Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 2 (1956)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: FONCTIONS ANALYTIQUES ET SURFACES DE RIEMANN
Autor: Choquet, Gustave

DOl: https://doi.org/10.5169/seals-32888

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-32888
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

FONCTIONS ANALYTIQUES
ET SURFACES DE RIEMANN!

PAR

Gustave CHoQUET, Paris

On désignera par C le plan complexe.

DEriniTioN 1: On appelle germe de fonction analytique tout
couple g = (z, A) ou z€ C et ou A est une suite (a,, a4, -..)

1
de nombres complexes telle que lim sup an{” < oo (autre-
ment dit telle que la série 2 a,2™ ait un rayon de convergence
non nul).

On désigne par G ’ensemble de tous les germes.

S1 g = (2, A), z est le support de g; on désigne par ¢ 'appli-
cation g— z et on 'appelle projection de G dans G; pour toute
partie X € G, I’ensemble ¢ (X) est le support de X.

On appelle a, la valeur principale de g.

Topologre sur G.

1. "Soit gy = (24, Ay), et soit p, le rayon de convergence de
la série Xa,z". Pour tout p tel que O < p < p,, on appelle

ey - -
rondelle ofwoerte_A (go» ), de centre g, et de rayon ¢, la partie de G
constituée par les germes g = (z, A) tels que fx — 2 { < p et
ou A est la suite des coefficients du développement en série
entiere de %anz” par rapport aux puissances de { == (z — x).
Tout point de G est évidemment centre de rondelles de rayon
arbitrairement petit.

1 jrai essayé ici de définir correctement le prolorngement anal&tique 1 partir de
quelques notions topologiques courantes, d’une. facon qui soit compréhensible par un
bon etudiant de calcul différentiel et intégral.

I’Enseignement mathém., t. II, fase. 1-2. 1
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Il est immeédiat que tout point d’une rondelle ouverte A est
centre d’une rondelle contenue dans A.

D’autre part, soient g, = (z;, A;) et g, = (25, A,) deux
germes distincts; ils sont centres de rondelles disjointes:

C’est évident si z; = z, car il suffit de prendre le rayon ¢
| 21— 2 |

2
Et s1 z; = z, cela résulte alors de ce que si deux rondelles A,

et A, de méme rayon, dont les centres g, et g, ont le méme
support, se rencontrent, ces rondelles sont identiques. En effet,
cecl revient a dire que si deux fonctions f,, f, analytiques dans
un disque ouvert plan prennent en un point méme valeur, ainsi
que toutes leurs dérivées, elles sont identiques dans ce disque.

de ces rondelles tel que p <

2. Appelons ouvert de G toute réunion de rondelles ouvertes.
Il est immédiat que ces ouverts définissent bien une topologie
sur G. Et d’aprés ce qui précede, cet espace G est séparé.

Chacun des points de G possede une base de voisinages
constituée des rondelles ouvertes centrées en ce point.

La restriction de la projection ¢ a toute rondelle ouverte est
biunivoque et bicontinue.

En particulier, tout point de G a un voisinage homéomorphe
a un disque ouvert plan; comme G est séparé, G est donc locale-
ment compact.

Champ analytique.

DeEriNiTION 2: On appelle champ analytique toute composante
connexe (L de G.

Ce qui précéde montre que tout champ analytique est ouvert
dans G (il est également fermé en tant que composante connexe).
Done tout champ analytique est localement compact et chacun
de ses points g a une base de voisinages constituée des rondelles

de G de centre g.

Surface de Riemann d’un champ analytique.
Fonction analytique.

DEriniTION 3: Soit (X un champ analytique; on appelle surface
de Riemann de @ le couple (A, ¢) constitué par (L et la
restriction & (L de la projection ¢ dans C.
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DEFINITION 4: Soit (L un champ analytique; on appelle fonciion
analytique du champ @ P'application g— a, qui, & tout germe g
de AL associe la valeur principale g, de g.

Soit F la fonction analytique de ¢l; soit A une rondelle
ouverte de @, de centre g,. La restriction ¢, de ¢ a A étant
biunivoque, la fonction F (¢3* (2)) est bien définie dans le disque
ouvert plan o (A). Elle est identique dans ce disque a la fonction

§an (z — 24)", st 'on a posé g = (z; {ao, gy .o }).
0

Aussi I'étude de la fonction analytique F sur une rondelle
peut-elle étre remplacée par celle d’une fonction analytique
(au sens classique) sur un disque ouvert plan.

Ce résultat s’étend a tout ouvert € de ¢ tel que la restriction
de ¢ & w soit biunivoque.

Ceci nous conduit a la définition suivante:

DEFINITION 5: Soit (X un champ analytique et soit X une partie
de &. On dit que X recouvre une seule fois son support si la
restriction de ¢ a X est biunivoque.

Lorsque X recouvre une seule fois ¢ (X), la restriction de o
a X est toujours une homéomorphie dans les deux cas sui-
vants: X est ouvert ou compact.

DeriniTION 6: Lorsque @ lui-méme recouvre une seule fois son
support, on dit que L est un champ analytique uniforme. On
convient alors de confondre @ avec la fonction holomorphe
F (¢7' (2)) définie dans o ().

Pour tout domaine plan D, on démontre qu’il existe des
champs uniformes (L dont le support est D.

PROLONGEMENT ANALYTIQUE.

DEFINITION 7: Soit (A;); ¢ (1., une suite finie de rondelles ouvertes
de G, de centres g; et de rayons p,.

On dit que cette suite est une chaine si, pour tout ; > 1,

g; appartient & A; ;. On dit que g; et g, sont les extrémités
de la chaine (g, est Porigine et g la fin).
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Remarque 1. — Notons ici pour la suite, qu'une chaine est
entierement déterminée dés qu’on connait son origine g,, les
supports des centres g;, et les rayons p,.

Théoreme 1: Soient g et g’ deux germes de G. Pour que g et g’
solent les extrémités d’une chaine, il faut et il suffit qu’ils
appartiennent a un méme champ analytique.

Démonstration. — Toute rondelle de G étant connexe, la
réunion d’une suite finie de rondelles dont deux consécutives
ont un point commun est connexe. Donc la condition est
nécessaire.

Inversement, soit ¢ un champ analytique et soit g€ ¢\.
L’ensemble des points g’ de (L tels que g’ soit la fin d’une chaine
d’origine g est évidemment ouvert et fermé relativement a @,
donc est identique a (.

Remarque 2. — Notons que cette conclusion subsisterait si
on modifiait la définition d’une chaine en imposant aux centres
intermédiaires des rondelles d’une chaine d’appartenir a une
partie partout dense de (L, et si 'on imposait aux rayons des
rondelles d’appartenir a un ensemble dénombrable de nombres
- > 0 astreint seulement a contenir des éléments arbitrairement
petits.

Corollaire. — Deux éléments quelconques g et g’ d’un champ
analytique @ appartiennent & une courbe qui est une réunion
finie d’arcs simples ayant pour support des segments de droite.

Théoréme 2 (Poincaré-Volterra): -

1. Tout champ analytique ¢l est une réunion dénom-
brable de rondelles ouvertes (ce qui entraine que @ a une
base dénombrable constituée de rondelles ouvertes).

2. Pour tout z € C, Pensemble ¢! (z) des germes de &
de support z est au plus dénombrable.

Démonstration. — 1.7 Soit P une partie dénombrable partout
dense du plan complexe C.

[’ensemble des points de ¢L dont le support est dans P est
évidemment partout dense dans L. Donc, d’apres le théoreme 1
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et la remarque 2, si ’on désigne par g un élément fixe quelconque
de @ ayant son support dans P, le champ ¢l est la réunion des
rondelles appartenant & des chaines finies (A;) d’origine g, de
rayons p; rationnels et dont les centres g, ont leur support
¢(g)€eP.

Une telle chaine, d’aprés la remarque 1, est entiérement
déterminée par la donnée de g, de la suite (¢ (g;)) et de la suite
(p;)- Or I'ensemble des suites finies de couples (¢ (g;), p;) est au
plus dénombrable; donc ’ensemble des chaines considérées est
au plus dénombrable. D’ou la premiére partie du théoreme.

T T T m v R o, L e e
CUEAL T e 04 YR S R SR s
el S e i e e R R T S N I O .

2. Associons a tout g€ ¢ une rondelle A(g) de centre g,
par exemple la rondelle maximale de centre g (c’est-a-dire la
réunion des rondelles de centre g).

D’aprés une propriété soulignée précédemment si g; et g, ont
méme support z, A (g;) et A (g,) sont disjointes lorsque g; # g,.
Donc 1’ensemble des rondelles A (g) associées aux germes
g€ o ! (z) est au plus dénombrable, puisque X est a base
dénombrable.

Autrement dit, ¢! (z) est au plus dénombrable.

Prolongement le long d’une courbe.

DeriniTioN 8: On appelle courbe paraméirée de G le couple
constitué par une application continue f d’un intervalle I
de R dans G, et I'image f (I) de 1.

Son origine est 'image f («) de 1'origine o de I (si I a une
origine). On appelle support de la courbe G définie par f,
la courbe paramétrée définie par lapplication o (f) = @of
de I dans C.

Comme I'image d’une courbe paramétrée est toujours
connexe, 'image d’une courbe paramétrée de G est toujours
contenue dans un champ analytique et un seul.

Théoréme 3: Soit g, un élément d’un champ analytique ¢, et
soit z, son support. Toute courbe paramétrée de C et d’ori-

gine z, est le support d’au plus une courbe paramétrée de U
et d’origine g,.

TR - WA

5
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Démonstration. — Soit T = [«, B[ ou [«, B] Pintervalle sur
lequel est définie la courbe z () de C; on suppose que z (o) = z,.
Soient f; et f, deux applications continues de I dans @ telles que
f1(2) = fo () = g,, et soit T D’ensemble des points ¢ € I tels
que f,(t) = f5(t). Cet ensemble T est fermé relativement a I.
D’autre part, si o (f;) = o (f,), T est ouvert puisque Iapplica-
tion ¢ est localement une homéomorphie. Donc T est ouvert et
fermé relativement a I; comme T n’est pas vide (« € T) et comme
I est connexe, on a I = T. Autrement dit, f; = f,.

Corollaire. — Soit vy une courbe paramétrée de C et d’origine z,,
définie par z = z(t) (t € [«, B])-
Si v n’est pas le support d’une courbe de ¢l d’origine g,, il
existe un point © de [«, B] tel que la courbe z = z (¢) ({ € [«,
7)) soit le support d’une courbe de ¢ d’origine g, mais qu’il
n’en soit pas de méme de la courbe z = z (¢) (¢t € [«, T]).

Lorsqu’il en est ainsi, on dit que le champ analytique €U est
prolongeable a partir de g, sur vy jusqu’au point (=, z (7)) exclus,
mais pas au-dela. On dit parfois aussi que g, et la courbe z = z (?)
(t €[o, 1[) définissent un point singulier du champ (X.

Pour qu’il en soit ainsi, 1l faut et il suffit que, si p (g) désigne
le rayon de la rondelle maximale de centre g, o (g (¢)) — O lorsque
t — 7 (o g (1) est le point de @A associé a z (1)).

THEOREME DE MONODROMIE.

On va énoncer ce théoreme classique sous une forme en
apparence moins générale, afin d’éviter le recours a la notion
d’homotopie. I.’énoncé général se déduirait du notre assez aisé-
ment, en utilisant des propriétés simples de 'homotopie.

Théoréme 4: Soit (L un champ analytique; soit @ un ouvert de C
homéomorphe a un .disque ouvert plan, et soit g, un point
de @ de support z, € .

Si toute courbe paramétrée z (t) (¢ € I) de w et d’origine z,

~est le support d’une courbe f(¢) (¢ € I) de @ et d’origine g,

la réunion Q des images f(I) de ces courbes est un ouvert
de @ qui recouvre » une seule fois.
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Pour démontrer ce théoréeme, nous aurons besoin du lemme
suivant, de nature purement topologique:

Lemme : Soit E un espace topologique quelconque et soit ¢ une
application de E dans un espace séparé F. Soit K un compact
de E. Si ¢ est continue en tout point de K, si la restriction
de ¢ a K est biunivoque, et si o est biunivoque au voisinage
de tout point de K, ¢ est biunivoque au voisinage de K.!

Démonstration. — Soit ¢ I'application (¢, ¢) de E? dans =
Désignons par d; et 3, les diagonales de E2? et F2. Les hypo-
theses se traduisent de la facon suivante:

(1) F séparé === 3, est fermé dans F?;

(2) K compact == K2 compact;

(3) o continue en tout point de K *— ¢ continue en tout
point de K?2;

(4) restriction de ¢ a K biunivoque *— ¢ (K2 —3,) < B Oy

(5) biunivocité locale de ¢ en tout point de K <—

o N K2 a un voisinage V tel que ¢ (V — §,) BSF.

Des conclusions (1), (3), (4) résulte que ¢! (C SF) est un voisi-
nage de (K — 8;); en rapprochant ce résultat de (5), on voit
que K2 possede un voisinage W tel qu’en tout point (x,y) € W—3,
on ait ¢ (z, y) € J,. ‘

Or d’aprés (2), K2 est compact, done il existe un voisinage U
de K tel que U2 ¢ W.

Autrement dit, pour tout couple (z, y) de points distincts
de U, on a (¢ (2), ¢ (y)) € 8, c’est-a-dire o (x) # o (Y).

Démonstration du théoréme 4. — Par hypothése, on a
¢ (Q) = o.

D’autre part, du fait que la restriction de ¢ 4 toute rondelle
de @ est une homéomorphie avec un disque ouvert de C résulte
que Q est un ensemble ouvert.

Il nous reste & montrer que la restriction de ¢ a Q est biuni-
voque (ce sera donc aussi une homéomorphie).

1 On dit qu’une applicalion ¢ de E est biunivoque au voisinage d’un ensemble A
de E si la restriction de ¢ & un voisirage de A est biunivoque.
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Pour simplifier les notations, supposons que w soit un disque
ouvert de centre z, et de rayon 1. Le cas général se ramene immé-
diatement a celui-ci par homéomorphie.

Pour tout point z de o distinct de z,, le segment (z,, z) définit
la courbe v: { =12+ 1t(z—13) (0 <t <1); celle-ci est
d’aprés 'hypothése la projection d’un arc de ¢L d’équation f, (t)
(0 <t <1) avee f,(0) = g, Posons f,(1) = g(z); on a par
construction ¢ (g (z)) = z.

D’aprés le théoréme 3, la fonction g (z) est bien définie. Nous
allons montrer que g (z) est continue.

I’ensemble f, ([0, 1]) est un compact K de @A tel que la
restriction de ¢ a K soit biunivoque, puisque la courbe vy n’a
pas de point double.

D’aprés le lemme précédent, K possede un voisinage U
ouvert tel que la restriction ¢y de ¢ & U soit biunivoque, donc
soit une homéomorphie. L’ensemble V = ¢ (U) est un voisinage
du segment (zy, z); or V contient tout segment (z,, z') ou 2z’ est
un point assez voisin de z, donc U contient aussi tous les points
g (z") correspondants.

Autrement dit g = ¢, ' au voisinage de z; donc g est continue.

A toute courbe paramétrée z (1) de w et d’origine z, correspond
la courbe g (z(t)) de g (w) dont la projection sur C est identique
a la courbe z ().

Donc ’ensemble Q cherché n’est autre que g (w). Par cons-
truction, cet ensemble recouvre w une seule fois; comme g est
biunivoque et que g~' = ¢ ,), £ (w) est un ouvert de (¢ homéo-
morphe a w.

Morceau de champ analytique.

DerinitioNn 9: On appelle morceau de champ analytique tout
ouvert connexe non vide J1U de I'espace G des germes ana-
lytiques.

Il est immédiat qu'un morceau de champ analytique I
appartient & un champ analytique & et & un seul, dont 1l cons-
titue une partie ouverte.

Il est important de savoir reconnaitre si un morceau de
champ analytique J1U est un champ.
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Une condition nécessaire et suffisante pour cela est évidem-
ment que O soit fermé dans G. Nous allons traduire cette
condition de facon plus commode:

Théoréme 5. — Pour qu’un morceau de champ analytique JTt
soit un champ, il faut et il suffit que, pour tout point g€ I,
toute rondelle A de centre g et de rayon fini soit contenue
dans J1.

La condition est évidemment nécessaire. Inversement,
supposons-la réalisée. Soit g un élément de G, limite de germes g,
de JN.

Dés que g, est assez voisin de g, il existe une rondelle de
centre g, et contenant g; donc on a g € G. Autrement dit, J1T est
fermé dans G; c¢’est donc bien un champ.

Corollaire 1. — Si un morceau de champ analytique I a
pour support C et recouvre C une seule fois, )T est un champ.

En effet, pour tout g € N et tout ¢ > 0, la rondelle A (g, )
est alors contenue dans J1t.

On appelle un tel champ un champ entier ou plus simplement
une fonction entiere.

Corollaire 2. — Tout morceau de champ M qui contient un
ouvert qui recouvre C une seule fois est identique a cet ouvert
et est un champ entier.

Inverse d’un germe et tnverse d’un champ.

Soient ¢ = f(u) et u = g(z2) deux fonctions holomorphes,
'une g au voisinage d’un point z,, 'autre f au voisinage du point
uy = g(z0). La fonction £ (z) = f(g(z)) est holomorphe au
volsinage de z,.

Sif(g(z)) = zau voisinage de ce point, on a [’ (u,) g’ (z,) = 1,
donc f' (uy) et g’ (z,) ne sont pas nuls.

Inversement, si g(z) est une fonction holomorphe au voisi-
nage de z,, avec g’ (z,) # 0, on sait qu’il existe une fonction f (u)
et une seule holomorphe au voisinage de u, = g(z,), et telle que
f(g(2)) = z au voisinage de z,.

Evidemment f (u,) = z,; la fonction g (f (u)) est donc définie
au voisinage de uy; et on a g(f(u)) = u au voisinage de u,,.
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Ces remarques montrent qu’a tout germe g = (z4; @y, @y, -..)
tel que a; # 0, on peut associer un germe et un seul:

[ = (ag; 2q, 1/ay, by, ...) tel que fog = (z4; 2, 1, 0, 0, ...) L.

On note f = g~ ! et on I'appelle germe inverse de g. Ce qui

précede montre que (g~ 1)~! = g.

Désignons par G* I’ensemble des germes inversibles. L’appli-
cation ® de G* sur G* définie par g ~ ¢! est biunivoque et a
pour carré l'identité.

(’est en outre une homéomorphie. Pour le voir, il suffit de
vérifier que @ est continue.

Or ceci résulte de ce que, avec les notations du début de ce
paragraphe, si f(u) et g(z) sont deux fonctions localement
inverses au voisinage de z, et u,, le germe (z, A) ot A est la suite

(f (2), ..., M, ...) a pour inverse le germe (u, B) ou u = f(2)
o p g )
et ou B est la suite (g (u), ..., %(!u), o).

S1 @ est un champ de G qui ne soit pas une fonction cons-
tante, et s1 on pose A* = A N G*, 'ensemble (L — A*) est
fermé et discret (donc aussi dénombrable).

L’ensemble @ (¢L*) est ouvert et connexe, donc appartient a
un champ que ’on notera (. '

On a ® (AL*) c B3*; mais aussi ® (B*) € A* d’ou B* c O (A*),
donc B* = O (A*).

Aussi appellerons-nous ¢ le champ inverse de ¢l et le note-
rons-nous .

Nous venons de voir que, mis & part deux sous-ensembles
dénombrables fermés et discrets, les champs (L et @' sont
homéomorphes dans ’homéomorphie .

Pour éliminer les ensembles dénombrables exceptionnels, il
faudrait modifier la définition des germes, en considérant

comme germe tout développement (non uniforme) tel que
n

(% an25> ou p est un entier > 0.
En fait, pour avoir une théorie entierement satisfaisante, 1l
faudrait aussi remplacer le plan C par le plan C déduit de C

1 Le germe f o0 g se définit de facon évidente d’apreés ce qui précéde.
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par l'addition d’un point a P'infini (ce qu’on appelle aussi la
sphére de Riemann).

Exemple. — Soit @ le champ «entier » défini par la fonction
entiére . La fonction ¢* n’a sa dérivée nulle en aucun point,
done @* = @. D’autre part, ¢ n’a pas de point critique (non
étudié ci-dessus), donc on aura (A~ ')* =@ !. On aura donc
A= o @). |

En particulier &~' sera homéomorphe & @, donc aussi
au plan C.

Le champ inverse de celui de ¢* s’appelle logarithme et on
note la fonction analytique de ce champ: log (g).

De la propriété e *'" = ¢* résulte que I’homéomorphie
g— g de G sur lui-méme définie comme suit:

’

g = (z;a) + 2iw, 0y, ...) 81 2 = (2; @y, Ay, ...)

est une automorphie de @~
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