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FONCTIONS ANALYTIQUES
ET SURFACES DE RIEMANN1

PAR

Gustave Choquet, Paris

On désignera par C le plan complexe.

Définition 1 : On appelle germe de fonction analytique tout
couple g (z, A) où z G C et où A est une suite (a0, al7

.1

de nombres complexes telle que lim sup \an\n < co (autrement

dit telle que la série 2 anxn ait un rayon de convergence
non nul).
On désigne par G l'ensemble de tous les germes.
Si g (z, A), z est le support de g; on désigne par cp l'application

g-^z et on l'appelle projection de G dans C; pour toute
partie X e G, l'ensemble cp (X) est le support de X.

On appelle a0 la valeur principale de g.

Topologie sur G. >

1. Soit g0 (z0, A0), et soit p0 le rayon de convergence de
la série 2anzn. Pour tout p tel que 0 < p < p0, on appelle

U»i~. A o -

rondelle ouverte A (g^,. p), de centre g0 et de rayon p, la partie de G
constituée par les germes g (x, A) tels que \x — z0 | < p et
où A est la suite des coefficients du développement en série
entière de 2anzn par rapport aux puissances de Ç (z — x).

Tout point de G est évidemment centre de rondelles de rayon
arbitrairement petit.

i J'ai essayé ici de définir correctement le prolongement analytique à partir de
quelques notions topologiques courantes, d'une façon qui soit compréhensible par unbon étudiant de calcul différentiel et intégral.

L'Enseignement mathém., t. II, fasc. 1-2. 1



2 G. CHOQUET

Il est immédiat que tout point d'une rondelle ouverte A est
centre d'une rondelle contenue dans À.

D'autre part, soient gx {zx, Ax) et g2 (z2l A2) deux
germes distincts; ils sont centres de rondelles disjointes:

C'est évident si z1 =£ z2 car il suffit de prendre le rayon p

de ces rondelles tel que p < ^ ~ ^.

Et si z2 cela résulte alors de ce que si deux rondelles Ax
et A2 de même rayon, dont les centres gt et g2 ont le même

support, se rencontrent, ces rondelles sont identiques. En effet,
ceci revient à dire que si deux fonctions f2 analytiques dans

un disque ouvert plan prennent en un point même valeur, ainsi

que toutes leurs dérivées, elles sont identiques dans ce disque.

2. Appelons ouvert de G toute réunion de rondelles ouvertes.
Il est immédiat que ces ouverts définissent bien une topologie
sur G. Et d'après ce qui précède, cet espace G est séparé.

Chacun des points de G possède une base de voisinages
constituée des rondelles ouvertes centrées en ce point.

La restriction de la projection 9 à toute rondelle ouverte est

biunivoque et bicontinue.
En particulier, tout point de G a un voisinage homéomorphe

à un disque ouvert plan ; comme G est séparé, G est donc localement

compact.
Champ analytique.

Définition 2: On appelle champ analytique toute composante
connexe cl de G.

Ce qui précède montre que tout champ analytique est ouvert
dans G (il est également fermé en tant que composante connexe).
Donc tout champ analytique est localement compact et chacun
de ses points g a une base de voisinages constituée des rondelles
de G de centre g.

Surface de Riemann Fun champ analytique.
Fonction analytique.

Définition 3: Soit (fi un champ analytique; on appelle surface
de Riemann de cl le couple (cX, 9) constitué par cX et la
restriction à cX de la projection 9 dans C.
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Définition 4: Soit cl un champ analytique; on appelle fonction

analytique du champ cl l'application g-> a0 qui, à tout germe g

de cl associe la valeur principale a0 de g.

Soit F la fonction analytique de cl ; soit A une rondelle
ouverte de cl, de centre g0. La restriction cpA de 9 à A étant
biunivoque, la fonction F (z)) est bien définie dans le disque
ouvert plan 9 (A). Elle est identique dans ce disque à la fonction
0°

I,an(z — z0)n, si l'on a posé g (z0; {a0, «i, •••})•
0

Aussi l'étude de la fonction analytique F sur une rondelle

peut-elle être remplacée par celle d'une fonction analytique
(au sens classique) sur un disque ouvert plan.

Ce résultat s'étend à tout ouvert Q. de cl tel que la restriction
de 9 à où soit biunivoque.

Ceci nous conduit à la définition suivante:

Définition 5: Soit cl un champ analytique et soit X une partie
de cl. On dit que X recouvre une seule fois son support si la
restriction de 9 à X est biunivoque.

Lorsque X recouvre une seule fois 9 (X), la restriction de 9
à X est toujours une homéomorphie dans les deux cas
suivants: X est ouvert ou compact.

Définition 6: Lorsque cl lui-même recouvre une seule fois son
support, on dit que cl est un champ analytique uniforme. On
convient alors de confondre cl avec la fonction holomorphe
F (9~1 {z)) définie dans 9(d).
Pour tout domaine plan D, on démontre qu'il existe des

champs uniformes cl dont le support est D.

Prolongement analytique.

Définition 7: Soit (\)ie[i,n] une suite finie de rondelles ouvertes
de G, de centres gt et de rayons pt

On dit que cette suite est une chaîne si, pour tout i > 1,

gt appartient à A^. On dit que gx et gn sont les extrémités
de la chaîne (g-, est l'origine et gn la fin).



G. CHOQUET

Remarque 1. — Notons ici pour la suite, qu'une chaîne est
entièrement déterminée dès qu'on connaît son origine gq, les

supports des centres g-% et les rayons p-.

Théorème 1 : Soient g et g' deux germes de G. Pour que g et g'
soient les extrémités d'une chaîne, il faut et il suffît qu'ils
appartiennent à un même champ analytique.

Démonstration. — Toute rondelle de G étant connexe, la
réunion d'une suite finie de rondelles dont deux consécutives
ont un point commun est connexe. Donc la condition est
nécessaire.

Inversement, soit cl un champ analytique et soit g G cl.
L'ensemble des points g' de cl tels que g' soit la fin d'une chaîne
d'origine g est évidemment ouvert et fermé relativement à cl,
donc est identique à cl.

Remarque 2. — Notons que cette conclusion subsisterait si

on modifiait la définition d'une chaîne en imposant aux centres
intermédiaires des rondelles d'une chaîne d'appartenir à une
partie partout dense de cl, et si l'on imposait aux rayons des

rondelles d'appartenir à un ensemble dénombrable de nombres

> 0 astreint seulement à contenir des éléments arbitrairement
petits.

Corollaire. — Deux éléments quelconques g et g' d'un champ
analytique cl appartiennent à une courbe qui est une réunion
finie d'arcs simples ayant pour support des segments de droite.

Théorème 2 (Poincaré-Volterra) :

1. Tout champ analytique cl est une réunion dénombrable

de rondelles ouvertes (ce qui entraîne que cl a une
base dénombrable constituée de rondelles ouvertes).

2. Pour tout 2 G C, l'ensemble (z) des germes de cl
de support z est au plus dénombrable.

Démonstration. — 1/Soit P une partie dénombrable partout
dense du plan complexe C.

L'ensemble des points de cl dont le support est dans P est
évidemment partout dense dans cl. Donc, d'après le théorème 1
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et la remarque 2, si l'on désigne par g un élément fixe quelconque
de ci ayant son support dans P, le champ cl est la réunion des

rondelles appartenant à des chaînes finies (À-) d'origine g, de

rayons p[ rationnels et dont les centres gi ont leur support
(gi) e p-

Une telle chaîne, d'après la remarque 1, est entièrement
déterminée par la donnée de g, de la suite (9 (g,)) et de la suite

(pj. Or l'ensemble des suites finies de couples (9 (g;), pj est au
plus dénombrable; donc l'ensemble des chaînes considérées est

au plus dénombrable. D'où la première partie du théorème.

2. Associons à tout g G cl une rondelle À (g) de centre g,

par exemple la rondelle maximale de centre g (c'est-à-dire la
réunion des rondelles de centre g).

D'après une propriété soulignée précédemment si gx et g2 ont
même support z, A (gx) et A (g2) sont disjointes lorsque gx 7^ g2.
Donc l'ensemble des rondelles A (g) associées aux germes
g 6 9~* (z) est au plus dénombrable, puisque cl est à base
dénombrable.

Autrement dit, 9""1 (z) est au plus dénombrable.

Prolongement le long d'une courbe.

Définition 8: On appelle courbe paramétrée de G le couple
constitué par une application continue / d'un intervalle I
de R dans G, et l'image /(I) de I.

Son origine est l'image / (a) de l'origine a de I (si I a une
origine). On appelle support de la courbe G définie par /,
la courbe paramétrée définie par l'application 9 (/) 90/
de I dans C.

Comme l'image d'une courbe paramétrée est toujours
connexe, l'image d'une courbe paramétrée de G est toujours
contenue dans un champ analytique et un seul.

Théorème 3: Soit g0 un élément d'un champ analytique cl, et
soit z0 son support. Toute courbe paramétrée de C et d'origine

Zq est le support d'au plus une courbe paramétrée de cl
et d'origine g0.



6 G. CHOQUEE

Démonstration. — Soit I [a, ß[ ou [a, ß] l'intervalle sur
lequel est définie la courbe z (t) de C; on suppose que z (oc) z0.

Soient f1 et /2 deux applications continues de I dans cl telles que
/i(°0 — f2 {^0 — s°it T l'ensemble des points t G I tels

que f1(t) f2(t). Cet ensemble T est fermé relativement à I.
D'autre part, si 9 (/x) 9 (/2), T est ouvert puisque l'application

9 est localement une homéomorphie. Donc T est ouvert et
fermé relativement à I ; comme T n'est pas vide (a G T) et comme
I est connexe, on a I T. Autrement dit, /3 /2.

Corollaire. — Soit y une courbe paramétrée de C et d'origine %,
définie par z z (t) (t £ [oc, ß]).
Si y n'est pas le support d'une courbe de cl d'origine g0, il
existe un point t de [a, ß] tel que la courbe z — z(t) (t£ [oc,

t]) soit le support d'une courbe de cl d'origine g0, mais qu'il
n'en soit pas de même de la courbe z z(t) (t [a, t]).

Lorsqu'il en est ainsi, on dit que le champ analytique cl est

prolongeable à partir de g0 sur y jusqu'au point (t, z (t)) exclus,
mais pas au-delà. On dit parfois aussi que g0 et la courbe z z(t)
(t G [a, t[) définissent un point singulier du champ cl.

Pour qu'il en soit ainsi, il faut et il suffit que, si p (g) désigne
le rayon de la rondelle maximale de centre g, p(g (t))-> 0 lorsque
t -§* t (où g (t) est le point de cl associé à z (t)).

Théorème de monodromie.

On va énoncer ce théorème classique sous une forme en

apparence moins générale, afin d'éviter le recours à la notion
d'homotopie. L'énoncé général se déduirait du nôtre assez

aisément, en utilisant des propriétés simples de l'homotopie.

Théorème 4: Soit cl un champ analytique; soit 00 un ouvert de C

homéomorphe à un .disque ouvert plan, et soit g0 un point
de cl de support z0 G co.

Si toute courbe paramétrée z (t) (t G I) de co et d'origine z0

est le support d'une courbe f (t) (t G I) de cl et d'origine g0,

la réunion Q des images /(I) de ces courbes est un ouvert
de cl qui recouvre où une seule fois.
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Pour démontrer ce théorème, nous aurons besoin du lemme

suivant, de nature purement topologique:

Lemme: Soit E un espace topologique quelconque et soit 9 une

application de E dans un espace séparé F. Soit K un compact
de E. Si 9 est continue en tout point de K, si la restriction
de 9 à K est biunivoque, et si 9 est biunivoque au voisinage
de tout point de K, 9 est biunivoque au voisinage de K.1

Démonstration. — Soit Q l'application (9, 9) de E2 dans F2.

Désignons par SE et §F les diagonales de E2 et F2. Les
hypothèses se traduisent de la façon suivante:

(1) F séparé SF est fermé dans F2;

(2) K compact ^ ; K2 compact;
(3) 9 continue en tout point de K * >: ^ continue en tout-

point de K2;

(4) restriction de 9 à K biunivoque 2—ç Q (K2 — §E) c C §F;

(5) biunivocité locale de 9 en tout point de K —7
3E n K2 a un voisinage V tel que Q (V — SE) c C Sp.

Des conclusions (1), (3), (4) résulte que «Jr1 (C SF) est un voisinage

de (K2— §E); en rapprochant ce résultat de (5), on voit
que K2 possède un voisinage W tel qu'en tout point W— §E

on ait <J> (x,y)C SP.

Or d'après (2), K2 est compact, donc il existe un voisinage U
de K tel que U2 c W.

Autrement dit, pour tout couple y) de points distincts
de U, on a (9 (x),9(y)) $ §F, c'est-à-dire 9 (.r) ^ 9 (y).

Démonstration du théorème 4. — Par hypothèse, on a
9 (Cl) 00.

D autre part, du fait que la restriction de 9 à toute rondelle
de cl est une homéomorphie avec un disque ouvert de C résulte
que Cl est un ensemble ouvert.

Il nous reste a montrer que la restriction de 9 à O est
biunivoque (ce sera donc aussi une homéomorphie).

1 On dit qu'une application cp de E est biunivoque au voisinage d'un ensemble Ade E si la restriction de cp à un voisinage de A est biunivoque.
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Pour simplifier les notations, supposons que co soit un disque
ouvert de centre z0 et de rayon 1. Le cas général se ramène
immédiatement à celui-ci par homéomorphie.

Pour tout point 2 de co distinct de z0, le segment (z0, z) définit
la courbe y : Ç z0 + t (z — z0) (0 < t < 1); celle-ci est

d'après l'hypothèse la projection d'un arc de cl d'équation fz (t)
(0 < t < 1) avec fz (0) g0. Posons jz( 1) g(z); on a par
construction 9 (g (z)) z.

D'après le théorème 3, la fonction g (z) est bien définie. Nous
allons montrer que g (z) est continue.

L'ensemble fz ([0, 1]) est un compact K de cl tel que la
restriction de 9 à K soit biunivoque, puisque la courbe y n'a
pas de point double.

D'après le lemme précédent, K possède un voisinage U
ouvert tel que la restriction 9ÏÏ de 9 à U soit biunivoque, donc
soit une homéomorphie. L'ensemble V 9 (U) est un voisinage
du segment (z0, z); or V contient tout segment (z0l z') où z' est

un point assez voisin de 2, donc U contient aussi tous les points
g (z) correspondants.

Autrement dit g <ç>~1 au voisinage de 2; donc g est continue.
A toute courbe paramétrée z (t) de co et d'origine z0 correspond

la courbe g (z (t)) de g (co) dont la projection sur C est identique
à la courbe 2 (t).

Donc l'ensemble Q cherché n'est autre que g(co). Par
construction, cet ensemble recouvre cù une seule fois; comme g est

biunivoque et que g~~{ £ (G)) est un ouvert de cl homéo-

morphe à co.

Morceau de champ analytique.

Définition 9: On appelle morceau de champ analytique tout
ouvert connexe non vide Jlt de l'espace G des germes
analytiques.

Il est immédiat qu'un morceau de champ analytique DTi

appartient à un champ analytique cl et à un seul, dont il constitue

une partie ouverte.
Il est important de savoir reconnaître si un morceau de

champ analytique JI1 est un champ.
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Une condition nécessaire et suffisante pour cela est évidemment

que DM soit fermé dans G. Nous allons traduire cette
condition de façon plus commode:

Théorème 5. — Pour qu'un morceau de champ analytique DM

soit un champ, il faut et il suffit que, pour tout point g G Jll,
toute rondelle A de centre g et de rayon fini soit contenue
dans DM.

La condition est évidemment nécessaire. Inversement,
supposons-la réalisée. Soit g un élément de G, limite de germes gn

de DM.

Dès que gn est assez voisin de g, il existe une rondelle de

centre gn et contenant g; donc on a g G G. Autrement dit, DTi est

fermé dans G; c'est donc bien un champ.

Corollaire 1. — Si un morceau de champ analytique DM a

pour support C et recouvre C une seule fois, DM est un champ.
En effet, pour tout g G <71! et tout p > 0, la rondelle A (g, p)

est alors contenue dans DM.

On appelle un tel champ un champ entier ou plus simplement
une fonction entière.

Corollaire 2. — Tout morceau de champ M qui contient un
ouvert qui recouvre C une seule fois est identique à cet ouvert
et est un champ entier.

Inverse d'un germe et inverse d'un champ.

Soient v j (u) et u g (z) deux fonctions holomorphes,
l'une g au voisinage d'un point z0l l'autre / au voisinage du point
uo g(zo)- La fonction h(z) f {g (z)) est holomorphe au
voisinage de z0.

Si / (g (z)) z au voisinage de ce point, on a f (u0) g' (z0) 1,
donc f (u0) et g' (z0) ne sont pas nuls.

Inversement, si g (z) est une fonction holomorphe au voisinage

de z0, avec g' (z0) 0, on sait qu'il existe une fonction f (u)
et une seule holomorphe au voisinage de u0 g (z0), et telle que
f (g (z)) z au voisinage de z0.

Evidemment f (u0) z0; la fonction g (f (u)) est donc définie
au voisinage de u0; et on a g (f (u)) — u au voisinage de u0.
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Ces remarques montrent qu'à tout germe g (z0; a0, ax,
tel que ax =£ 0, on peut associer un germe et un seul:

/ ö K; tel que fog (z0; z0, 1, 0, 0, h

On note / g-1 et on l'appelle germe inverse de g. Ce qui
précède montre que (g-1)-1 — g.

Désignons par G* l'ensemble des germes inversibles. L'application

O de G* sur G* définie par g -> g-1 est biunivoque et a

pour carré l'identité.
C'est en outre une homéomorphie. Pour le voir, il suffit de

vérifier que <D est continue.
Or ceci résulte de ce que, avec les notations du début de ce

paragraphe, si f (u) et g (z) sont deux fonctions localement
inverses au voisinage de zQ et u0, le germe (z, A) où A est la suite

j{n) l2)
(/ (2), •••) a pour inverse le germe (u, B) où u f (z)

et où B est la suite (g(w), 8 ^,
Si cl est un champ de G qui ne soit pas une fonction

constante, et si on pose cl* cl fl G*, l'ensemble (cl — cl*) est
fermé et discret (donc aussi dénombrable).

L'ensemble O (cl*) est ouvert et connexe, donc appartient à

un champ que l'on notera ob.

On a O (cl*) c d3* ; mais aussi O (d3*) c cl* d'où <A* c O (cl*),
donc cfi* — O (cl*).

Aussi appellerons-nous ob le champ inverse de cl et le

noterons-nous cl"1.
Nous venons de voir que, mis à part deux sous-ensembles

dénombrables fermés et discrets, les champs cl et cl-1 sont
homéomorphes dans l'homéomorphie O.

Pour éliminer les ensembles dénombrables exceptionnels, il
faudrait modifier la définition des germes, en considérant
comme germe tout développement (non uniforme) tel que

En fait, pour avoir une théorie entièrement satisfaisante, il
faudrait aussi remplacer le plan C par le plan C déduit de C

1 Le germe f o g se définit de façon évidente d'après ce qui précède.
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par l'addition d'un point à l'infini (ce qu'on appelle aussi la
sphère de Riemann).

Exemple. — Soit cl le champ « entier » défini par la fonction
entière ez. La fonction ez n'a sa dérivée nulle en aucun point,
donc cl* cl. D'autre part, ez n'a pas de point critique (non
étudié ci-dessus), donc on aura (cl""1)* cl-1. On aura donc
cl"1 O (cl).

En particulier cl-1 sera homéomorphe à cl, donc aussi

au plan C.

Le champ inverse de celui de ez s'appelle logarithme et on
note la fonction analytique de ce champ: log (g).

De la propriété ez +171 — ez résulte que l'homéomorphie
g-> g' de G sur lui-même définie comme suit:

g'(2; a0+ 2i7i, si g (z; a0, a1:

est une automorphie de et-1.
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