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BEMERKUNGEN ÜBER MATHEMATISCHE
KEILSCHRIFTTEXTE

VON

Peter Huber, Zürich

1. Pythagoräische Zahlentripel in Babylonien

Vor ungefähr zehn Jahren haben Neugebauer und Sachs

einen altbabylonischen Keilschrifttext (d. h. aus der Zeit um
1700 v. Chr.) entdeckt und veröffentlicht, der sich mit pytha-
goräischen Zahlentripeln befasst (Text Plimpton 322, MCT,
p. 38 ff.). Obwohl Neugebauer schon früher die Erwartung
ausgesprochen hatte, dass in der babylonischen Mathematik
..noch eine Art elementarer Zahlentheorie erkennbar" würde

{MKT, III, p. 80), bedeutete dieser Fund doch eine nicht
geringe Überraschung. Begreiflicherweise ist der Text
unterdessen mehrfach bearbeitet worden, und man hat auch
verschiedene Hypothesen zur Berechnungsweise des Textes
aufgestellt. Leider liessen sich zwei von den drei Rechenfehlern
des Textes nicht aus den erwähnten Hypothesen erklären, und
auch der Grund, wieso die Zahlen der ersten erhaltenen Kolonne
der Tafel überhaupt berechnet wurden, blieb unbekannt.
(Vgl. das Literaturverzeichnis am Schluss.)

Deshalb habe ich versucht, durch eine eingehende Diskussion
der Rechenfehler des Textes mehr Licht in die möglichen
Berechnungsweisen zu bringen.

Wenn wir die Bezeichnungen einführen:

d2 — b2 h2

und
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täbuliert der erhaltene Teil der Tafel bekanntlich für 15 pytha-
goräische Zahlentripel

in der ersten Kolonne §2 (nicht ß2, vgl. Neugebauer, Exact
Sciences, plate 7, wo einzelne Zahlen noch vollständig erhalten
sind). Diese Zahlen sind der Grösse nach geordnet und nehmen
sehr regelmässig von ungefähr 2 bis ungefähr 4/3 ab. Die
Überschrift ist leider unklar: „... der Diagonale, [das a]bgezogen
wird, worauf die Breite..."

in der zweiten Kolonne b (Überschrift: „Lösungszahl der
Breite"),

in der dritten d (Überschrift: „Lösungszahl der Diagonale"),
und die vierte enthält eine Zeilennumerierung (Überschrift:

„Seine Zeile" (nach Deimel, Sumerisches Lexikon 61,53; Neugebauer

übersetzt „its name")).
Zur besseren Übersicht seien hier die beiden wichtigsten

Kolonnen gegeben — die fehlerhaften Zahlen sind mit einem *

gekennzeichnet :

b d Nummer

1,59 2,49 1

56,7 3,12,1* 2

1,16,41 1,50,49 3

3,31,49 5,9,1 4

1,5 1,37 5

5,19 8,1 6

38,11 59,1 7

13,19 20,49 8

9,1* 12,49 9

1,22,41 2,16,1 10
45 1,15 11

27,59 48,49 12

7,12,1* 4,49 13

29,31 53,49 14
56* 53* 15

(Das Komma dient in der üblichen Weise zur Abtrennung der einzelnen
Sexagesimals teilen, ohne dass damit etwas über den absoluten Stellenwert
ausgesagt wird.)

In Zeile 9 liegt wohl nur ein Schreibfehler vor; der richtige
Wert ist b 8,1.
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In Zeile 15 ist wahrscheinlich eine Multiplikation vergessen

worden; das beabsichtigte Tripel muss entweder die Werte
b 28, d 53, oder 6 56, ^ 1,46 (d. h. 2x53) gehabt
haben.

In Zeile 13 ist der richtige Wert b — 2,41 J//7,12,1. Die

naheliegende Erklärung, hier sei das Zwischenresultat einer

Kontrollrechnung (Einsetzen des Tripels in die Gleichung
d2 — b2 h2) in den Text hineingerutscht, befriedigt nicht.
Denn erstens zeugt eine Kontrollrechnung von erhöhter Sorgfalt
und ist also nicht zur Erklärung eines Rechenfehlers geeignet,
und zweitens sind die Zeilen 2 und 15 sicher nicht kontrolliert
worden, sonst hätte man jene Rechenfehler entdeckt. Deshalb

scheint mir wahrscheinlicher zu sein, dass man hier vergessen
hat, eine Quadratwurzel zu ziehen.

Die grössten Schwierigkeiten bereitet Zeile 2. Der richtige
Wert ist hier d 1,20,25, aber der Zusammenhang mit dem
falschen war bis jetzt ungeklärt. Da wir ja nichts Sicheres
über die tatsächliche Berechnungsweise wissen, habe ich
versucht, Hypothesen über das Rechenverfahren bei der Erklärung

des Fehlers erst möglichst spät einzuführen. Dazu musste
ich die Fortpflanzung von Rechenfehlern systematisch
untersuchen.

a) Positionsfehler. Allen diesen Fehlern ist gemeinsam, dass
sie die Gesamtzahlen der Keile und der Winkelhaken (d. h. der
Einer und der Zehner) nicht ändern, also auch die Quersumme
festlassen. Eine sexagesimal geschriebene Zahl ist aber zu ihrer
Quersumme kongruent modulo 59. Bezeichnen wir die richtige
Zahl mit a und die falsche mit a\ gilt also

a' a (mod. 59).

Nach den elementaren Regeln für das Rechnen mit Kongruenzen
bleibt diese Relation auch bei allen im Bereiche der abbrechenden

Sexagesimalzahlen ausführbaren Grundrechenoperationen
bestehen, ausgenommen beim Dividieren durch Multipla von 59
und beim Radizieren. Die letztere Operation wird aber kaum je
mit einer falschen Zahl aufgehen, und der erste Fall ist a priori
unwahrscheinlich.
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b) Eigentliche Rechenfehler. Diese werden im allgemeinen
so beschaffen sein, dass sie ursprünglich nur eine einzige Sexagesi-
malstelle beeinflussen und sich erst im Laufe der Rechnung auf
mehrere Stellen ausdehnen. Nimmt man an, die Operationen
des Wurzelziehens und Reziprokenbildens würden mit der
falschen Zahl nicht durchgeführt (das ist keine sehr grosse
Einschränkung, weil sie mit der falschen Zahl meistens nicht
aufgehen würden), ist die Differenz zwischen falscher und
richtiger Zahl ein Polynom im ursprünglichen Fehler r, das

für r — o verschwindet, also durch r teilbar ist. Für r kommen
also nur noch kleine reguläre Zahlen und die irregulären
Faktoren der Differenz zwischen falscher und richtiger Zahl in Frage.
(Eine Zahl wird regulär genannt, wenn ihr Inverses eine
abbrechende Sexagesimalbruchentwicklung besitzt, d. h. wenn sie

nur die Primfaktoren 2, 3 und 5 enthält.) Ist das fragliche
Polynom linear

P (r) er

kann man unter Umständen zeigen, dass gewisse irreguläre
Faktoren nicht in c vorkommen können, weil daraus ein
unwahrscheinlich kompliziertes Rechenverfahren folgen würde.
Dadurch werden die Möglichkeiten für r weiter eingeengt.

c) Vergessene oder überflüssige Operationen. Davon lassen
sich einfachere Fälle, z. B. vergessene Additionen oder
Multiplikationen auf den Fall b) zurückführen, nur muss man dann

grössere Werte von r in Betracht ziehen.

d) Fehler von anderem Typus, z. B. Verwechseln von
Zwischenresultaten oder Tabellen, falsche Methoden usw.
Derartige Fehler lassen sich höchstens mit Glück aufklären, aber
kaum systematisch.

Unter der Annahme, es liege nur ein Fehler vor, können wir
Typus a) in unserem Fall sofort ausschliessen, denn

3,12,1 16 (mod. 59) und 1,20,25 46 (mod. 59).

Typus b)

3,12,1. — 1,20,25 1,51,36 23.33.31
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Ist das fragliche Polynom in r linear anzusetzen, lässt sich der
Fall nach dem oben angedeuteten Verfahren ziemlich rasch

erledigen; man kommt auf r 31, und zwar an einer Stelle der

Rechnung, die diesen Fehler nicht gerade plausibel macht. Bei

quadratischen Polynomen ist man aufs Probieren angewiesen,
mit der Zusatzbedingung, dass das Rechenverfahren mathematisch

richtig und nicht übermässig kompliziert sein soll. Freilich
habe ich nicht alles durchprobiert, aber ich glaube doch, dass

der Fehler nicht in dieser Richtung gesucht werden kann.
Ebenso kann man einfachere Fälle vom Typus c) ausschliessen.
Eine Ermessensfrage bleibt natürlich stets, ob man einen Fehler
als wahrscheinlich ansehen will oder nicht, wenn sich ein
komplizierter Ansatz ergibt.

Es dürfte also entweder ein komplizierter Fehler vom
Typus c) oder d) vorliegen, oder dann haben wir zwei Fehler
in Betracht zu ziehen. Weil Positionsfehler sich gerne zu anderen
Fehlern gesellen und weil in Zeile 15 eine Multiplikation
vergessen zu sein scheint, habe ich versuchsweise den Fehler als

vergessene Multiplikation, kombiniert mit einem Positionsfehler,
angesetzt. Wenn wir den vergessenen Faktor mit x bezeichnen,
führt das auf die Kongruenz

x. (3,12,1) 1,20,25 (mod. 59)

mit der Lösung

x 25 (mod. 59).

Tatsächlich gibt schon x 25 recht wahrscheinlich aussehende
Erklärungsmöglichkeiten, nämlich

25. (3,12,1) 1,20,0,25

oder

25.(3,13) 1,20,25

Der zweite Ansatz scheint mir der wahrscheinlichere zu sein
(3,12, 1 wäre Schreibfehler für 3,13, d. h. der letzte Keil der
3 wäre zu weit rechts geschrieben). Die Annahme von zwei
Fehlern mag etwas unbefriedigend sein, aber nach dem
Vorangegangenen glaube ich, dass es die einfachste Erklärungsmöglich-
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keit ist. Überdies werden wir nur zeigen müssen, dass der Fehler
bestimmten Rechenverfahren nicht widerspricht, wobei es mehr
oder weniger gleichgültig ist, wenn es noch andere
Entstehungsmöglichkeiten für den Fehler gibt.

Welche Berechnungsweisen kommen für den Text in Frage
Wenn man sich etwas in die Zahlen der Tafel vertieft, erkennt

man, dass das Verfahren dem allgemeinsten äquivalent gewesen
sein muss, mit der einzigen Einschränkung, dass h stets eine

reguläre Zahl ist1. Dies, und die Tatsache, dass in der ersten
Kolonne S2 tabuliert worden ist, legt nahe, dass die Berechnung
nicht direkt, sondern über ß und S erfolgt ist. Eine Bestätigung
dafür findet man in der elften Zeile, wo die Werte von ß und S

stehen geblieben sind (vgl. van der Waerden, Ontw. Wet. p. 89),
ausserdem in den Rechenfehlern von Zeile 2 und 15, die beide

andeuten, das Schlussresultat sei durch eine Multiplikation aus
einem Zwischenresultat gebildet worden. Wir haben also nicht
die heute übliche Form der allgemeinen Formeln anzunehmen

h 2pq b p2~q2 d p2 + q2 (1)

sondern die durch Division durch die erste Gleichung daraus

hervorgehenden

Neugebauer und Sachs ziehen in (2) die ersten, zweiparametrigen
Ausdrücke vor, weil sie sich auf Grund des kanonischen
babylonischen Tabellensystems ohne weiteres berechnen lassen;
dabei dürfte es allerdings recht schwierig sein, die gleichmässig
abnehmende Folge der S2 zu erhalten, welche der Text bietet,
weil die Werte von p und q erst durch mühsames Ausprobieren
gefunden werden müssen. Bruins wählt die zweiten, einpara-
metrigen Ausdrücke; er muss dann allerdings eine vierstellige
Reziprokentafel voraussetzen, erhält aber die Ordnung der

Tripel als zufälliges Ergebnis der Ordnung der Reziprokentafel.

i Die Tafel enthält nicht nur sehr komplizierte Zahlen, sondern ist in gewissen
Sinn auch vollständig. Das Tripel mit kleinstem d, welches man zwischen diejenigen
der Tafel einschalten könnte, käme nach Zeile II mit b 3,12,9, d 5,28,41. Das
ist grösser als alle d-Werte der Tafel.
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(Die Lücken, welche Bruins in dieser Reziprokentafel anzunehmen

hat, lassen sich übrigens viel einfacher und „babylonischer"
erklären, wenn man annimmt, die vierstellige Tafel sei ohne

Rechnung, durch blosses Umschreiben aus einer dreistelligen

entstanden; Bruins' Primfaktorzerlegung ist wohl zu modern

gedacht.) Aus den ß und S kann man nun ohne besondere

Mühe durch Multiplizieren mit 2 pg, bzw. durch Abspalten
von gemeinsamen Faktoren die Werte von b und d erzeugen.

Beide Verfahren haben aber den Mangel, dass sie nicht

gestatten, den Rechenfehler von Zeile 13 zu erklären, der, wie

oben erwähnt, ein Wurzelziehen vorauszusetzen scheint. Ich
habe deshalb versucht, das Verfahren in dieser Beziehung zu

modifizieren:

1) Man berechne S \ (oc + o--1), oc regulär.

2) Man quadriere S.

3) Man berechne ß f/V — 1 nach dem Verfahren von Ist.
S 428 (meine Interpretation dieses Textes folgt unmittelbar
anschliessend) und vergesse dabei in Zeile 13, die Wurzel
aus der von regulären quadratischen Faktoren befreiten
Zahl zu ziehen. (Die Wurzel geht natürlich auf, wenn S die

obige Darstellung besitzt, nämlich ß J (oc —- oc-1).)

4) Man entferne gemeinsame Faktoren von ß und 8, wobei
man benützen wird, dass man die regulären Faktoren
von ß bereits beim Wurzelziehen abgespalten hat. Dabei
können die Fehler in Zeile 2 und 15 ziemlich leicht
unterlaufen, denn in Zeile 2 ist der gemeinsame Faktor 53,

in Zeile 15 ist er 25.5, was ausgezeichnet zu den Fehlern
passt — die falschen Werte des Textes sind ja 25 mal,
bzw. 2 mal kleiner als die richtigen.

Für diese Hypothese spricht, dass sie ohne weitere Annahme
erklärt, wieso 82 berechnet wurde.

Dagegen spricht allerdings: Gerade der babylonische
Mathematiker, der so gerne mit halben Summen und Differenzen
arbeitet, sollte doch die zu S analoge Darstellung von ß als
halbe Differenz ohne weiteres bemerkt und das umständliche
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Wurzelziehen vermieden haben. Wie ist dann aber der Fehler
von Zeile 13 zu erklären

Man könnte auch versuchen, die Überschrift der ersten
Kolonne auf unser Rechenverfahren zu deuten — was freilich
auch für andere Rechenverfahren gelingen dürfte. Immerhin
kann man wohl grammatikalisch korrekt übersetzen:

„takiltu Hilfszahl der Diagonale.
Man subtrahiert [1], und dann bestimmt man die

Breite."

(Der Unterschied gegenüber der früheren Interpretation liegt
darin, dass man die Verbalendung — u nicht als Subjunktiv,
sondern als 3. masc. plur. auffasst, womit im Akkadischen
„man" ausgedrückt werden kann.)

Leider werden wir kaum je erfahren, wie die alten Babylonier
auf eine so allgemeine Methode der Erzeugung von pythagoräi-
schen Zahlentripeln gekommen sind. Eine hübsche Möglichkeit
findet sich bei van der Waerden, Ontwakende Wetenschap,
p. 88 f.

Der ganze Text scheint aber nur eine geringe mathematische
Einsicht vorauszusetzen. Vorsichtig formuliert, kann also aus
ihm noch keineswegs auf eine höher entwickelte babylonische
Zahlentheorie geschlossen werden, wohl aber darauf, dass man
sich mit zahlentheoretischen Fragen befasst hat.

2. Zu Ist. S 428

Der Text ist von Neugebauer in Transkription veröffentlicht
(MKT, I, p. 80). Er erkannte, dass in Zeile Vs. 5/6 eine Quadratwurzel

gezogen wird, es gelang ihm aber nicht, diese zufriedenstellend

zu ergänzen. Betrachtet man indes die Vorderseite des Textes
als ein Ganzes, so lässt sie sich leicht ergänzen, nämlich:

Vs. 2,2,2,2,5,5,4
' 30,30,30,31,16,16

1,54,24 1,24,27,16
[7],[9],1,31,42,15
[28,36],6,6,49 mi-nam ib-si8
[5, 20],53 ib-si8

[1,25],34,8 UR ab-si
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Die Worte in den drei letzten Zeilen bedeuten:

„wieviel ist die Quadratwurzel ?"

„Quadratwurzel."
„gibt es als Quadratseite (?)"

Die ersten Zahlen gehen durch fortgesetzte Division durch 4

und durch 16 auseinander hervor, die fünfte Zahl ist das
vierfache der vierten. Dann wird die Quadratwurzel bestimmt und
diese schliesslich noch mit 16 multipliziert. Wenn wir 5,20,53
mit a bezeichnen, haben wir also die Reihe:

256 a2, 64 a2, 4 a2, %-, a2, a, 16a a/256 a2
4

Der Sinn des ganzen Schemas ist offensichtlich: Es soll die

Quadratwurzel von 2,2,2,2,5,5,4 bestimmt werden. Durch
Abspalten von regulären quadratischen Faktoren wird die Stellenzahl

zunächst erniedrigt. Dabei ist der Schreiber, wohl ein

Schüler, in Zeile 4 zu weit gegangen, verführt durch die Schlussziffer

16 der vorherigen Zahl; er korrigiert seinen Irrtum aber
in der nächsten Zeile. Dann wird die Quadratwurzel gezogen und
diese mit der Wurzel aus dem abgespaltenen Faktor multipliziert,

was die gesuchte Wurzel ergibt. (Vgl. auch MCT, p. 42:
ähnliches Verfahren für Kubikwurzeln.)
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