3 et 4 sans que ces
points appartiennent a une méme circonférence:

En partant d’un systéme A, de quatre points, qui ne sont ni
alignés ni sur une méme circonférence, on construit par récur-
rence une suite ascendante d’ensembles de points A, = ¢ (A, ;).
L’expression ¢ (A) désigne la réunion des ensembles symétriques
de A relativement a chacun des axes de symétrie de tous les
couples de points de A. On voit aisément que la réunion des A
est un ensemble dénombrable de points, en nombre infini, qui
posséde la propriété de symétrie du théoreme 4. En outre, tou-
te circonférence passant par trois points de ’ensemble contient
un quatriéme point distinct, sauf si ces trois points forment
un triangle équilatéral. On peut méme éviter cette exception
par une généralisation trés simple de la construction ¢ (A).
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Nous indiquons maintenant une série de théorémes dans
lesquels les longueurs ont pour mesures des nombres entiers
ou rationnels.

On appelle « réseau» plan ’ensemble des points dont les
coordonnées relatives & deux axes rectangulaires d’un plan sont
des nombres entiers.

5. Le carré est le seul polygone régulier qui peut étre inscrit dans
un réseau ; c’est-da-dire dont on peut choisir les sommets parmi
les points d’un réseau.

Une démonstration originale a été donnée par W. ScCHER-
RER [D2]; en ce qui concerne I'impossibilité d’inscrire un triangle
dans un réseau, on peut voir aussi le probleme 238 de G. P6Lya-
G. SzeGO [43] Vol. 2, p. 156.

La possibilité d’inscription d’un carré, en dehors du cas
trivial, est en évidence dans la figure 2.

/ ~~
[
[
[
/
[
Ji
~F [
]
Fic. 2

Le théoreme suivant concerne les angles d’un losange inscrit
dans un réseau.

6. Pour tout losange, non carré, d’angle aigu o, inscrit dans un
réseau, le rapport a|m est irrationnel. Autrement dit, le carré
est le seul losange inscrit dans un réseau dont les angles sont
commensurables avec .

En relation étroite avec le précédent, I’énoncé suivant con-
cerne les triangles de Pythagore, c’est-a-dire les triangles rec-
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tangles dont les trois cotés ont des longueurs proportionnelles
a des nombres entiers.

7. Dans tout triangle de Pythagore les angles aigus sont itncom-
mensurables avec .

Les théorémes 6 et 7 sont des expressions géométriques de
la propriété trigonométrique suivante: (Cf. H. HApwiGer [18]):

8. Le seul angle aigu commensurable avec w dont le cosinus est
un nombre rationnel est o = t/3.

Le théoréme suivant di a P. Erp6s [12] (Voir aussi A. DELA-
CHET [8] p. b0 et E. Trost [57]) est un exemple particulierement
typique d’énoncés d’un type nouveau en ce sens que d’hypo-
theses tres simples résulte une conséquence inattendue et précise.

9. Pour que les points d’un ensemble, en nombre infini, soient
alignés, il suffit que, pour chaque couple d’entre eux, la longueur
de leur segment soit un nombre entier.

Il y a lieu de remarquer que cette conclusion ne subsiste pas
si les points sont en nombre fin1 &, méme trés grand. On peut
méme, pour toute valeur de k&, construire un ensemble de £ points
dont les distances mutuelles sont mesurées par des nombres
entiers, sans qu’aucune des combinaisons de trois d’entre eux
n’appartienne a une droite. De telles constructions ont été faites
a maintes reprises, notamment par M. ALtweca [1], A. MUL-
LER [40] et F. STEIGER [53].

D’aprés A. MULLER, on peut construire un ensemble dénom-
brable de points, dense sur une circonférence de rayon 1 et tel
que la longueur du segment de chaque couple d’entre eux soit
un nombre rationnel. Ce sont les points P, de coordonnées
polaires: p= 1 ¢ = 2n0 avec cos 0 = 4/0.

D’aprés le théoréeme 8, I'angle 6 est incommensurable avec
7; tous les points P, sont différents sur la circonférence de
rayon 1; ils forment un ensemble dense qui est méme de répar-
tition uniforme d’aprés le théoréme d’équipartition de H. WeyL
(ce qui est toutefois sans importance pour le théoréme consi-
déré). La distance de deux points est:

dP,, P,)=2 ] sin (n — m) 9 ] avec sin 0 = 3/5, cos 6 = 4/b.
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Elle est rationnelle par application des formules de multipli-
cation des arcs. Dans un tel ensemble il suffit de prendre £
points. Avec un choix convenable de I'unité les longueurs des
segments qui joignent ces points deux & deux sont des nombres
entiers et cependant aucune combinaison de trois de ces points
n’appartient & une droite.

Les théoremes du groupe suivant sont relatifs aux envelop-
pes et & la séparation des ensembles de points. Précisons d’abord
quelques notions: un ensemble de points est convexe si, pour
chaque couple de ses points, tous les points du segment joi-
gnant les points du couple appartiennent a I’ensemble.

L’enveloppe convexe d’un ensemble de points est le plus petit
ensemble convexe qui le contient; il est équivalent de dire que
c’est 'intersection de tous les ensembles convexes qui le con-
tiennent.

10. Pour qu’'un point appartienne a l'ensemble convexe d’un
ensemble de points, en nombre fini ou infint, il faut (et il
suffit) qu’'on puisse trouver un, deuxr ou trots poinls de
Uensemble dont Uenveloppe convexe contienne ce point.

Il résulte de cet énoncé que I’enveloppe convexe d’un ensem-
ble de points est la réunion des domaines triangulaires (triangles,
périmetres compris) définis par toutes les combinaisons de
trois points de I'ensemble. (Y compris les combinaisons avec
répétition.)

11.  Pour qu’un point soit « intérieur » a U'enveloppe convexe d’un
ensemble de points (non alignés), il faut et il suffit quon
puisse trouver trois ou quatre points de I'ensemble tels que
le point considéré soit intérieur a leur enveloppe convexe.

Les énoncés 10 et 11 sont des cas particuliers, dans le plan,
de théorémes généraux établis par E. StriniTz [54] et W. Gus-
TIN [17]. Cf aussi O. HaNNER-H. Rapstrom [20] et C. V. Ro-
BINSON [49].
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Deux ensembles sont « séparables » §’il est possible de trouver
une droite qui ne traverse aucun des deux et les sépare I'un de
Iautre. Il est équivalent de dire qu’ils sont situés dans chacun
des demi-plans limités par la droite (limite exclue). Cette pro-
priété est caractérisée par le critére suivant établi par P. KircH-
BERGER [29]. (Cf. aussi H. RapEmMAcHER-I. J. SCHOENBERG [44]):

12.  Pour que deux ensembles, fermés et bornés, sotent séparables,
il suffit (et il faut) qu’il en soit de méme pour chacun des
couples de leurs sous-ensembles respectifs dont la réunion
comprend au plus quatre points.

13. Tout ensemble de points, comprenant au moins quatre points,
peut étre regardé comme la réunion de deux sous-ensembles,
non vides, sans point commun et non-séparables.

Voir a ce sujet F. W. Levi[36] et R. Rapo [46].

Les propriétés suivantes gravitent autour du céléebre théo-
reme de HELLy. Les nombreuses variantes de méme type, con-
cernant en général des « ovales», forment une théorie carac-
téristique de la géométrie combinatoire convexe. On appellera
«ovale» (Eibereich) un ensemble de points convexe, borné et
fermé.

14. Pour que tous les ovales d’un ensemble (en nombre fint ou
infint) aient (auw moins) un point commun, il suffit (et il
faut) qu’il en soit ainsi pour chaque combinaison de trois
d’entre eux.

C’est Papplication au plan du théoréme connu de HELLY-
Cf. E. HerLry [21], J. Rapon[48], D. Konic [35]... ete. Des
exemples simples montrent qu’il est impossible de remplacer les
combinaisons de trois ovales par des couples; sauf s’il existe
des conditions supplémentaires sur la forme des ovales.

C’est le cas de 1’énoncé suivant:

15. Pour que tous les rectangles (ou les parallélogrammes), a
cotés respectivement paralléles, d’un ensemble (en nombre
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fini ou infini) aient (au moins) un point commun, il suffit (et
il faut) qu’il en soit ainsi pour chaque couple d’entre eux.

En déplacant par translation un ovale qui n’est pas un paral-
lélogramme, on peut obtenir trois ovales n’ayant pas de point
commun mais tel que chaque couple de ces trois ovales aient
au moins un point commun. Toutefois cela est impossible pour
des parallélogrammes. L’énoncé 15, légérement modifié, est
donc une propriété caractéristique des parallélogrammes. Cf. &
ce sujet B. Sz.-Nacy [41].

L’application a la droite du théoréme de Helly est un cas
particulier du théoréeme 15.

16. Pour que les segments, appartenant a une méme drotte, d’'un
ensemble (en nombre fini ou infint) atent (au moins) un
point commun, il suffit (et il faut) qu’il en soit ainst pour
chaque couple d’entre euz.

On peut facilement, et en vue de nombreuses applications,
établir pour la circonférence un théoréeme du méme type que
celui de Helly. On y remplace les ovales par des arcs « fermés »,
c’est-a-dire extrémités comprises, appartenant, bien entendu, a
une méme circonférence.

17.  Pour que les arcs, inférieurs a une demi-circonférence, d’un
ensemble (en nombre fini ou infini), appartenant a une méme
circonférence, aient (au moins) un point commun, il suffit
qu’il en soit ainsi pour chaque combinaison de trois d’entre
euz.

La condition de longueur des arcs est essentielle, car la pro-
priété n’est plus vraie pour un ensemble de demi-circonférences.
Il suffit, en effet, de considérer les quatre demi-circonférences
limitées par deux couples de points diamétralement opposés.
Elles n’ont pas de point commun et cependant chacune des
combinaisons de trois d’entre elles en a au moins un.

De méme la propriété n’est plus vraie, sans modifications,
pour des couples d’arcs. Il suffit de considérer le découpage
d’une circonférence en trois arcs égaux: ceux-ci sont sans point
commun et cependant chaque couple a un point commun.
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La propriété peut devenir vraie pour les couples par une
limitation plus stricte de la longueur des ares:

18. Pour que les arcs, inférieurs a un tiers de circonférence, d’un
ensemble (en nombre fini ou infini), appartenant a une
méme circonférence, aient (au moins) un point commun, il
suffit qu’il en soit ainsi pour chaque couple d’entre eux.

On peut encore énoncer une propriété analogue, de conclu-
sion un peu différente, sans condition de limitation de longueur
des arcs.

19. Pour qu’il existe (au moins) un diamétre qui coupe tous les
arcs d’un ensemble, appartenant a une méme circonférence,
Ul suffit que chaque couple de ces arcs ait (au moins) un point
commun.

Il est équivalent de dire que si cette condition suffisante est
remplie, on peut trouver deux points diamétralement opposés
tels que tout arc de ’ensemble contienne (au moins) I'un des
deux. Des théorémes analogues ont été établis, entre autres, par
C. V. RoBinson [49] et A. HorN-A. VALENTINE [25]. De belles
applications, signalées ci-dessous, ont été données par P. Vin-
CENSINI [59].

20. Pour qu’on puisse trouver une translation amenant un ovale
donné a étre contenu dans 'intersection d’un ensemble d’ovales
il suffit que, pour chaque combinaison de trois ovales de l'en-
semble il existe une telle translation.

21. Pour qu’on puisse trouver une translation amenant un ovale

donné d rencontrer tous les ovales d’un ensemble, il suffit que

7 Y

pour chaque combinaison de trois ovales de Uensemble 1l
existe une telle translation.

22, Pour qu’on puisse trouver une translation amenant un ovale
donné a contenir tous les ovales d’un ensemble (ou leur réu-
nion ), il suffit que, pour chaque combinaison de trois ovales
de Uensemble il existe une telle translation.

Ce sont des applications au plan de variantes plus générales
du théoréme de Helly énoncées par P. VINCENSINI[D8] et
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V. L. KLeE jr. [32] pour des hyper-espaces. Les théoremes ne
sont vrais, dans le plan, que pour des déplacements de trans-
lation et ne s’appliquent plus pour des rotations.

Voici notamment, un contre-exemple du théoréme 21. On
considére un ensemble de n cercles (n > 2) dont les centres ont

Fic. 3

pour coordonnées polaires: p = 1 et ¢ = 2kn/n(k =1,...,n)
et dont les rayons sont r = cos? (w/n) si n est pair et

r = cos? (w/n) + cos? (w/2n) — 1

si n est impair. On peut alors vérifier qu’il est toujours possible,
par un déplacement, non reductible & une translation, d’amener
un segment de droite de longueur 2 (ce qui est un ovale aplati)
a traverser chacune des combinaisons de n — 1 cercles; mais
qu’il est impossible de lul faire traverser les n cercles en méme
temps.

La figure 3 1llustre cet exemple pour n = 8.

23.  Pour que, par un point quelconque du plan, on puisse tou-
jours faire passer une droite rencontrant tous les ovales d’un




46 H. HADWIGER ET H. DEBRUNNER

ensemble, il suffit que chaque couple de ces ovales ait (au
moins) un point commun.

24. Pour que, parallélement a une direction quelconque du plan,
on puisse toujours mener une droite renconirant tous les
ovales d’un ensemble, il suffit que chaque couple de ces ovales
ait (au moins) un point commun.

Ces deux énoncés sont aussi des cas particuliers, pour le plan,
de théoréemes plus généraux de A. Horn [24] et de V. L. KLEE
Jr [30]. Ils donnent des exemples de propriétés entrainées par
«une condition suffisante de Helly» vérifiée par des couples
au lieu de combinaisons de trois ovales.

On peut aussi se demander s’il est possible d’obtenir un
théoréeme analogue a celui de Helly en remplacant la recherche
d’un point commun par celle d’'une sécante commune. L’exis-
tence d’une droite rencontrant tous les ovales d’'un ensemble
peut-elle résulter de ’existence d’une sécante commune a chaque
combinaison d’'un certain nombre . de ces ovales ?

Une telle propriété n’existe pas. Et ¢’est ainsi que L. A. SAN-
TALO [D0] a montré qu’il est possible de construire un ensemble
de n ovales, sans sécante commune et tel cependant qu’il en
existe une pour chaque combinaison de n — 1 de ces ovales.

(C’est aussi ce que prouve l'exemple indiqué a propos de
I’énoncé 21. On peut cependant obtenir des théoremes de ce
genre en ajoutant des conditions supplémentaires pour la forme
et pour la position des ovales. Cest ainsi que L. A. SANTALO [50]
a démontré que, pour un ensemble de rectangles a cotés paral-
leles, il existe une sécante commune s’il en existe une pour
chaque combinaison de six de ces rectangles. C’est aussi le cas de
I’énoncé suivant:

25. Pour qu’il existe une droite « montante» traversant tous les
rectangles d cotés paralléles d’un ensemble, il suffit qu’il en
soit ainst pour chaque combinaison de trois rectangles de
'ensemble.

Par droite « montante » on entend une droite qui a un coeffi-
cient angulaire positif par rapport & un systéme d’axes paral-
leles aux cotés des rectangles, comme I'indique la figure 4.
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Dans Pexemple de la figure 3 qui prouve qu’il n’existe pas,
dans le cas général, de nombre de Helly pour une condition
suffisante d’existence d’une sécante commune a un ensemble
d’ovales, on peut remarquer que les ovales se recouvrent partiel-
lement les uns les autres. On peut se demander si cette circons-
tance n’est pas trop particuliére et étudier le cas ou les ovales
n’ont, deux & deux, aucun point commun. A cette question qui
a été posée par V. L. KiLEE [33] la réponse est négative.

‘ /

/

A

/

Fic. 4

Pour le montrer, on peut construire une rosace de segments
circulaires. Sur 2n (n > 1) circonférences concentriques Ki
(t de 1 & 2n) de centre Z et de rayons R; (0 < R; < R;;) o
construit des couples de segments S, et S symétriques par
rapport & Z. Chaque segment est défini par les coordonnées
polaires des points de I’arc qui le limite sur le cercle R;:

S, e=R;0—n+1)n2n<oe<(t+nrn—1) n/2n
SSe=R;0C+nrn+1=x2n<¢ <@+ 3n—1)x/2n.

Cette rosace vérifie les propriétés suivantes:

A. En choisissant convenablement ’accroissement des rayons
R,, on peut construire des segments sans point commun
deux & deux. La figure 5 en donne un exemple pour n = 2.
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C.

D.
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Il n’existe aucune droite traversant les 4n segments. Un
diameétre d’angle polaire compris dans l'intervalle 0, w/2n
ne rencontre aucun des deux segments S et S, et méme
les sépare. Il en résulte que 'un au moins de ces segments
n’est pas traversé par une droite parallele a ce diameéetre.
Par des rotations d’angle =/2n on complete le raisonnement.

o

~_ | 7

Fic. 5

(Quels que soient les R;) il n’existe aucun point commun
aux 4n segments. C’est une conséquence évidente de B.

Si tous les R, sont égaux & R, pour chaque combinaison de
2n — 1 couples de segments, il existe au moins un couple de
points diamétralement opposés qui leur soit commun. Il
suffit de considérer tous les couples de segments sauf S, et S;.
Les deux points d’angle polaire 0 et = leurs sont communs.
Les rotations d’angle multiples de =/2r, qui échangent les
segments, montrent qu’il en est de méme pour chaque combi-
naison de 2n — 1 ‘couples.

Si tous les R; sont égaux a R, il n’existe aucun couple de
points diamétralement opposés appartenant aux 2n couples

de segments. C’est une conséquence évidente de B.
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F. De D on déduit que toute combinaison de 2n — 1 couples
de segments est traversée par un diamétre. Mais cette pro-
priété reste vraie méme si les rayons ne sont plus égaux et,
en particulier, lorsque les segments pris, deux a deux, n’ont
pas de point commun (comme dans la propriété A).

G. Si tous les R, sont égaux a R, pour chaque combinaison de
2n — 1 segments, il existe deux points tels que chacun de ces
segments contienne au moins I'un des deux points. C’est une
conséquence de D.

H. On ne peut pas trouver de couple de points tel que chacun
des 4n segments contienne au moins 'un des points de ce
couple. C’est une conséquence évidente de B.

Les propriétés A, B et F fournissent une réponse négative
a la question posée ci-dessus. La méme rosace permet de montrer
I'impossibilité de diverses propriétés analogue a celle de Helly.

A loccasion d’un travail de L. A. SANTALO [51], Th. MoTzKIN
a donné un contre-exemple de I’énoncé suivant: pour que tous
les couples d'un ensemble de couples d’ovales aient au moins
un point commun, il suffirait qu’il en soit ainsi pour chaque
combinaison d’un certain nombre 2 de ces couples. Cest égale-
ment ce que montre ’exemple de la rosace; propriétés D et E
(dans le cas de rayons égaux).

V. L. KLEE jr.[31] a cherché & trouver un nombre % de Helly
vérifiant 1’énoncé suivant: Pour que chacun des ovales d’un
ensemble contienne au moins I'un des deux points d’un couple
1l suffirait qu’il en soit ainsi pour chaque combinaison de % de
ces ovales. L’exemple de la rosace montre encore qu’il n’en
existe pas. Il suffit de considérer les propriétés G et H.

On ne sait pas encore s’il existe un nombre 4 de Helly dans
le cas d’un ensemble d’ovales « congruents » (ou déduits de 'un
d’eux par translation), deux a deux sans point commun, et
dont on cherche s’ils ont une sécante commune, s’il en est ainsi
pour chaque combinaison de % de ces ovales. On peut d’abord
se poser la question pour des cercles; I'existence de A apparait
alors plausible, mais on n’en a pas de preuve. Il faudrait en
tout cas, que £ soit au moins égal a 5 ainsi que le montre
la figure 6.

L’Enseignement mathém., t. III, fasc. I.

s
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En revanche, on a pu établir le théoréme suivant pour des
ensembles d’ovales homothétiques:

26. Pour que, relativement & un ensemble d’ovales homothétiques,
il existe un systéme de quatre droites formant un rectangle,
telles que chaque ovale soit traversé par au moins ['une
d’entre elles, il suffit que, pour chaque combinaison de quatre
ovales de Uensemble, il existe (au moins) une sécante
commune.

Fi1Gc. 6

Nous terminerons ce groupe de théorémes en indiquant un
énoncé du type de Helly, découvert par P. VinceENsini[H9].
On dira qu’un ensemble d’ovales est « totalement séparable »
lorsqu’il existe une direction de droite, telle que toute droite
paralléle a cette direction ne traverse au plus qu’un seul ovale de
I’ensemble. On peut alors tracer, dans le plan, des bandes a
bords paralleles a cette direction, deux & deux sans point com-
mun, et telles que chaque bande contienne un et un seul ovale
(comme 'indique la figure 7).

27. Pour qu’il existe une droite traversant tous les ovales d’un
ensemble totalement séparable, il suffit qu’il en soit ainst pour
chaque combinaison de trois ovales de l'ensemble.
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La propriété avait été établie par P. VINCENSINI pour des
combinaisons de & = 4 ovales. V. L. KLEE jr.[34] a montré
qu’elle était vraie pour & seulement égal a trois. Cette propriété
a pour cas particulier le théoréme suivant énoncé par L. A. SAN-
TaL6 [50] (Voir aussi H. RapemacHER-I. J. Scn@®NBERG [44]):

\

Fic. 7

Pour qu’il existe une sécante commune & un ensemble de
segments de droites, strictement paralleles entre eux (donc tota-
lement séparables) il suffit que la propriété soit vraie pour
chaque combinaison de trois segments de 1’ensemble.

Au sujet du théoréme 27, on peut modifier la condition de la
séparation totale pour des ovales suffisamment clairsemés, ce qui
peut étre exprimé par les grandeurs des angles apparents comme
I'indiquent la figure 8 et le théoréme suivant.

28. Pour qu'un ensemble d’ovales soit totalement séparable, il
suffit que de tout point du plan on ne puisse voir plus d’un
ovale sous un angle apparent au moins égal a =/3 et que,
pour chaque combinaison de quatre ovales de ensemble, il
existe (au moins) une sécante commune.

On termine par quelques énoncés, plus ou moins apparentés
au théoreme connu de H. W. Jun[26] sur la grandeur de
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Penveloppe circulaire d’un ensemble de points de diamétre donné.
Précisons d’abord quelques notions:

Un ensemble de points est « borné» §’il peut étre recouvert
par un cercle fermé.

En vue des théoremes suivants nous dirons qu’un ensemble
de droites est « borné» lorsqu’il ne contient pas de couple de
droites paralleles, et que les points d’intersection de tous les
couples de droites forment un ensemble borné.

Fic. 8

Le « rayon de recouvrement » d’un ensemble borné de points
est le rayon du plus petit cercle (fermé) qui contient tous les
points de ’ensemble. Par analogie on appellera « rayon d’inter-
section » d’'un ensemble borné de droites, le rayon du plus petit
cercle (fermé) coupé par toutes les droites de 'ensemble.

Le « diameétre» d’un ensemble borné de points est la limite
supérieure des distances de ses couples de points. Par analogie,
on appellera diametre d’un ensemble borné de droites, le diameétre
de I’ensemble des points d’intersection.

29, Pour qu'il existe un cercle de rayon R recouvrant tous les
points d’un ensemble borné il suffit que, pour chaque combi-
naison de trois de ces points, il existe au moins un cercle
de rayon R la recouvrant.
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30. Pour qu'il existe un cercle de rayon R rencontrant toutes les
droites d’un ensemble borné, il suffit que, pour toute combi-
naison de trois de ces droites, il existe au moins un cercle
de rayon R les rencontrant.

Ce sont des conséquences du théoréme 21.

31. Le rayon de recousrement d’un ensemble borné de points dont
le diamétre est égal a 1, est au plus égal a 1:4/3.

C’est un cas particulier, pour le plan, du théoréme de Junc.
H. RapemacHER et O. T@priTz[45] en donnent un expose
détaillé.
32. Le rayon d’intersection d’un ensemble borné de droites dont le
diamétre est égal a 1, est au plus égal d 1/2+/3.
C’est la transformation par dualité du théoreme de Juna.

33. Tout ensemble borné de points dont le diamétre est égal a 1,
peut étre recouvert par un triangle équilatéral de coté +/3.

34. Tout ensemble borné de points dont le diamétre est égal a I,
peul éire recouvert par un hexagone de coté 1: 4/ 3.

Un domaine qui peut recouvrir tout ensemble de points dont
le diameétre est égal a 1, est appellé « couvercle» (normal). Le
cercle de rayon 1/4/3 est le couvercle de Juna. Le triangle équi-
latéral et I’hexagone circonscrits au cercle de diametre égal a 1
sont des couvercles. L’énoncé 33 est un cas particulier pour le
plan, d’un théoreme établi par D. GaLE [15], correspondant au
théoréme de Juwa. Le théoréme 34 est di a S. PAvL[42].

35. Tout ensemble borné de points dont le diamétre est égal a 1,
peut étre recouvert par trois ensembles de points dont les
diamétres ne dépassent pas 4/ 3/2.

(est une forme plus précise, donnée par D. Gark [15] d’un
théoréme di & K. Borsuk [5] qui exprime que, dans le plan, tout
ensemble de points peut étre considéré comme la réunion de
trois sous-ensembles de diameétres inférieurs. K. Borsuk avait
suggéré qu’'un ensemble de points, dans un espace de k& dimen-
sions pourrait étre décomposé en k& + 1 sous-ensembles de dia-
metres inférieurs. Cette propriété a été établie pour £ = 3 par
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H. G. EccLEsTon [10]; elle n’a pas encore été démontrée pour
k> 3.

Le théoréme ci-dessus de K. Borsuk, non compris la préci-
sion de D. GALE, est aussi une conséquence, dans le cas d’un
ensemble d’'un nombre fini de points du plan, du théoréme
suivant sur le nombre de couples de points dont la distance est,
égale au diametre de I’ensemble.

36. Dans un ensemble, d’'un nombre fini n de points, dont le
diameétre est égal a 1, il y a au plus n couples distincts de
points dont la distance est égale a 1.

On en trouve une bréve démonstration dans P. Erpos [13]
— Cf. aussi H. Hopr et E. PanNwiTz [23].

Les relations étroites entre tous ces groupes de théorémes
sont mises en évidence par la conséquence suivante du théoréme

34 énoncée sous une forme analogue & celle du théoréeme de
Helly.

37. Pour que, dans un ensemble de cercles de rayon égal a 1, on
puisse construire un triangle équilatéral de coté égal a 1,
dont chaque cercle de l'ensemble contienne au moins l'un des
sommets, il suffit que chaque couple de cercles de I’ensemble
ait au moins un point commun.

On trouve dans L. FEsEs-TOTH [14] — page 97 — des énoncés
analogues qui ne sont encore que partiellement démontrés.

2me PARTIE

Nous donnons ci-dessous de courtes démonstrations des
théorémes qui précédent, d’apres les sources indiquées. Nous nous
bornons souvent a la suite des idées. Les raisonnements ne
supposent que des propositions préalables élémentaires notam-
ment des considérations simples sur les ensembles de points.

1. On raisonne par I'absurde: on considere des points P,
vérifiant les conditions de ’hypothése et non alignés. On peut,
en effectuant éventuellement une transformation projective

supposer 'un d’eux P; a I'infini. Les droites joignant tous les
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couples de points sont, d’une part des paralléles (au moins 2)
de direction P;, d’autre part des transversales (au moins une).
Si ces transversales étaient en nombre fini, il en existerait au
moins une G formant avec les paralleles un angle minimum
(au plus égal & tous les autres). Elle contiendrait au moins trois
points différents, soit P;, P, et P, entre P; et P,. La droite de
direction P, passant par P; contiendrait au moins un point P,
de I’ensemble (différent de P; et a distance finie). L'une des
droites P, P, ou P, P, formerait avec les paralléles un angle
aigu inférieur (strictement) & celui de G, ce qui est absurde
(contraire & la construction de G ou au nombre fini de trans-
versales) 1.

2. Clest le transformé de 1 par dualité.

3. (est une conséquence de 1. Il suffit de transformer la
figure par une inversion dont le p6le est un point de I’ensemble.
Les circonférences passant par le pdle deviennent des droites
vérifiant les conditions de 1, donc réduites a une seule. (On
continue ensuite de proche en proche.)

4. Le plus petit cercle de recouvrement (c¢’est-a-dire le plus
petit cercle contenant tous les points de ’ensemble) contient sur
son périmeétre des points de l’ensemble, délimitant des arcs
tous inférieurs ou égaux a des demi-circonférences. 11 ne peut
exister de point Q (strictement) intérieur au cercle car la symétrie
relativement a la médiatrice du segment jolgnant Q & 'un des
points précédents donnerait des points extérieurs (strictement)
au cercle.

Si le nombre des points de ’ensemble est fini (supérieur a 2),
on considere deux axes de symétrie dont I'angle ¢ est minimum.
Le produit des symétries autour des axes est une rotation
d’angle 2 ¢ autour du centre du cercle, qui laisse I’ensemble
invariant. Cet ensemble est donc un polygone régulier d’angle
au centre ¢ égal a 2 «/n.

5. S'il existait des polygones réguliers de n sommets inscrits
dans un réseau, 1l en existerait un de c6té minimum, puisque la

1 Cette légére modification de la démonstration met en évidence la nécessité de
I’hypothése du nombre fini d’éléments de I’ensemble de points. (Note des traducteurs.)
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longueur d’un c6té est égale & une expression 4/p% + ¢2 (p et ¢
entiers). Supposons construit un tel polygone P; P, ... P, et a
partir de chaque sommet, portons un vecteur défini par les
équipollences:

P1PI:P2P37 P2P;:P3P4a e g PnPT/L:PIPZ

Les extrémités de ces vecteurs seraient encore des points du
réseau et pour n = 5 et n > 7, ils formeraient un polygone
regulier de n sommets plus petit que le précédent qui ne pourrait
donc étre minimum. Pour établir I'impossibilité d’inscrire un
triangle régulier de coté s, 1l suffit de remarquer que son aire est,
égale & s2 (4/3/4). Elle serait donc irrationnelle puisque s? serait
rationnelle. Or le calcul de cette aire en fonction des coordonnées
des sommets, par exemple au moyen d’un déterminant, donnerait
un nombre rationnel. Il y a donc absurdité. On démontre de
méme l'impossibilité d’inscrire un hexagone régulier de coOté s
dont 1aire est s2 (34/3/2).

6. Pour un losange inscrit dans le réseau, d’angle aigu «
et de coté s, la surface qui est égale a s2 sin o peut étre exprimée
en fonction des coordonnées des sommets, ce qui donne un
nombre entier. La valeur de sin o est donc rationnelle. D’apres
la propriété 8, pour « commensurable avec w ceci n’est possible
que pour « égal & =/6 ou & w/2. Le premier cas est a rejeter:
par une rotation de =/2 autour d’un sommet du losange, point
du réseau, on transformerait les autres sommets en de nouveaux
points du réseau. Il apparaitrait alors un triangle équilatéral
inscrit, ce qui est contraire a la propriété 5.

7. Conséquence immédiate de 8.

8. La démonstration du théoréeme 5 pour les polygones
réguliers dont le nombre des sommets est n =5 ou n > 7,
reste valable pour un réseau rectangulaire (points de coordonnées
Az et By ot A et B sont-des nombres fixes et x et y des entiers
quelconques.) Le théoréeme 8 résultera de I’énoncé suivant qui
est plus général: « Les seuls polygones réguliers qui peuvent étre
inserits dans un réseau rectangulaire sont les triangles, les carrés
et les hexagones.»
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Considérons, en effet, un angle « = 2= (m/n) défini par une
fraction m/n irréductible. Les formules de trigonométrie per-
mettent de calculer en fonction rationnelle (& coefficients ration-
nels) de cos o les nombres a, et b, tels que cos va = a,;
sin ¢ = b, sin « (¢v = 1, 2, ..., n). Ces nombres sont donc ration-
nels si cos o I'est. En désignant par N le dénominateur commun
des 2n quantités a, et b, on construit un réseau rectangulaire
avec les points de coordonnées (1/N)x et (sin «/N)y; z et y
entiers. Sur une circonférence de rayon 1 ayant pour centre un
point du réseau, tous les points d’angle polaire v sont des points
du réseau. Puisque « = 27 (m/n) ces points forment un polygone
régulier de n sommets. Ceci n’est possible, d’aprés I’extension du
théoréeme 5 aux réseaux rectangulaires, que pour »n égal a 1 ou
a2ouadouasouaib Comme o est aigu, il en résulte que
o = /3.

9. On démontre le théoréeme par ’absurde: en considérant
trois points non alignés A, B, C dont les distances mutuelles
sont des nombres entiers et en désignant par % la plus grande
des distances d (A, B) et d (B, C). Les distances d’un point P
aux points A, B, C vérifient les relations:

Si ces distances sont des nombres entiers, les différences des
premiers membres ne peuvent prendre au plus que les valeurs
0,1,2, ...,k Un point P est donc situé sur une des k + 1 hyper-
boles de foyers A et B et sur une des k -+ 1 hyperboles des
foyers B et C. Il n’y a donc qu'un nombre fini, au plus égal a
4(k 4 1)%, de points P possibles.

10. La condition est évidemment suffisante. Elle est mani-
festement nécessaire pour un ensemble d’un nombre fini de points
dont I’enveloppe convexe est alors un polygone convexe (inté-
rieur et périmétre compris) dont les sommets appartiennent &
Pensemble. Il suffit de décomposer ce polygone en triangles en
joignant un de ses sommets & chacun des autres. Un point
appartenant au polygone appartient & au moins un de ces
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triangles (éventuellement a deux). Reste & considérer un ensemble
M d’un nombre infini de points. On forme la réunion N de toutes
les enveloppes convexes des combinaisons d’un nombre fini de
points de M. Cette réunion contient ’enveloppe M de M car elle
contient tous les points de M et tous les points de chaque segment
joignant deux points de M. Or M est le plus petit ensemble qui
possede ces deux propriétés. Donc tout point contenu dans M
I'est dans N et par suite dans au moins une enveloppe triangu-
laire de trois points de M.

11. La condition est encore évidemment suffisante. Si un
point P est intérieur ! a ’enveloppe convexe M d’un ensemble
de points (non alignés) M, il est intérieur & un triangle (non
aplati) dont les sommets appartiennent & M. D’apres la propriété
10 chacun de ces sommets appartient & I’enveloppe convexe
d’un sous-ensemble de trois points de M; de sorte que le triangle
appartient a I’enveloppe convexe (polygone) d’'un nombre fini
de points de M, qu’on peut décomposer en triangles en joignant
un de ses sommets a chacun des autres. L.e point P est intérieur
soit & 'un de ces triangles, soit a la réunion de deux triangles
adjacents (s’il est sur leur coté commun); il est donc intérieur
a 'enveloppe convexe d’au plus quatre points de M.

12. La condition est évidemment nécessaire. On démontre
qu’elle est suffisante par’absurde, en considérant deux ensembles,
fermés et bornés, M et N non séparables et en construisant
deux sous-ensembles respectifs M’ et N’ également non sépa-
rables, dont la réunion comprend au plus quatre points. Si M et
N ne sont pas séparables, leurs enveloppes convexes M et N ont
au moins un point commun P 2. D’aprés la propriété 10 on
peut associer a ce point P des sous-ensembles M"* et N” (de M et
de N) de chacun trois points, dont les enveloppes convexes
M et N’ contiennent P. Alors: ou ’une ou I’autre de ces enve-

-

1 On remarquera la distinction entre un point qui appartient & un ensemble et un
point qui est intérieur & un ensemble convexe. Dans le second cas le point est intérieur
(appartient, périmeétre exclu) & un triangle (non aplati) dont tous les points (périmetre
inclus) appartlennent a 1’ensemble convexe (Note des traducteurs).

2 Si les ovales M et N n’ont pas de point commun, la distance de M et N est réalisée

par deux points distincts de M et N. La médiatrice (Mittelsenkrechte) de ces points
sépare M et N.
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loppes est incluse dans Dlautre, par exemple M” C N'’; ou
certains des cOtés de M’’ et N’ sont des segments sécants. Dans
le premier cas on peut constituer M’ avec I'un des points de M”’
et prendre N’ = N’’. Dans le second cas, on peut prendre pour
M’ et N’ les extrémités de chacun de deux cotés sécants. Il est
visible que, dans les deux cas, M' et N’ ne sont pas séparables;
leurs enveloppes convexes ont d’ailleurs des points communs.

13. Il suffit de considérer dans l’ensemble M un sous-
ensemble de quatre points. Si leur enveloppe convexe n’est pas
un quadrilatere (non dégénéré) I'un des points N est contenu
dans l'enveloppe convexe des trois autres, et, a fortiori, dans
Ienveloppe convexe de M — N. Les deux ensembles N et
M — N sont sans points communs (disjoints ou formant partition
de M) et ils ne sont pas séparables. Si, au contraire, 'enveloppe
convexe des quatre points est un quadrilatére (convexe) on peut
prendre pour N deux sommets opposés; N et M — N sont
encore deux sous-ensembles sans point commun et non sépa-
rables.

14. Pour un systéeme d’ovales en nombre fini, le théoréme
de Helly se déduit par récurrence sur n du lemme suivant:

Pour que k ovales (£ > 4) aient un point commun, il
suffit qu’il en soit ainsi pour chacune des combinaisons de
k— 1 de ces ovales.

Appelons P; un point contenu dans les ovales Cy, C,, ..., C,
sauf, peut-étre dans C;. D’aprés la propriété 13 les k& points
P, (z = 1, ..., k) peuvent étre répartis en deux ensembles
M" = (Pyy, .o, Pip) et M” = (Pyq, ... P;,) sans point commun et
dont les enveloppes convexes M’ et M” ont un point commun P,.
Mais alors tout point de M’ appartient aux ovales sauf peut-étre
a Gy, ..oy Gy, et tout point de M” appartient aux ovales sauf
peut-étre a Gy, ..., G;,. Le point Py qui appartient & M’ et a M”
appartient donc a tous les ovales, sans exception.

Pour un ensemble d’ovales en nombre infini, on raisonne par
'absurde. S’ils n’avaient pas de point commun, a tout point P
d’un ovale C;, on pourrait faire correspondre au moins un ovale
C; ne contenant pas P ni méme aucun point dun cercle de
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centre P et de rayon convenable. Mais d’aprés le théoreme de
Heine-Borel, on pourrait, dans tous ces cercles, en choisir un
nombre fini qui recouvriraient I’ovale C;. A ces cercles corres-
pondraient des ovales C;, en nombre fini, formant avec C; un
ensemble d’ovales, en nombre fini, vérifiant les conditions suffi-
santes énoncées, et cependant sans point commun.

15. Le théoréme 14 étant acquis, il suffit d’établir que trois
rectangles, a cOtés paralléles, R;, R,, R; ont nécessairement un
point commun lorsqu’il en est ainsi pour chacun de leurs trois
couples. On prend des axes paralléles aux cdtés des rectangles
et on appelle z;, , (1 = 1 ou 2 ou 3) les coordonnées d’un point
P, commun aux deux rectangles d’indices différents de i. Les
points P; et P, ainsi que le segment qui les joint et le rec-
tangle de cotés paralleles aux axes qui a ce segment pour
diagonale sont contenus dans le rectangle R, (£ différent de i
et 7). Donc tout point P de coordonnées z et y appartient a
R, lorsque x est compris entre x; et x; et y compris entre y; et y,.
On peut choisir les indices de telle sorte que: z; < x; < 73 et
Y < Y; <Yy (1], k différents). Alors le point P de coordonnées
T, et y; vérifie les conditions précédentes pour qu’il appartienne
a chacun des rectangles, donc aux trois.

16. Ce théoréeme est un cas particulier du précédent en
considérant des rectangles aplatis sur une méme droite.

17. (C’est une conséquence de la propriété 14. Il suffit de
considérer les segments circulaires (inférieurs & un demi-cercle)
qui ont pour bases les arcs de I'ensemble. Ce sont des ovales
qui ont un point commun s’il en est ainsi pour chaque combinai-
son de trois d’entre eux. L’existence d’'un point commun est
équivalente a la méme propriété pour leurs arcs.

18. C(C’est une conséquence de la propriété 16. Si des arcs
inférieurs au tiers de la circonférence ont au moins un point
commun avec 'un d’eux, C;, aucun ne contient le point I
diamétralement opposé au milieu de C;. En coupant la circon-
férence en I et en la développant sur une droite, on est ramené
a Pexistence de points communs a des segments de cette droite.
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19. On considére une droite orientée G («) passant par le
centre de la circonférence et d’angle « avec une direction fixe. En
projetant orthogonalement sur G («) les arcs considérés, on
obtient des segments (dont certaines parties peuvent étre obte-
nues deux fois) dont chaque couple a (au moins) un point
commun. D’aprés la propriété 16, ils ont une intersection D (o),
peut-étre réduite & un point, mais qui n’est pas vide. Lorsqu’on
passe de D («) & D (« 4 m), les abscisses (relativement au centre
du cercle) des points de cette intersection prennent des valeurs
opposées. Comme ces abscisses varient de facon continue en
fonction de «, il existe une valeur «, pour laquelle une de ces
abscisses est nulle; c’est-a-dire que le centre est alors commun
& tous les segments et la droite projetante G (xy, + 7/2) est un
diameétre qui rencontre tous les arcs.

Les énoncés 20 a 28 se déduisent par des transformations
géométriques convenables des théoréemes 14, 16, 17, 19.

20-21-22. La position d’'un ovale A qui se déplace par
translation est caractérisée par celle d’un point P invariablement
lié & A. On démontre aisément que le point P décrit un ovale
B; ou B; ou Bj lorsque A se déplace par translation de toutes les
facons possibles en restant contenu dans un ovale B, ou en
rencontrant B, ou en contenant B. Cette association des ovales
B* au déplacement de A, raméne les énoncés 20 ou 21 ou 22
au théoreme 14. ‘

23. En projetant par rapport a un point O arbitraire les
ovales d'un ensemble, vérifiant la condition suffisante énoncée, sur
une circonférence de centre O, on obtient un ensemble d’arcs véri-
fiant la condition suffisante du théoreme 19. Il existe un diameétre
qul les coupe tous et la droite qui le porte coupe tous les ovales.

24. Une projection orthogonale sur une droite quelconque
des ovales d'un ensemble, vérifiant la condition suffisante énoncée,
les transforme en segments vérifiant la condition suffisante du
théoreme 16. II existe un point commun a tous ces segments et
la droite projetant ce point coupe tous les ovales.

25. Lorsque, parmi les rectangles, il en existe deux qui ne
sont traversés que par une seule droite « montante», cette
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sécante unique rencontre, en raison de ’hypothese, tout autre
rectangle et c¢’est une sécante commune.

Si cette condition particuliére n’est pas réalisée, on peut
d’abord établir la propriété pour un ensemble d’un nombre fini
de rectangles. On mene deux paralleles orientées, distinctes, &
I'une des directions des cotés. On repére une droite montante
par les abscisses de ses points d’intersection avec ces paralleles
et on lui fait correspondre biunivoquement le point qui, dans
un plan auxiliaire, a ces abscisses pour coordonnées cartésiennes.
A Tensemble des droites montantes qui traversent un rectangles
correspond ainsi, dans le plan auxiliaire, un ensemble de
points qui est manifestement convexe, fermé mais non borné.
Chaque combinaison de trois de ces domaines a au moins un
point commun a distance finie (correspondant a la sécante
commune aux trois rectangles correspondants). Pour un ensemble
d’un nombre fini de rectangles on peut tracer, dans le plan
auxiliaire, un cercle contenant tous les points communs aux
combinaisons de trois des domaines. Ses intersections avec les
domaines sont des ovales qui vérifient la condition suffisante du
théoréeme 14. Ils ont donc un point commun auquel correspond
une sécante commune a tous les rectangles.

Dans le cas d’un ensemble de rectangles en nombre infini,
on pourrait utiliser une variante plus précise du théoréeme 14.
On remarque seulement qu’en conséquence de ce qui vient
d’étre démontré, chaque combinaison de quatre rectangles de
I’ensemble a au moins une sécante commune.

A toute droite montante on fait correspondre sur une circon-
férence auxiliaire le point dont I’angle polaire ¢ est égal a ’angle
de la droite avec les paralléles orientées considérées. A tout
couple de rectangles correspond ’ensemble des droites montantes
qui les rencontrent, et, par suite, un arc de la circonférence
inférieur au tiers de celle-ci. Dans I'ensemble de ces arcs, tout
couple a au moins un point commun, puisqu’il correspond a une
combinaison de quatre  rectangles. C’est la condition suffisante
du théoréme 18; les arcs ont donc un point commun auquel
correspond une direction telle que chaque couple de rectangles
ait une sécante commune parallele a cette direction.

I1 suffit alors de projeter parallelement a cette direction les
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rectangles de I’ensemble sur une transversale. On obtient des
segments pour lesquels chaque couple de segments & un point
commun au moins. C’est la condition suffisante du théoréme 16;
il y a donc un point commun & tous ces segments et sa projetante
est une sécante commune a tous les rectangles.

26. Sur une circonférence ou a été fixé un point P, on fait
correspondre biunivoquement a chaque direction de droite dans
le plan, le deuxiéme point d’intersection avec la circonférence de
la parallele menée par P a cette direction. A I’ensemble des
sécantes communes & deux ovales correspond ainsi un arc de la
circonférence. Aux couples d’un ensemble d’ovales vérifiant la
condition du théoréme, correspond un ensemble d’arcs tel que
tout couple d’entre eux ait au moins un point commun; ce qul
est la condition suffisante du théoreme 19. Il existe donc un
diametre qui coupe tous les arcs et a ses extrémités correspondent
deux directions orthogonales telles, que pour chaque couple
d’ovales, 1l existe au moins une sécante commune paralléle a
une de ces deux directions. Les ovales étant homothétiques entre
eux, on mene a I'un d’eux les deux couples de tangentes (ou de
droites d’appui) respectivement paralleles aux directions déter-
minées. Tout autre ovale de I’ensemble, au moins égal (dans un
rapport d’homothétie au moins égal a 1), est nécessairement
traversé par une de ces quatre droites.

La propriété est alors démontrée lorsqu’il existe dans l’en-
semble un ovale minimum. Sinon on peut la démontrer par
quelques considérations supplémentaires sur les conditions de
convergence des ovales, en grandeur et en position.

27. On considere d’abord toutes les droites qui traversent
deux ovales A et B de 'ensemble. Les angles qu’elles font avec
la direction de séparation ont respectivement des déterminations
¢ qui sont toutes les valeurs comprises, au sens large, entre deux
d’entre elles: oy < o < oyet 0 < oy < oy < = puisqu’elles ne
comprennent ni 0 ni =. Cet ensemble, assimilable & un segment
de droite, intérieur & un segment de longueur =, sera désigné
par (AB).

Supposons, au moins provisoirement, que chaque couple des
segments (AB) a au moins un point (ou une valeur) commun.
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(C’est la condition suffisante du théoréme 16 et il y a une valeur
@, (Intérieure a 'intervalle 0, ) commune a tous les segments ou
intervalles (AB). C’est dire que pour chaque couple d’ovales il y
a une sécante commune de direction gq,.

Projetons les ovales de ’ensemble parallelement a la direction
¢, sur une droite de séparation. Les ovales se projettent suivant
des segments et chaque couple de ces segments a un point
commun.

En appliquant & nouveau le théoréme 16, on en déduit que
tous ces segments ont un point commun P, et la projetante (de
direction ¢,) menée par P, rencontre tous les ovales de I’ensemb]e.

Reste & prouver la supposition précédente, c’est-a-dire que,
dans un ensemble d’ovales vérifiant les conditions de 1’énoncé,
il existe une valeur commune a tout couple d’'intervalles (A; A,)
et (B; B,) défini par deux couples d’ovales A; et A, B; et B,.
(C’était la condition de P. VINCENSINI: existence d’une sécante
commune a quatre ovales). Cette existence résulte des hypothéses
lorsque les deux couples d’ovales ont un ovale commun, par
exemple, A et B, B et C; puisqu’il existe une sécante commune
aux trois ovales A, B et C.

Pour deux couples formés de quatre ovales distincts, on
raisonne par l’absurde. Si les deux segments (A; A,) et (B B,)
intérieurs au segment 0, = étalent sans point commun, 1l exis-
terait un segment intermédiaire entre eux. Si ¢’ est une valeur
intérieure & ce segment, il existe au moins une droite de direc-
tion ¢’ séparant A; de A, et une autre séparant B; de B,. Ces
deux droites paralléles séparent de plus un autre des couples
constitués avec A, A,, B, By, soit A; B,. Le segment (A; B,)
a des points communs avec le segment (A; A,) puisque les couples
A, B, et A;, A, ont un ovale commun. II en a aussi avec le
segment (B; B,). Il devrait donc contenir tout le segment inter-
médiaire précédent et, en particulier la valeur ¢’. Il y aurait
donc une sécante commune au moins a A; et B, de direction ¢’
ce qui est contraire & Fhypothese puisque la direction ¢’ sépare
A, et B,.

28. On peut appliquer la transformation utilisée dans la
démonstration du théoréme 26. On est ramené a comparer des
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arcs inférieurs & un tiers de circonférence, ayant deux & deux
des points communs. D’aprés la remarque faite dans la démons-
tration du théoréme 18, ils laissent & découvert un point de la

- circonférence.
29. (C’est un cas particulier de 21.

30. En remplacant les droites par des segments de longueur
suffisante, on est ramené au théoreme 21.

31. En raison du théoréme 29, il suffit d’établir la propriéte
pour un ensemble de trois points. Si ceux-ci forment un triangle
(éventuellement aplati) qui a un angle obtus le cercle de recou-
vrement a pour diamétre le c6té opposé a I'angle obtus, qui est
le plus grand donc égal au diameétre 1. Le rayon de recouvrement
est alors égal a 1/2.

Si les trois points forment un triangle (non aplati) qui a ses
trois angles aigus le cercle de recouvrement est le cercle circons-
crit, dont le rayon est la valeur commune de a/2 sin « ou a est
la longueur d’un coté et o 'angle opposé. Dans tout triangle il
y a un angle au moins égal & =/3. Donc a < 1; sin o« > 4/3/2
donc a/2 sin « < 1/4/3.

32. 1l suffit encore, en raison du théoréeme 30, d’établir la
propriété pour un ensemble de trois droites de diametre égal a 1.
Elles forment un triangle de périmetre au plus égal & 3 qui est
circonscrit au plus petit des cercles sécants. Comme le triangle
équilatéral de périmetre 6r /3 est le triangle de plus petit péri-
meétre circonscrit au cercle de rayon r on en déduit 6r4/3 < 3
et r < 1/24/3.

33. L’ensemble étant borné, on peut construire deux triangles
équilatéraux S et S* circonscrits, a cOtés respectivement paral-
leles et disposés symétriquement ; chacun de leurs c6tés contenant
au moins un point de I’ensemble. En menant par un point
intérieur & chacun des triangles des perpendiculaires a leurs
cOtés, on obtient des segments dont les sommes sont respecti-
vement égales aux hauteurs des triangles S et S*, d’aprés une
propriété bien connue de géométrie élémentaire. Mais chacune
des sommes de deux de ces segments opposés est au plus égale

I’Enseignement mathém., t. III, fasc. 1. )
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au diametre de l’ensemble qui est égal & 1. La somme des
hauteurs des deux triangles est donc au plus égale a trois. [.’une
d’elles est au plus égale a 3/2 et le c6té du triangle correspondant
est au plus égal & /3.

34. En reprenant la démonstration du théoréeme 33, on voit
que les longueurs des cotés des triangles équilatéraux circonscrits
S et S* sont des fonctions continues de la direction de I'un des
cOtés, choisi comme base. Aprés une rotation d’angle = de
cette direction, la longueur des cotés de S se change en celle des
cotés de S*. Il y a donc une position pour laquelle ces deux
triangles sont égaux. Leur intersection dans laquelle est contenu
I’ensemble de diameétre égal a 1, est un hexagone convexe,
éventuellement dégénéré, qui a un centre de symétrie et des
cOtés paralléles dont la distance est au plus égale a 1. Cette
intersection est contenue, entierement, dans un hexagone régu-
lier, de méme centre de symétrie, de cotés paralléles de distance
égale a 1. Il contient ’ensemble considéré et la longueur de ses
cOtés est 1/4/3.

35. (C’est une conséquence de 34. Du centre de ’hexagone
régulier ainsi circonscrit & un ensemble de diameétre égal a 1,
il suffit d’abaisser des perpendiculaires sur trois de ses c6tés non
consécutifs. On décompose ainsi I’hexagone en trois pentagones
égaux, chacun de diamétre égal & 4/3/2, dont la réunion recouvre
bien I’ensemble considéré.

36. La propriété est évidente pour » = 3. On la démontre,
par récurrence sur n, pour un ensemble de points Py, P,, ..., P,
en nombre au moins égal & quatre, de diametre égal a 1. On trace
tous les segments P, P, de longueur effectivement égale a 1.
Si, a chaque point P; correspondent au plus deux segments
ainsi tracés, qui I’ont pour origine commune, le nombre de tous
ces segments est bien au plus égal a n. Sinon, 1l existe un point P,
qui est une extrémité commune de trois segments P, P;, P, P,
P, P, de longueur égale a 1, et dont les autres extrémités sont -
de distances mutuelles au plus égales & 1. Les angles de ces seg-
ments, pris deux & deux, sont inférieurs & =/3 et I'un des segments
noté P, P; est contenu dans Pangle aigu des deux autres. On
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vérifie alors aisément que tout point Q du plan different de P,
qui est & une distance égale & 1 de P; est & une distance supe-
rieure & 1 d’au moins I'un des trois points P,, P;, P, et par suite
n’appartient pas a 'ensemble. En supprimant P; dans ensemble
considéré on n’y supprime qu’un seul segment de longueur 1,
d’ou la récurrence.

De cette démonstration, il résulte encore que dans un
ensemble de n points, de diameétre égal a 1, il y a toujours au
moins un point P; & une distance égale & 1 de deux autres points
au plus, P; et P,. Le théoréme de Borsuk qui est évident pour
n = 3 s’en déduit encore par récurrence sur n. Car on peut
décomposer 'ensemble des n — 1 points, obtenu par suppression
de P, en trois sous-ensembles de diameétre inférieur & 1. L’un
d’entre eux ne contient ni P, mi P;; en lui adjoignant Py, il
reste encore de diamétre inférieur a 1, et on obtient ainsi une
décomposition de I’ensemble primitif.

37. Puisque les cercles de rayon 1 ont deux a deux des points
communs, leurs centres forment un ensemble de diameétre au
plus égal & 2. D’aprés 34 on peut le recouvrir par un hexagone de
coté 2/4/3. Les milieux des coOtés d’un triangle équilatéral
inscrit dans cet hexagone forment un triangle équilatéral de
coté égal & 1. Tout point de I’hexagone et, en particulier, tout
centre d’un cercle de l'ensemble est a une distance au plus
égale & 1 d’au moins I'un des sommets de ce triangle.
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