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FONCTIONS ANALYTIQUES ET SURFACES DE RIEMANN 3

DEFINITION 4: Soit (L un champ analytique; on appelle fonciion
analytique du champ @ P'application g— a, qui, & tout germe g
de AL associe la valeur principale g, de g.

Soit F la fonction analytique de ¢l; soit A une rondelle
ouverte de @, de centre g,. La restriction ¢, de ¢ a A étant
biunivoque, la fonction F (¢3* (2)) est bien définie dans le disque
ouvert plan o (A). Elle est identique dans ce disque a la fonction

§an (z — 24)", st 'on a posé g = (z; {ao, gy .o }).
0

Aussi I'étude de la fonction analytique F sur une rondelle
peut-elle étre remplacée par celle d’une fonction analytique
(au sens classique) sur un disque ouvert plan.

Ce résultat s’étend a tout ouvert € de ¢ tel que la restriction
de ¢ & w soit biunivoque.

Ceci nous conduit a la définition suivante:

DEFINITION 5: Soit (X un champ analytique et soit X une partie
de &. On dit que X recouvre une seule fois son support si la
restriction de ¢ a X est biunivoque.

Lorsque X recouvre une seule fois ¢ (X), la restriction de o
a X est toujours une homéomorphie dans les deux cas sui-
vants: X est ouvert ou compact.

DeriniTION 6: Lorsque @ lui-méme recouvre une seule fois son
support, on dit que L est un champ analytique uniforme. On
convient alors de confondre @ avec la fonction holomorphe
F (¢7' (2)) définie dans o ().

Pour tout domaine plan D, on démontre qu’il existe des
champs uniformes (L dont le support est D.

PROLONGEMENT ANALYTIQUE.

DEFINITION 7: Soit (A;); ¢ (1., une suite finie de rondelles ouvertes
de G, de centres g; et de rayons p,.

On dit que cette suite est une chaine si, pour tout ; > 1,

g; appartient & A; ;. On dit que g; et g, sont les extrémités
de la chaine (g, est Porigine et g la fin).
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Remarque 1. — Notons ici pour la suite, qu'une chaine est
entierement déterminée dés qu’on connait son origine g,, les
supports des centres g;, et les rayons p,.

Théoreme 1: Soient g et g’ deux germes de G. Pour que g et g’
solent les extrémités d’une chaine, il faut et il suffit qu’ils
appartiennent a un méme champ analytique.

Démonstration. — Toute rondelle de G étant connexe, la
réunion d’une suite finie de rondelles dont deux consécutives
ont un point commun est connexe. Donc la condition est
nécessaire.

Inversement, soit ¢ un champ analytique et soit g€ ¢\.
L’ensemble des points g’ de (L tels que g’ soit la fin d’une chaine
d’origine g est évidemment ouvert et fermé relativement a @,
donc est identique a (.

Remarque 2. — Notons que cette conclusion subsisterait si
on modifiait la définition d’une chaine en imposant aux centres
intermédiaires des rondelles d’une chaine d’appartenir a une
partie partout dense de (L, et si 'on imposait aux rayons des
rondelles d’appartenir a un ensemble dénombrable de nombres
- > 0 astreint seulement a contenir des éléments arbitrairement
petits.

Corollaire. — Deux éléments quelconques g et g’ d’un champ
analytique @ appartiennent & une courbe qui est une réunion
finie d’arcs simples ayant pour support des segments de droite.

Théoréme 2 (Poincaré-Volterra): -

1. Tout champ analytique ¢l est une réunion dénom-
brable de rondelles ouvertes (ce qui entraine que @ a une
base dénombrable constituée de rondelles ouvertes).

2. Pour tout z € C, Pensemble ¢! (z) des germes de &
de support z est au plus dénombrable.

Démonstration. — 1.7 Soit P une partie dénombrable partout
dense du plan complexe C.

[’ensemble des points de ¢L dont le support est dans P est
évidemment partout dense dans L. Donc, d’apres le théoreme 1
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et la remarque 2, si ’on désigne par g un élément fixe quelconque
de @ ayant son support dans P, le champ ¢l est la réunion des
rondelles appartenant & des chaines finies (A;) d’origine g, de
rayons p; rationnels et dont les centres g, ont leur support
¢(g)€eP.

Une telle chaine, d’aprés la remarque 1, est entiérement
déterminée par la donnée de g, de la suite (¢ (g;)) et de la suite
(p;)- Or I'ensemble des suites finies de couples (¢ (g;), p;) est au
plus dénombrable; donc ’ensemble des chaines considérées est
au plus dénombrable. D’ou la premiére partie du théoreme.
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2. Associons a tout g€ ¢ une rondelle A(g) de centre g,
par exemple la rondelle maximale de centre g (c’est-a-dire la
réunion des rondelles de centre g).

D’aprés une propriété soulignée précédemment si g; et g, ont
méme support z, A (g;) et A (g,) sont disjointes lorsque g; # g,.
Donc 1’ensemble des rondelles A (g) associées aux germes
g€ o ! (z) est au plus dénombrable, puisque X est a base
dénombrable.

Autrement dit, ¢! (z) est au plus dénombrable.

Prolongement le long d’une courbe.

DeriniTioN 8: On appelle courbe paraméirée de G le couple
constitué par une application continue f d’un intervalle I
de R dans G, et I'image f (I) de 1.

Son origine est 'image f («) de 1'origine o de I (si I a une
origine). On appelle support de la courbe G définie par f,
la courbe paramétrée définie par lapplication o (f) = @of
de I dans C.

Comme I'image d’une courbe paramétrée est toujours
connexe, 'image d’une courbe paramétrée de G est toujours
contenue dans un champ analytique et un seul.

Théoréme 3: Soit g, un élément d’un champ analytique ¢, et
soit z, son support. Toute courbe paramétrée de C et d’ori-

gine z, est le support d’au plus une courbe paramétrée de U
et d’origine g,.
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Démonstration. — Soit T = [«, B[ ou [«, B] Pintervalle sur
lequel est définie la courbe z () de C; on suppose que z (o) = z,.
Soient f; et f, deux applications continues de I dans @ telles que
f1(2) = fo () = g,, et soit T D’ensemble des points ¢ € I tels
que f,(t) = f5(t). Cet ensemble T est fermé relativement a I.
D’autre part, si o (f;) = o (f,), T est ouvert puisque Iapplica-
tion ¢ est localement une homéomorphie. Donc T est ouvert et
fermé relativement a I; comme T n’est pas vide (« € T) et comme
I est connexe, on a I = T. Autrement dit, f; = f,.

Corollaire. — Soit vy une courbe paramétrée de C et d’origine z,,
définie par z = z(t) (t € [«, B])-
Si v n’est pas le support d’une courbe de ¢l d’origine g,, il
existe un point © de [«, B] tel que la courbe z = z (¢) ({ € [«,
7)) soit le support d’une courbe de ¢ d’origine g, mais qu’il
n’en soit pas de méme de la courbe z = z (¢) (¢t € [«, T]).

Lorsqu’il en est ainsi, on dit que le champ analytique €U est
prolongeable a partir de g, sur vy jusqu’au point (=, z (7)) exclus,
mais pas au-dela. On dit parfois aussi que g, et la courbe z = z (?)
(t €[o, 1[) définissent un point singulier du champ (X.

Pour qu’il en soit ainsi, 1l faut et il suffit que, si p (g) désigne
le rayon de la rondelle maximale de centre g, o (g (¢)) — O lorsque
t — 7 (o g (1) est le point de @A associé a z (1)).

THEOREME DE MONODROMIE.

On va énoncer ce théoreme classique sous une forme en
apparence moins générale, afin d’éviter le recours a la notion
d’homotopie. I.’énoncé général se déduirait du notre assez aisé-
ment, en utilisant des propriétés simples de 'homotopie.

Théoréme 4: Soit (L un champ analytique; soit @ un ouvert de C
homéomorphe a un .disque ouvert plan, et soit g, un point
de @ de support z, € .

Si toute courbe paramétrée z (t) (¢ € I) de w et d’origine z,

~est le support d’une courbe f(¢) (¢ € I) de @ et d’origine g,

la réunion Q des images f(I) de ces courbes est un ouvert
de @ qui recouvre » une seule fois.
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