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SOCIÉTÉ MATHÉMATIQUE SUISSE

Conférences et communications

Séance de printemps, Berne, 10 juin 1956.

Conférence de M. le professeur A. Weinstein (University of
Maryland): Singulare Partielle Differentialgleichungen.

Réunion de Bâle, 23 septembre 1956.

La Société mathématique suisse a tenu sa 45e assemblée annuelle
à Bâle, le 23 septembre 1956, en même temps que la 136e session de
la Société helvétique des Sciences naturelles. Les communications
scientifiques, au nombre de neuf, et la conférence principale de M. le
professeur Hadwiger ont fait l'objet de deux séances présidées par
M. le professeur Vincent, vice-président, en remplacement de M. le
professeur Stiefel, empêché par un voyage à l'étranger.

Conférence Générale:

H. Hadwiger (Bern): Ausgewählte Probleme der kombinatorischen
Geometrie des euklidischen und sphärischen Raumes.

(Eine zusammenfassende, gekürzte Darstellung wird in «

L'Enseignement Mathématique » tome 3, fasc. 1, 1957, publiziert werden.)

Résumé des communications:

I. H. R. Schwarz (Zürich): Zur Stabilität con Matrizen.
(Erscheint in erweiterter Fassung in ZaMP, 1956, Heft 6.)

2. J. Fleckenstein (Basel): Bemerkungen zu einer Archimedeshand-
schrift « De Curvis Superficiebus » aus dem Basler Codex F II 33.

Im Rahmen einer grossangelegten Untersuchung über « Archimedes

im Mittelalter » hat Marshall Clagett (Wisconsin), 1954, den
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Text « De curvis superficiebus Archimenidis » (Osiris, 11, pp. 295-

364), einen Kommentar des apokryphen Johannes von Tinemue zu
Archimedes « De sphaera et cylindro, Lib. I », ediert. Clagett zitiert
11 Handschriften (Neapel, Florenz, Paris, Basel, Wien, Dresden,
Cambridge, 2 London, 2 Oxford), benutzt aber bei der Kollation
nur 8. Den Dresdener Text hat er nicht zu Gesicht bekommen, den

Basler Codex F II 33, fol. 151r—153^ nur kurz angesehen, ohne ihn
zu berücksichtigen, da er ihn mit den beiden Oxforder Handschriften
der Bodleyan Library im wesentlichen übereinstimmend hält.

Wir können uns dieser Auffassung nicht anschliessen, denn die
Zahl der Varianten der Basler Handschrift gegenüber Clagetts Kollation

ist zu gross. Wir haben auf unserem Text von insgesamt 738 Zeilen

fast 400, d.h. durchschnittlich 2 Varianten pro Zeile gezählt.
Hierunter befinden sich etwa 60 wesentliche Varianten, wie Auslassungen,

Umstellungen, Zusätze und Wortänderungen. Da Clagett die
individuellen Varianten der 8 seiner Kollation zugrundeliegenden
Handschriften angibt, können wir den Typus unseres Basler Manuskriptes

feststellen, welches wir überdies noch mit dem Dresdener
(Db 86) verglichen haben. Von letzterem, das nach paläographischen
Kriterien dem XIII Saec. zuzuweisen ist, können wir freilich sagen,
dass es mit der Oxforder übereinstimmt (XIII Saec.), Der Basler
Codex stammt dagegen aus dem XIV Saec., wie sich mit einer
Eintragung anno 1349 (fol. I960 beweisen lässt. Die Handschrift trägt
mit ihren häufigen Omissionen und Kontraktionen gegenüber Clagetts
Kollation typischen Spätlingscharakter, ja man wäre nach dem stark
gotisierten stenographischen Schriftbild fast geneigt, sie in den
Anfang des XV. Saec. zu versetzen. Bemerkenswert ist, dass durchwegs

schon arabische Ziffern verwendet werden, womit sie aus der
Tradition der anderen herausfällt. Auch fehlt bei ihr der Name des
bis jetzt nicht zu identifizierenden Autors; Clagett erwägt hierbei die
Möglichkeit, dass Tinemue eine typische mediaevale Verballhornung
von Tynmouth (Northumberland) sei.

Das Basler Manuskript zeigt freilich 4 für die Oxforder Texte
typische Varianten. Häufiger sind aber die Varianten, welche nur
für die Neapolitaner Handschrift charakteristisch sind, so die
Vertauschung von 9 in 11 und 5 in 4 bei der Zitation der Propositionen
und Verwendung von « invenire » statt « reperire ». Darüber hinaus
hat der Basler Text als seine spezifische Varianten die Ersetzung von
« quadratura » in « mensura circuli », von «columpna» in «conica»
und von « elementa » in « elementa Euclidis ». Im Gegensatz zu
Clagett halten wir dafür, dass die Basler Handschrift der Tradition
des Naepolitaner Textes (Biblioteca Nazionale, MS VIII, C 22,
57r—0Or5 13 saec.) zugehört.

Der Autor der Schrift, Johannes de Tinemue, erweist sich als guter
Kenner der Elemente des Euklid, der Kreismessung des Archimedes
und dessen Werk über Kugel und Zylinder. Ausgehend vom Archi-
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medischen Näherungswert für iz 3 —(oder Kreisfläche:

Durchmesserquadrat 11: 14) leitet er in seinem Traktat den

Satzher, dass sich das Kugelvolumen zum Durchmesserwürfel wie
11:21 verhalte. Hierzu braucht er nur den berühmten Satz von
Archimedes von Umzylinder: Kugel: Inkegel 3:2:1, den er in
der Prop. VIII des Traktats beweist. Denn da sich auch dieses
Zylindervolumen zum Durchmesserwürfel wie 11:14 verhält, ver-

2 11hält sich das gesuchte Kugelvolumen zu diesem wie — • — 11: 21.

V.d. Waerden hat just diese Schrift des Archimedes über Kugel
und Zylinder als Musterbeispiel für « Einfall und Überlegung in
der Mathematik » (Elemente der Mathematik. Bd. IX, 1954)
herangezogen. Hier ist nun interessant zu bemerken, wie beispielsweise
der mittelalterliche Kommentator — obwohl er keinesfalls sklavisch
dem Archimedes folgtgerade die entscheidende Zerlegung der
Rotationsfiguren blind übernimmt, ohne zu bemerken, dass die
Grundpolygone eine durch 4 teilbare Seitenzahl haben müssen, damit die
von ihnen erzeugten Rotationskörper nur von Kegelflächen begrenzt
werden. Der Exhaustionsbeweis bei Johannes ist zwar streng, aber
schwerfällig. Aulfällig ist das ständige Vermischen der Sätze des
Traktats mit solchen aus der Kreismessung, um dann schliesslich als

Hauptsatz die oben erwähnte Proposition X herzuleiten, die ja nur
eine numerische Approximation darstellt. Weil der Traktat
überhaupt das Niveau des Archimedes nicht ganz einhält, vermutet
Clagett, dass er gar nicht auf Archimedes, sondern auf Heron zurückgeht,

von dem die Araber ebenfalls Handschriften hatten. Ja man
kann sogar annehmen, dass er aus einer direkten Herontradition
stammt, während man im anderen Fall postulieren muss, dass die
arabischen Übersetzungen als Zwischenmedium den ursprünglichen
Archimedestext langsam korrumpiert haben.

3. J. Hersch (Zürich): Une méthode aux différences définie par une
relation de récurrence.

1. Pour la résolution de problèmes aux limites ou aux valeurs
propres, on peut essayer de construire des équations aux différences
Lh M — 0 (h est la maille) fournissant la solution exacte. Si le
problème initial a été résolu, on peut en déduire a posteriori l'équation
aux différences; mais le casAntéressant est celui où la solution exacte
nous échappe. Le procédé esquissé ici consiste à construire des équations

aux différences «cohérentes» Lupir\ß\ ü r 0, 1, 2, c'est-
à-dire telles que Lh/2 M — 0 entraîne L^[u] — 0. Si cette récurrence

Y -> h est exactement possible, et si, lors du passage à la limite h -> 0,

Lh [u] 0 devient équivalente à l'équation différentielle donnée,
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alors nous aurons essentiellement résolu le problème initial dès que
nous aurons résolu l'équation aux différences pour une maille fidie h.

Exemple trivial: corde vibrante. + Xcp 0, cp (0) cp (1) 0.

Nous voulons ignorer les solutions bien connues cpn sin (n n x),

\n té n2. Prenons h —, m entier; ni cp —); Lh {u>i) Ui-i —n m \mj
— AhUi + ui+1 0; la récurrence -> h donne immédiatement

Ah A2h[z — 2, ce qui permet de poser 2 cos (M) ; le passage

à la limite h -> 0 donne k V\ soit

Ah 2 cos (h VI)

au lieu de Véquation aux différences classique ou Ajt 2 —• \h2.

Prenons par exemple h —, nous obtenons l'équation
caractéristique

A

1

0

1

A

1

0

1

A

A (2 — A2) ;

d'où X n2 je2 avec n ^ 0 mod 4; les solutions avec n 4N doivent
évidemment manquer, du fait que les cp4N s'annulent en tous les

« nœuds » x 0, -, i, 1.1.
4' 2' 4'

2. Cet exemple trivial peut servir de modèle, notamment pour
l'étude des valeurs propres d'une membrane vibrante. La récurrence
Lft/2 Lft n'est plus exacte; on peut choisir l'opérateur discret
en sorte que l'écart (la quantité négligée) soit minimum, ou bien d'un
signe déterminé. On obtient alors une méthode à convergence numérique

rapide, ou bien une évaluation par défaut de la première valeur
propre.

Exemple numérique. — Calcul approché de la fréquence fondamentale
d'une membrane hexagonale régulière (côté 1) à bords fixes. (On

sait par ailleurs que 7 < Xx < 7,17.)

h \
h \

1 inconnue

2 inconnues

4 «

Méthode classique

Xi [X) 4

6,28 (Collatz)

6,77 (Collatz)

Méthode récurrente
(exige le même travail)

Xi rsj 5,85

7,01

7.1«
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4. A. Aeppli (Zürich): Modifikation komplexer Mannigfaltigkeiten.

1. Einleitung. — V, W sind komplex /i-dimensionale kompakte
komplexe Mannigfaltigkeiten, 9: VWist eine komplex analytische
Abbildung von V auf W vom Abbildungsgrad 1. Dann induziert 9
eine komplexe Modifikation O (mit Abbildung; alle hier betrachteten
Modifikationen sind Modifikationen mit komplex analytischer
Abbildung) :

<D: (V, S) —> (W, A) (1)

dh. wenn V — S die Menge der Punkte ist, in denen 9 lokal
eineindeutig ist, induziert 9 den komplex analytischen Homöomorphis-
mus 9': V — S W — A, und 9 bildet die Singularitätenmenge S

auf die Ausnahmemenge A ab. Falls 9 ein komplexer Homöomorphis-
mus ist, heisst O trivial. Ist <f> nicht trivial, so gilt für die komplexen
Dimensionen von A und von S: dim A < dim S n — 1. Sind S

und A komplexe Mannigfaltigkeiten, dh. ist S bzw. A regulär in Y
bzw. in W eingebettet, so heisst 0 regulär. Der Hopfsche cr-Prozess
und der von Kreyszig eingeführte an>2-Prozess liefern Beispiele
komplexer Modifikationen. Es handelt sich um reguläre Modifikationen,

bei denen ein Punkt p bzw. eine komplex ^-dimensionale
komplexe Mannigfaltigkeit A^) ersetzt wird durch den komplex
projektiven Raum P(n"1) bzw. durch eine komplexe Mannigfaltigkeit
S(n-i), die durch projektive Räume p(n-^-D komplex gefasert wird.
Für A p heisst O lokal. Zwei Modifikationen d>: (V, S) -> (W, A)
und O': (Y', S')-> (W, A) mit den Abbildungen 9 und 9' heissen

äquivalent, wenn es einen komplexen Homöomorphismus 0: V -> V'
mit 9 9' 0 gibt.

2. Einzigkeitssatz über den a-Prozess. — Jede nicht triviale reguläre
Modifikation <D: (Y, S)(W, p) ist äquivalent dem G-Prozess in p,
ausgeführt innerhalb W.

Somit muss bei einer nicht trivialen regulären lokalen Modifikation
S p(n-i) Sein. Für n 2 ist der obige Satz bekannt (Zariski, Hopf),
und es gilt weiter für n 2: wird die Regularität der lokalen
Modifikation nicht gefordert, so wird S ein Hopfscher « Sphärenbaum ».

Der Einzigkeitssatz über den <7-Prozess wird zum Beweise des folgenden

allgemeineren Satzes benutzt:

3. Einzigkeitssatz über den G^-Prozess. — Jede nicht triviale
reguläre Modifikation ist äquivalent zu einem Gn&-Prozess.

In den beiden Sätzen 2. und 3. kann die Forderung der Regularität
von ® abgeschwächt werden. Es genügt vorauszusetzen, dass in (1) S

und A in V bzw. in W singularitätenfrei eingelagerte Mannigfaltigkeiten

sind.
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4. Anwendungen. — Mit Hilfe von 3. werden die folgenden Sätze

bewiesen :

a) Die Dilatation (oder die monoidale Transformation) der singula¬

ritätenfreien algebraischen Mannigfaltigkeit W<*> längs der regulär
eingelagerten Teilmannigfaltigkeit q n — 2, ist der
an^-Prozess längs A in W;

b) Ist in der regulären Modifikation (1) W singularitätenfrei alge¬

braisch, so ist es auch V. (Es gilt entsprechend: ist W Kählersch,
so ist es auch V);

c) Für eine komplexe Mannigfaltigkeit M sei Eu'l» (M) die d"-Coho-

mologiegruppe vom Typus (u, v) (Dolbeaultsche Gruppe vom
Typus (u, c)). Bei einer nicht trivialen regulären Modifikation (1)

gelten die folgenden Isomorphismen:

Hu>2* (V) ^ (W) + HM'2* (S) — Hu£ (A)

utid" (s(n_1)) 2 RU:d" (A(g)) ® H^u'^ (ph^-DJ ^ H£'^ (A(q) x
u,v

5. A. Calame (La Ghaux-de-Fonds) : Les relations caractéristiques des

bases du groupe symétrique.

Soit G un groupe fini engendré par deux éléments S, T et soit
(1) Fi (S, T) 1 (i 1, 2, m) un ensemble de m relations liant
les deux éléments générateurs S et T. Si toute relation / (S, T) 1

est une conséquence des relations (1), les relations (1) forment un
système de relations caractéristiques de G. Soit S', T' une autre base
de G. On peut exprimer S' et T' en fonction de S et T:

S' g (S, T) T h(S, T) .(2)
Inversement:

S g' (S7, T') T h' (S', T') (3)

Si le système (3) se déduit du système (2) sans l'aide d'aucune autre
relation entre S et T, nous disons que les relations (3) sont réversibles
et que les bases S, T et S', T' sont de la même classe. Deux bases
semblables sont de la même classe. Connaissant les relations
caractéristiques d'une base S, T, on déduit aisément les relations
caractéristiques d'une base S', T7 de la même classe, au moyen des
relations (3). Pour obtenir un système de relations caractéristiques pour
chaque base de G, il suffit de répartir les bases de G en classes et de
déterminer les relations fondamentales d'une base de chaque classe.

Pour établir les relations caractéristiques d'une base S, T, nous
reconstituons le groupe G à partir de S et T selon une méthode précise
qui donne directement un ensemble de relations (4) R (S, T) 1

entre S et T. On démontre que toute relation existant entre S et T



330 SOCIÉTÉ MATHÉMATIQUE SUISSE

est une conséquence des relations (4). On choisit alors comme système
de relations caractéristiques de la base S, T celles des relations (4)
dont découlent toutes les autres.

Mlle S. Piccard a montré que le groupe symétrique ©6 possède
114 480 bases d'ordre 2. On peut répartir ces bases en cinq classes

au sens ci-dessus. Les automorphismes externes de ©6 permutent
entre elles deux de ces classes, si bien qu'il suffît d'étudier les
relations fondamentales de quatre bases de ©6 pour en déduire un système
de relations caractéristiques de n'importe quelle base de ce groupe.
Nous donnons ci-dessous quatre bases de ©6 et leurs relations
caractéristiques :

Si (12543) Tj (123456) Si 1 (5)

T® 1 (6)

(S,T,)4 1 (7)

(S2 Tj)2 1 (8)

(T° S4)2 (Tj S2)2 1 (9)

S2 (13425) T2 (123456) S* 1 (10)

T2 1 (11)

(S22T2)4 1 (12)

(S2T tf 1 (13)

(T2S2f(T'S2)2 l (14)

S3 (123456) T3 (13) (456) wgq II I-* (15)

T; i (16)

(T3S3)4 1 (17)

T2S3I3S3TJS2T;S4 1 (18)

S4 (1234) T4 (123456) S4 1 (19)

(S4T4)4 1 (20)

(W 1 (21)

S2 T2 S2 T~4 1 (22)

Transformons (18) au moyen de (17), (15) et (16):

Tg (T., S, T, S, T,>T;; S;! t; Sg Tg S53 T'! S53 Ti; Sg T5g Sj - 1

Comparons l'inverse du second membre avec (18):

TS o m Q rn4 q2 m q3 rp3 Q rn Q rp4 q3 rp5 q4
g bg 1

g b3 1
g b3 1

g b3 I g b3 1
g b3 1 g bg 1

g bg
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d'où
T3 S3 S3

et d'après (16):
(So T'!)2 1 (23)

Les quatre relations (15), (16), (17), (18) suffisent pour caractériser

©6, puisqu'on peut en déduire le système (15), (16), (17), (18), (23)

qui est un système de relations caractéristiques de ce groupe L
De même, de (22) on déduit:

s9; T24 S2 - T4 (24)

S2 Tj Sj • Sj Tj S2 S2 T4 S2 - T4 (25)

d'après (19). Dans le second membre de (25), remplaçons T4 par le

premier membre de (24):

S1(S2TJS:)S2 - Tj
et d'après (19):

T2 T4 ou Tj 1 (26)

En tenant compte de (26), la relation (22) devient (27) (S2T2)2 1.

Les quatre relations (19), (20), (21), (22) caractérisent ©6, puisqu'on
en déduit le système (19), (20), (21), (26), (27) dont les relations sont
caractéristiques de ©6L De plus, les quatre relations de la base S4, T4
sont indépendantes.

6. J. J. Burckhardt (Zürich): Die astronomischen Tafeln eon
Al Khwarizmï.

Auf die Frage nach der Abhängigkeit der astronomischen Tafeln
des Al-Khwärizmi [1] von der indischen Astronomie ist bereits der
Herausgeber der Tafeln, H. Suter, eingetreten (siehe [1], S. vu—vin,
S. 32—33), neuerdings wird sie in [2] und [3] besprochen. Wir wollen
im folgenden das Problem in bezug auf die mittlere Bewegung von
Sonne, Mond und Planeten beantworten.

1. Länge des siderischen Jahres bei Al-Khwarizmi.
In [1] finden wir in Tab. 115, S. 230, den Überschuss des

siderischen über das ägyptische Jahr für 1, 2, 10, 20, 100 Jahre
angegeben. Für ein Jahr beträgt er 6h 12m, für 100 Jahre 25d 20^ 15m.
Hieraus ist ersichtlich, dass der genaue Wert für ein Jahr 6h 12m 9S

beträgt, was genau mit dem in Graden angegebenen Wert von

1 Les relations caractéristiques des bases du groupe symétrique. Thèse. Neuchâtel>
1955.
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93° 2' 15" übereinstimmt. Somit ist die siderische Jahreslänge
365d 6h 12m9s 365; 15, 30, 22, 30. Denselben Wert gibt Brahma-
gupta im Brahmasphuta-siddhânta (628 AD), siehe [1], S. 65, 103,
235;[2] S. 151.

2. Mittlere Bewegungen nach den Tab. 4-18.

Diese Tabellen geben die mittlere Bewegung pro 2, 4, 60
Minuten, pro 1, 2, 24 Stunden, pro 1, 2, 30 Tage, pro 1, 2,
30 Jahre, pro 30, 60, 570 Jahre. Es handelt sich dabei um arabische
Mondjahre zu 354 Tage, eingeteilt in 12 Monate zu abwechselnd 30
und 29 Tage. Unter 30 Jahren treten 11 Schaltjahre zu 355 Tagen
auf. Die mittlere Bewegung wird stets in Graden, Minuten und
Sekunden angegeben. Bildet man die Differenztabellen, so findet man
nicht durchwegs konstante Werte. Dieser Umstand verhindert es,
die genaue mittlere Bewegung pro Tag zu berechnen. Will man daher
die Angaben von Al-Khwärizmi mit den indischen Werten
vergleichen, so muss man sie auf das indische System umrechnen. Die
indische Astronomie gibt die Umdrehungszahlen pro Mahâyuga
gleich 4 320 000 Jahre an, siehe [7]. Die verschiedenen indischen
Systeme unterscheiden sich sowohl in den Umdrehungszahlen, wie
auch in der Anzahl der Tage in einem Mahâyuga.

Das angegebene System von Brahmagupta gibt 1 577 916 450 Tage
und somit die oben angegebene Länge des siderisches Jahres von 365;
15, 30, 22, 30 und als Umlaufszahlen:

Rechnen wir nun die Bewegung der Sonne in einem Mahâyuga
aus. In den ersten 30 arabischen Jahren zu 10 631 Tagen erhalten
wir 37° 57' 3" + 29 360°. Für 570 Jahre rechnet Al-Kwärizmi 12 mal
diesen Wert plus 7 mal einen um eine Sekunde grösseren Wert und
erhält 1° 4' 4" + 553 360°. In einem Mahâyuga ergeben sich hieraus
4 319 999,986 Umläufe, also 0,014 zu wenig. Eine Fehlerrechnung
zeigt, dass streng genommen der Fehler höchstens 0,006 betragen
dürfte. Eine Zusatztafel von zweiter Hand erweitert die ursprügliche
Tabelle auf 720 Jahre. Berechnet man die Umlaufszahl an Hand
dieser erweiterten Tabelle, so erhält man einen Fehler von nur
— 0,004, also ein best mögliches Ergebnis.

Entsprechende Berechnungen für den Mond und die übrigen
Planeten lassen sich folgendermassen referieren:

Mond: Unsere Berechnungen ergeben einen Fehler von
— 0,013 bei Verwendung der Tabelle für 570 Jahre, einen solchen
von 0,019 bei Verwendung der ebenfalls aus zweiter Hand auf
720 Jahre verlängerten Tabelle. Der zu erwartende Fehler beträgt
0,006.

Mond 57 753 300
Merkur 17 936 998,984
Venus 7 022 389,492

Mars 2 296 828,522
Jupiter 364 226,455
Saturn 146 567,298



SOCIÉTÉ MATHÉMATIQUE SUISSE 333

J u p i t e r : Der Fehler beträgt 0,011, was von der Grösse des

zu erwartenden Fehlers ist.
Saturn : Der Fehler beträgt 2,032. Es scheint, dass Al-

Khwärizmi sich für Saturn bereits einer Umdrehungszahl bediente,
die erst etwas später in der indischen Astronomie verwendet wurde,
Alkhwärizmi verwendte aber nicht diese Umdrehungszahl, sondern
die von Alfazärf überlieferte von 146 569,284, siehe [8], S. 16. Ihr
gegenüber beträgt der Fehler nur noch 0,05, was etwas über dem zu
erwartenden liegt. Entsprechendes gilt für die Bewegung des
Mondknotens.

Mars: Der Fehler beträgt — 0,005 und liegt innerhalb der
Fehlergrenze.

Bei Venus beträgt der Fehler — 0,05, bei Merkur — 0,02, beide
sind etwas grösser als die zu erwartenden.

Zusammenfassend können wir sagen, dass die Jahreslänge, die
Umdrehungszahl von Mond, Jupiter und Mars bei Al-Khärizmi und
Brahmagupta übereinstimmen, bei Venus und Merkur nur wenig
differieren, während bei Saturn die Differenz über zwei Umdrehungen
beträgt.

Wir glauben mit obigen Ausführungen einen neuen Beitrag zur
Frage der Abhängigkeit von [1] von der indischen Astronomie zu
liefern, siehe hierzu insbesondere auch die Ausführungen von Kennedy
in [2] unter Zïj, 28.
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7. P.-D. Methée (Lausanne): Transformées de Fourier de distribu¬
tions invariantes.

Dans un travail antérieur [Comm. Math. Helv., vol. 28 (1954),
p. 225-269) ont été déterminées toutes les distributions — au sens
de M. Laurent Schwartz — qui sont invariantes par le groupe des
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rotations propres de Lorentz et qui vérifient l'équation des ondes
+ se) T 0: est le dalembertien

77—1

JÎL__ Y —àxt :—J dx?
n t •— 1 l

se une constante quelconque.
Le but de cette communication est de montrer comment on peut

déterminer les transformées de Fourier de celles de ces solutions qui
sont tempérées. En particulier, pour n 4 et se > 0, les résultats
obtenus fournissent une justification rigoureuse des expressions
symboliques classiquement utilisées en physique théorique pour la
représentation dans l'espace de Fourier de certaines « fonctions singulières. »

On indique aussi comment obtenir les transformées de distributions

invariantes étroitement liées aux solutions de l'équation des

ondes: les distributions et Ak (k 0, 1, 2, et les distributions
Sp, S?3, e>P (p nombre complexe quelconque).

8. S. Piccard (Neuchâtel): Etude de la structure d'un groupe non
libre à partir de certaines propriétés des relations caractéristiques
liant un système donné d'éléments générateurs du groupe.

Soit G un groupe fini ou infini non libre dont nous appelons
multiplication la loi de composition, défini par un ensemble E d'éléments
générateurs et une famille F de relations fondamentales qui les lie.
Soit n un entier > 2 et soit e un sous-ensemble fini de E formé des
éléments al7 am. Supposons que quelle que soit la relation f 1

de la famille F, son premier membre / qui est une composition finie
d'un nombre fini d'éléments de E est de degré ans 0 (mod. n) par
rapport à l'ensemble ou par rapport à chacun des éléments de e.

Nous disons alors que G jouit de la propriété P (mod. n) par rapport
à l'ensemble ou par rapport à chacun des éléments de e. Il est alors
possible de répartir les éléments du groupe G en classes d'équivalence
ayant la même puissance et pour lesquelles on peut définir une loi
de composition commutative. On peut établir l'existence de sous-

groupes distingués chez les groupes G jouissant des propriétés
susmentionnées. L'étude est particulièrement intéressante si le groupe G

possède un système fini d'éléments générateurs et s'il jouit de la
propriété P (mod. n) par rapport à chaque élément d'un tel système.
La plupart des résultats que nous avions établi dans le fascicule II
du tome 35e (1956) du Journal de mathématiques pures et appliquées,
Paris, pour les groupes d'ordre fini peuvent être étendus aux groupes
ayant un nombre fini d'éléments générateurs.

On peut aussi se poser des problèmes plus généraux. Nous avons
examiné le cas suivant. Soit encore G un groupe défini par un
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ensemble E d'éléments générateurs liés par une famille donnée F
de relations fondamentales; soit k un entier > 2, soient nk
k nombres entiers dont chacun est > 2, soient elp e& k sous-
ensembles finis de E et supposons que, quelle que soit la relation
/ 1 de la famille F, son premier membre / est de degré as 0 (mod. rii)
par rapport à l'ensemble ou par rapport à chacun des éléments de
l'ensemble % i — /, k. On peut dans ce cas généraliser les résultats
mentionnés ci-dessus et établir de nombreux théorèmes relatifs à la
structure du groupe G. En particulier, il existe une très jolie méthode
de décomposition des éléments de G en classes d'équivalence
permettant de rechercher aisément les sous-groupes distingués de G.

Il est aisé de donner des exemples de groupes infinis jouissant des

propriétés signalées. Soient par exemple A et B deux points d'un axe,
soit % la symétrie par rapport à A, soit a2 la symétrie par rapport à B
et soit a± a2 l'opération qui consiste à effectuer d'abord la symétrie
par rapport à A puis celle par rapport à B. Avec cette loi de composition,

at et a2 engendrent un groupe dénombrable caractérisé par les
relations a\ 1, a\ 1 et ce groupe jouit de la propriété P (mod. 2)
par rapport à chacun de ses deux éléments générateurs.

9. H. Loeffel (Zürich): Beiträge zur Theorie cler charakteristischen
Funktionen stochastischer Verteilungen.

(Erscheint in erweiterter Fassung in den Mitteilungen schweizer.
Versicherungs-Math., 1956, Heft 2.)
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