Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 2 (1956)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: FONCTIONS ANALYTIQUES ET SURFACES DE RIEMANN

Autor: Choquet, Gustave

Kapitel: Prolongement analytique.

DOI: https://doi.org/10.5169/seals-32888

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

DÉFINITION 4: Soit \mathfrak{A} un champ analytique; on appelle fonction analytique du champ \mathfrak{A} l'application $g \to a_0$ qui, à tout germe g de \mathfrak{A} associe la valeur principale a_0 de g.

Soit F la fonction analytique de \mathfrak{A} ; soit Δ une rondelle ouverte de \mathfrak{A} , de centre g_0 . La restriction φ_{Δ} de φ à Δ étant biunivoque, la fonction F $(\varphi_{\Delta}^{-1}(z))$ est bien définie dans le disque ouvert plan $\varphi(\Delta)$. Elle est identique dans ce disque à la fonction $\sum_{0}^{\infty} a_n (z - z_0)^n$, si l'on a posé $g = (z_0; \{a_0, a_1, ...\})$.

Aussi l'étude de la fonction analytique F sur une rondelle peut-elle être remplacée par celle d'une fonction analytique (au sens classique) sur un disque ouvert plan.

Ceci nous conduit à la définition suivante:

DÉFINITION 5: Soit \mathfrak{A} un champ analytique et soit X une partie de \mathfrak{A} . On dit que X recouvre une seule fois son support si la restriction de φ à X est biunivoque.

Lorsque X recouvre une seule fois $\varphi(X)$, la restriction de φ à X est toujours une homéomorphie dans les deux cas suivants: X est ouvert ou compact.

DÉFINITION 6: Lorsque \mathfrak{A} lui-même recouvre une seule fois son support, on dit que \mathfrak{A} est un *champ analytique uniforme*. On convient alors de confondre \mathfrak{A} avec la fonction holomorphe $F(\varphi^{-1}(z))$ définie dans $\varphi(\mathfrak{A})$.

Pour tout domaine plan D, on démontre qu'il existe des champs uniformes A dont le support est D.

PROLONGEMENT ANALYTIQUE.

DÉFINITION 7: Soit $(\Delta_i)_{i \in [1, n]}$ une suite finie de rondelles ouvertes de G, de centres g_i et de rayons ρ_i .

On dit que cette suite est une *chaîne* si, pour tout i > 1, g_i appartient à Δ_{i-1} . On dit que g_1 et g_n sont les extrémités de la chaîne $(g_1$ est l'origine et g_n la fin).

Remarque 1. — Notons ici pour la suite, qu'une chaîne est entièrement déterminée dès qu'on connaît son origine g_1 , les supports des centres g_i , et les rayons ρ_i .

Théorème 1: Soient g et g' deux germes de G. Pour que g et g' soient les extrémités d'une chaîne, il faut et il suffit qu'ils appartiennent à un même champ analytique.

Démonstration. — Toute rondelle de G étant connexe, la réunion d'une suite finie de rondelles dont deux consécutives ont un point commun est connexe. Donc la condition est nécessaire.

Inversement, soit \mathfrak{A} un champ analytique et soit $g \in \mathfrak{A}$. L'ensemble des points g' de \mathfrak{A} tels que g' soit la fin d'une chaîne d'origine g est évidemment ouvert et fermé relativement à \mathfrak{A} , donc est identique à \mathfrak{A} .

Remarque 2. — Notons que cette conclusion subsisterait si on modifiait la définition d'une chaîne en imposant aux centres intermédiaires des rondelles d'une chaîne d'appartenir à une partie partout dense de α , et si l'on imposait aux rayons des rondelles d'appartenir à un ensemble dénombrable de nombres > 0 astreint seulement à contenir des éléments arbitrairement petits.

Corollaire. — Deux éléments quelconques g et g' d'un champ analytique \mathfrak{A} appartiennent à une courbe qui est une réunion finie d'arcs simples ayant pour support des segments de droite.

Théorème 2 (Poincaré-Volterra):

- 1. Tout champ analytique \mathfrak{A} est une réunion dénombrable de rondelles ouvertes (ce qui entraîne que \mathfrak{A} a une base dénombrable constituée de rondelles ouvertes).
- 2. Pour tout $z \in \mathbb{C}$, l'ensemble $\varphi^{-1}(z)$ des germes de \mathfrak{A} de support z est au plus dénombrable.

Démonstration. — 1. Soit P une partie dénombrable partout dense du plan complexe C.

L'ensemble des points de $\mathfrak A$ dont le support est dans P est évidemment partout dense dans $\mathfrak A$. Donc, d'après le théorème 1 et la remarque 2, si l'on désigne par g un élément fixe quelconque de \mathfrak{A} ayant son support dans P, le champ \mathfrak{A} est la réunion des rondelles appartenant à des chaînes finies (Δ_i) d'origine g, de rayons ρ_i rationnels et dont les centres g_i ont leur support $\varphi(g_i) \in P$.

Une telle chaîne, d'après la remarque 1, est entièrement déterminée par la donnée de g, de la suite $(\varphi(g_i))$ et de la suite (φ_i) . Or l'ensemble des suites finies de couples $(\varphi(g_i), \varphi_i)$ est au plus dénombrable; donc l'ensemble des chaînes considérées est au plus dénombrable. D'où la première partie du théorème.

2. Associons à tout $g \in \mathcal{A}$ une rondelle $\Delta(g)$ de centre g, par exemple la rondelle maximale de centre g (c'est-à-dire la réunion des rondelles de centre g).

D'après une propriété soulignée précédemment si g_1 et g_2 ont même support z, $\Delta(g_1)$ et $\Delta(g_2)$ sont disjointes lorsque $g_1 \neq g_2$. Donc l'ensemble des rondelles $\Delta(g)$ associées aux germes $g \in \varphi^{-1}(z)$ est au plus dénombrable, puisque \mathfrak{C} est à base dénombrable.

Autrement dit, $\varphi^{-1}(z)$ est au plus dénombrable.

Prolongement le long d'une courbe.

DÉFINITION 8: On appelle courbe paramétrée de G le couple constitué par une application continue f d'un intervalle I de R dans G, et l'image f(I) de I.

Son origine est l'image $f(\alpha)$ de l'origine α de I (si I a une origine). On appelle *support* de la courbe G définie par f, la courbe paramétrée définie par l'application $\varphi(f) = \varphi \circ f$ de I dans C.

Comme l'image d'une courbe paramétrée est toujours connexe, l'image d'une courbe paramétrée de G est toujours contenue dans un champ analytique et un seul.

Théorème 3: Soit g_0 un élément d'un champ analytique \mathfrak{A} , et soit z_0 son support. Toute courbe paramétrée de \mathfrak{C} et d'origine z_0 est le support d'au plus une courbe paramétrée de \mathfrak{A} et d'origine g_0 .

Démonstration. — Soit $I = [\alpha, \beta[$ ou $[\alpha, \beta]$ l'intervalle sur lequel est définie la courbe z(t) de C; on suppose que $z(\alpha) = z_0$. Soient f_1 et f_2 deux applications continues de I dans \mathcal{C} telles que $f_1(\alpha) = f_2(\alpha) = g_0$, et soit T l'ensemble des points $t \in I$ tels que $f_1(t) = f_2(t)$. Cet ensemble T est fermé relativement à I. D'autre part, si $\varphi(f_1) = \varphi(f_2)$, T est ouvert puisque l'application φ est localement une homéomorphie. Donc T est ouvert et fermé relativement à I; comme T n'est pas vide ($\alpha \in T$) et comme I est connexe, on a I = T. Autrement dit, $f_1 = f_2$.

Corollaire. — Soit γ une courbe paramétrée de C et d'origine z_0 , définie par z = z(t) $(t \in [\alpha, \beta])$.

Si γ n'est pas le support d'une courbe de \mathfrak{C} d'origine g_0 , il existe un point τ de $[\alpha, \beta]$ tel que la courbe z = z(t) ($t \in [\alpha, \tau]$) soit le support d'une courbe de \mathfrak{C} d'origine g_0 , mais qu'il n'en soit pas de même de la courbe z = z(t) ($t \in [\alpha, \tau]$).

Lorsqu'il en est ainsi, on dit que le champ analytique \mathfrak{A} est prolongeable à partir de g_0 sur γ jusqu'au point $(\tau, z(\tau))$ exclus, mais pas au-delà. On dit parfois aussi que g_0 et la courbe z=z(t) $(t \in [\alpha, \tau[)$ définissent un *point singulier* du champ \mathfrak{A} .

Pour qu'il en soit ainsi, il faut et il suffit que, si $\rho(g)$ désigne le rayon de la rondelle maximale de centre $g, \rho(g(t)) \to 0$ lorsque $t \to \tau$ (où g(t) est le point de \mathfrak{C} associé à z(t)).

Théorème de monodromie.

On va énoncer ce théorème classique sous une forme en apparence moins générale, afin d'éviter le recours à la notion d'homotopie. L'énoncé général se déduirait du nôtre assez aisément, en utilisant des propriétés simples de l'homotopie.

Théorème 4: Soit \mathfrak{A} un champ analytique; soit ω un ouvert de C homéomorphe à un disque ouvert plan, et soit g_0 un point de \mathfrak{A} de support $z_0 \in \omega$.

Si toute courbe paramétrée z(t) ($t \in I$) de ω et d'origine z_0 est le support d'une courbe f(t) ($t \in I$) de α et d'origine g_0 , la réunion Ω des images f(I) de ces courbes est un ouvert de α qui recouvre ω une seule fois.