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SOCIETE MATHEMATIQUE SUISSE

Conférences et communications

Séance de printemps, Berne, 10 juin 1956.

Conférence de M. le professeur A. WEeINsTEIN (University of
Maryland): Singuldre Partielle Differentialgleichungen.

Réunion de Bdle, 23 septembre 1956.

La Société mathématique suisse a tenu sa 45¢ assemblée annuelle
a Bale, le 23 septembre 1956, en méme temps que la 136€ session de
la Société helvétique des Sciences naturelles. Les communications
scientifiques, au nombre de neuf, et la conférence principale de M. le
professeur Hadwiger ont fait 'objet de deux séances présidées par
M. le professeur VINCENT, vice-président, en remplacement de M. le
professeur STIEFEL, empéché par un voyage a I’étranger.

Conférence Générale :

H. Hapwicer (Bern): Ausgewdhlte Probleme der kombinatorischen
Geometrie des euklidischen und sphdrischen Raumes.

(Eine zusammenfassende, gekiirzte Darstellung wird in « L’Ensei-
gnement Mathématiqne » tome 3, fasc. 1, 1957, publiziert werden.)

Résumé des communications :

1. H. R. Scuwarz (Zirich): Zur Stabilitit von Matrizen.
(Erscheint in erweiterter Fassung in ZaM P, 1956, Heft 6.)

2. J. FLEckeNnsTEIN (Basel): Bemerkungen zu einer Archimedeshand-
schrift « De Curyis Superfictebus » aus dem Basler Codex F 11 33.

Im Rahmen einer grossangelegten Untersuchung tiiber « Archi-
medes im Mittelalter » hat Marshall Clagett (Wisconsin), 1954, den
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Text « De curvis superficiebus Archimenidis » (Osiris, 11, pp. 295-
364), einen Kommentar des apokryphen Johannes von Tinemue zu
Archimedes « De sphaera et cylindro, Lib. I », ediert. Clagett zitiert
11 Handschriften (Neapel, Florenz, Paris, Basel, Wien, Dresden,
Cambridge, 2 London, 2 Oxford), benutzt aber bei der Kollation
nur 8. Den Dresdener Text hat er nicht zu Gesicht bekommen, den
Basler Codex F II 33, fol. 1517—153? nur kurz angesehen, ohne ihn
zu beriicksichtigen, da er ihn mit den beiden Oxforder Handschriften
der Bodleyan Library im wesentlichen iibereinstimmend halt.

Wir koénnen uns dieser Auffassung nicht anschliessen, denn die
Zahl der Varianten der Basler Handschrift gegeniiber Clagetts Kolla-
tion ist zu gross. Wir haben auf unserem Text von insgesamt 738 Zei-
len fast 400, d.h. durchschnittlich 2 Varianten pro Zeile gezéhlt.
Hierunter befinden sich etwa 60 wesentliche Varianten, wie Auslassun-
gen, Umstellungen, Zusdtze und Wortdnderungen. Da Clagett die
individuellen Varianten der 8 seiner Kollation zugrundeliegenden
Handschriften angibt, konnen wir den Typus unseres Basler Manus-
kriptes feststellen, welches wir iiberdies noch mit dem Dresdener
(Db 86) verglichen haben. Von letzterem, das nach paldographischen
Kriterien dem XIIT Saec. zuzuweisen ist, konnen wir freilich sagen,
dass es mit der Oxforder ibereinstimmt (XIII Saec.), Der Basler
Codex stammt dagegen aus dem XIV Saec., wie sich mit einer Ein-
tragung anno 1349 (fol. 196v) beweisen lasst. Die Handschrift tragt
mit ihren hdufigen Omissionen und Kontraktionen gegeniiber Clagetts
Kollation typischen Spéatlingscharakter, ja man wére nach dem stark
gotisierten stenographischen Schriftbild fast geneigt, sie in den
Anfang des X'V. Saec. zu versetzen. Bemerkenswert ist, dass durch-
wegs schon arabische Ziffern verwendet werden, womit sie aus der
Tradition der anderen herausféllt. Auch fehlt bei ihr der Name des
bis jetzt nicht zu identifizierenden Autors; Clagett erwigt hierbei die
Moglichkeit, dass Tinemue eine typische mediaevale Verballhornung
von Tynmouth (Northumberland) sei.

Das Basler Manuskript zeigt freilich 4 fiir die Oxforder Texte
typische Varianten. Héaufiger sind aber die Varianten, welche nur
fir die Neapolitaner Handschrift charakteristisch sind, so die
Vertauschung von 9in 11 und 5 in 4 bei der Zitation der Propositionen
und Verwendung von «invenire » statt « reperire ». Dariiber hinaus
hat der Basler Text als seine spezifische Varianten die Ersetzung von
« quadratura » in «mensura circuli », von «columpna» in «conica»
und von «elementa» in «elementa Euclidis». Im Gegensatz zu
Clagett halten wir dafiir, dass die Basler Handschrift der Tradition
des Naepolitaner Textes (Biblioteca Nazionale, MS VIII, C 22,
577—607, 13 saec.) zugehort.

Der Autor der Schrift, Johannes de Tinemue, erweist sich als guter
Kenner der Elemente des Euklid, der Kreismessung des Archimedes
und dessen Werk iiber Kugel und Zylinder. Ausgehend vom Archi-
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\]l)—k

medischen Néherungswert fiir @ = 3= (oder Kreisflache: Durch-

messerquadrat :%: 11: 14) leitet er in seinem Traktat den

Satzher, dass sich das Kugelvolumen zum Durchmesserwiirfel wie
11: 21 verhalte. Hierzu braucht er nur den beriihmten Satz von
Archimedes von Umzylinder: Kugel: Inkegel = 3:2:1, den er in
der Prop. VIII des Traktats beweist. Denn da sich auch dieses

Zylindervolumen zum Durchmesserwirfel wie 11:14 verhilt, ver-
11

h&lt sich das gesuchte Kugelvolumen zu diesem wie % 5 11:21.

V.d. Waerden hat just diese Schrift des Archimedes iiber Kugel
und Zylinder als Musterbeispiel fiir « Einfall und Uberlegung in
der Mathematik » (Elemente der Mathematik, Bd. 1X, 1954) heran-
gezogen. Hier ist nun interessant zu bemerken, wie beispielsweise
der mittelalterliche Kommentator — obwohl er keinesfalls sklavisch
dem Archimedes folgtgerade die entscheidende Zerlegung der Rota-
tionsfiguren blind tibernimmt, ohne zu bemerken, dass die Grund-
polygone eine durch 4 teilbare Seitenzahl haben miissen, damit die
von ihnen erzeugten Rotationskérper nur von Kegelflichen begrenzt
werden. Der Exhaustionsbeweis bei Johannes ist zwar streng, aber
schwerfallig. Auffallig ist das stédndige Vermischen der Séatze des
Traktats mit solchen aus der Kreismessung. um dann schliesslich als
Hauptsatz die oben erwdhnte Proposition X herzuleiten, die ja nur
eine numerische Approximation darstellt. Weil der Traktat iiber-
haupt das Niveau des Archimedes nicht ganz einhilt. vermutet
Clagett, dass er gar nicht auf Archimedes, sondern auf Heron zuriick-
geht, von dem die Araber ebenfalls Handschriften hatten. Ja man
kann sogar annehmen, dass er aus einer direkten Herontradition
stammt, wihrend man im anderen Fall postulieren muss, dass die
arabischen Ubersetzungen als Zwischenmedium den urspriinglichen
Archimedestext langsam korrumpiert haben.

3. J. HErscH (Zirich): Une méthode aux différences définie par une
relatton de récurrence.

1. Pour la résolution de problemes aux limites ou aux valeurs
propres, on peut essayer de construire des équations aux différences
Lp[u] = O (h est la maille) fournissant la solution exacte. Si le pro-
bleme initial a été résolu, on peut en déduire a posterior: I’équation
aux différences; mais le cas.intéressant est celui ou la solution exacte
nous échappe. Le procédé esquissé ici consiste a construire des équa-
tions aux différences «cohérentes» Lyjo,.[u] =0,r = 0, 1, 2, ..., c’est-
a-dire telles que Ly,o [u] = O entraine Lj[u] = 0. Si cette récurrence

—’21—> h est exactement possible, et si, lors du passage @ la limite h — 0,

Lp[u] = 0 devient équivalente & I'équation différentielle donnée,
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alors nous aurons essentiellement résolu le probléme initial des que
nous aurons résolu 1’équation aux différences pour une maille fidie A.

Exemple trivial: corde vibrante. ;-Z—?;- + 20 =0,0 (0) =09 (1) = 0.
Nous voulons ignorer les solutions bien connues ¢, = sin (n 1 x),
L); Lp (w) = uig —

/

1 .
M = n?rw? Prenons i = —m entier; u; = @ <;2—
— Apui + u;.q = 0; la récurrence %—Jz donne 1mmeédiatement
Ap = A}y, — 2, ce qui permet de poser Ay = 2 cos (kh); le passage
a la limite 2 — 0 donne & = /A, soit

A, = 2 cos (A7),

au liew de Déquation aux différences classique ou Ay = 2 — M2

1 , .
Prenons par exemple 4 = —, nous obtenons l’équation carac-

4 Y
téristique
— A 1 0
0 = 1 —A 1| = A2 — A2,
0 1 — A

d’ou A = n?rw?avec n = 0 mod 4; les solutions avec n = 4N doivent

évidemment manquer, du fait que les ¢, s’annulent en tous les
1 1 3

«neeuds» x =0, =, 5, =, 1.

2. Cet exemple trivial peut servir de modeéle, notamment pour
Iétude des valeurs propres d’'une membrane vibrante. Lia récurrence
Lpje — Ly, n’est plus exacte; on peut choisir I'opérateur discret Ly,
en sorte que I’écart (la quantité négligée) soit minimum, ou bien d’un
signe déterminé. On obtient alors une méthode & convergence numé-
rique rapide, ou bien une évaluation par défaut de la premiére valeur
propre.

Exemple numérique. — Calcul approché de la fréquence fondamen-
tale d’'une membrane hexagonale réguliere (c6té 1) a bords fixes. (On
sait par ailleurs que 7 < A, < 7,17.)

Méthode classique (exf‘glgufgdfngggrﬁgfan)
1: 1 inconnue M ovh A oo 5,85
1 .
h -t 2 inconnues 6,28 (Collatz) ' 7,01
1
h = 3 A « 6,77 (Collatz) 7,15
1
h = % 6 « 6,93 7,1
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4. A. Agppr1 (Zirich): Modifikation komplexer Mannigfaltigkeiten.

1. Einleitung. — V, W sind komplex n-dimensionale kompakte
komplexe Mannigfaltigkeiten, ¢: V— W ist eine komplex analytische
Abbildung von V auf W vom Abbildungsgrad 1. Dann induziert ¢
eine komplexe Modifikation @ (mit Abbildung; alle hier betrachteten
Modifikationen sind Modifikationen mit komplex analytischer
Abbildung):

d: (V,S)— (W, A), (1)

dh. wenn V — S die Menge der Punkte ist, in denen ¢ lokal ein-
eindeutig ist, induziert ¢ den komplex analytischen Homdomorphis-
mus ¢t V—S—-W — A und ¢ bildet die Singularitatenmenge S
auf die Ausnahmemenge A ab. Falls ¢ ein komplexer Homd6omorphis-
mus 1st, heisst @ trivial. Ist ® nicht trivial, so gilt fiir die komplexen
Dimensionen von A und von S: dim A << dim S =n—1. Sind S
und A komplexe Mannigfaltigkeiten, dh. ist S bzw. A reguldr in V
bzw. in W eingebettet, so heisst ® reguldr. Der Hopfsche o-Prozess
und der von Kreyszig eingefiihrte ¢™9-Prozess liefern Beispiele
komplexer Modifikationen. Es handelt sich um reguldre Modifika-
tionen, bei denen ein Punkt p bzw. eine komplex ¢-dimensionale
komplexe Mannigfaltigkeit A@ ersetzt wird durch den komplex
projektiven Raum P®1) bzw. durch eine komplexe Mannigfaltigkeit
Sn-1) die durch projektive Réume P™-a1) komplex gefasert wird.
Fir A = p heisst @ lokal. Zwei Modifikationen ®: (V,S)— (W, A)
und ®': (V',S’) - (W, A) mit den Abbildungen ¢ und ¢’ heissen
dquivalent, wenn es einen komplexen Homéomorphismus 6: V- V'
mit ¢ = ¢’ 0 gibt.

2. Einzigkeitssatz tiber den o-Prozess. — Jede nicht triviale reguldre
Modifikatton ®: (V, S)— (W, p) ist dquivalent dem c-Prozess in p,
ausgefiihrt innerhalb W.

Somit muss bei einer nicht trivialen reguldren lokalen Modifikation
S = P 1) gein. Fiir n = 2 ist der obige Satz bekannt (Zariski, Hopf),
und es gilt weiter fiir n = 2: wird die Regularitidt der lokalen Modi-
fikation nicht gefordert, so wird S ein Hopfscher « Sphérenbaum ».
Der Einzigkeitssatz tiber den o-Prozess wird zum Beweise des folgen-
den allgemeineren Satzes benutzt:

3. Einzigkeitssatz iiher den o%9-Prozess. — Jede nicht triviale
regulire Modifikation ist dquivalent zu einem c™9-Prozess.

In den beiden Sdtzen 2. und 3. kann die Forderung der Regularitét
von ® abgeschwicht werden. Es geniigt vorauszusetzen, dass in (1) S
und A in V bzw. in W singularitdtenfrei eingelagerte Mannigfaltig-
keiten sind.
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4. Anwendungen. — Mit Hilfe von 3. werden die folgenden Sétze
bewiesen :

a) Die Dilatation (oder die monoidale Transformation) der singula-
rititenfreien algebraischen Mannigfaltigkeit W lédngs der regular
eingelagerten Teilmannigfaltigkeit A@, ¢ <n — 2, ist der
o™e-Prozess lings A in W;

b) Ist in der reguldren Modifikation (1) W singularitdtenfrer alge-
braisch, so ist es auch V. (Es gilt entsprechend: ist W Kéhlersch,
so ist es auch V);

¢) Fir eine komplexe Mannigfaltigkeit M sei o (M) die d'’-Coho-
mologiegruppe vom Typus (u, ¢) (Dolbeaultsche Gruppe vom
Typus (u, ¢)). Bei einer nicht trivialen reguléren Modifikation (1)
gelten die folgenden Isomorphismen:

HYY, (V) 22 HYS, (W) + H®S, (8) — H%3, (A)

Ht’g" <S(n—1)> o~ N H%?, (A(Q)) R Ht’u’}clz'_'v <p(n-q—1 )) o Ht’g,, (A(q) w p-a-t )) .
u,v

5. A. CaramE (La Chaux-de-Fonds): Les relations caractéristiques des
bases du groupe symétrique.

Soit G un groupe fini engendré par deux éléments S, T et soit
(1) F; (S, T) =1 (1 =1, 2, ..., m) un ensemble de m relations liant
les deux éléments générateurs S et T. Si toute relation f (S, T) = 1
est une conséquence des relations (1), les relations (1) forment un
systéme de relations caractéristiques de G. Soit S’, T’ une autre base
de G. On peut exprimer S” et T en fonction de S et T:

S = g(S, T) T = h(S, T) C(2)
Inversement:
S=g¢g (¥ T) T=w(E,T) (3)

Si le systeme (3) se déduit du systéme (2) sans 1’aide d’aucune autre
relation entre S et T, nous disons que les relations (3) sont réversibles
et que les bases S, T et S’, T’ sont de la méme classe. Deux bases
semblables sont de la méme classe. Connaissant les relations caracté-
ristiques d'une base S, T, on déduit aisément les relations carac-
téristiques d’'une base S’, T’ de la méme classe, au moyen des rela-
tions (3). Pour obtenir un systeme de relations caractéristiques pour
chaque base de G, il suffit de répartir les bases de G en classes et de
déterminer les relations fondamentales d’une base de chaque classe.

Pour établir les relations caractéristiques d’une base S, T, nous
reconstituons le groupe G a partir de S et T selon une méthode précise
qui donne directement un ensemble de relations (4) R (S, T) = 1
entre S et T. On démontre que toute relation existant entre S et T
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est une conséquence des relations (4). On choisit alors comme systeme
de relations caractéristiques de la base S, T celles des relations (4)
dont découlent toutes les autres.

Mle S Piccard a montré que le groupe symétrique Sq possede
114 480 bases d’ordre 2. On peut répartir ces bases en cinq classes
au sens ci-dessus. Les automorphismes externes de ©; permutent
entre elles deux de ces classes, si bien qu’il suffit d’étudier les rela-
tions fondamentales de quatre bases de ©; pour en déduire un systeme
de relations caractéristiques de n’importe quelle base de ce groupe.
Nous donnons ci-dessous quatre bases de &4 et leurs relations carac-
téristiques:

S; = (12543) T, = (123456) S =1 (5)
T, =1 (6)
(S, T,) =1 (7)
(8;T3) =1 (8)
(T78,)* (T 8])° =1 (9)
S, = (13425) T, = (123456) S =1 (10)
T, =1 (11)
(S;T,)" =1 (12)
(8, Ty =1 (13)
(T, S (T3 8,)° = 1 (1)
S, = (123456) T, = (13) (456) S =1 (15)
T =1 (16)
(T,8,)' =1 (17)
T:S,1,8, 158,108 =1 (18)
S, = (1234) T, = (123456) S, =1 (19)
(8, T,) =1 (20)
(S3T,)° =1 (21)
SITESIT, =1 (22)

Transformons (18) au moyen de (17), (15) et (16):
T3(T, 8, T, 8, Ty T3 8; T3 8; = TESI TS TES;TIS,; = 1
Comparons I'inverse du second membre avec (18):

m3 : ry. 4
F3S3T3S3T§S§T3S3 = 1§S3T383T3S3T§S:
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d’ou ]
=8, T8,
et d’apres (16):
(S, T2 = 1. (23)

Les quatre relations (15), (16), (17), (18) suffisent pour caractériser
@6 puisqu’on peut en déduire le systeme (15), (16), (17), (18) (23)
qui est un systéme de relations caractéristiques de ce groupe L.

De méme, de (22) on déduit:

TS =T, (24)
S2T282. 82T28) = SIT, 8] = 1% (25)

d’apreés (19). Dans le second membre de (25), remplacons T; par le
premier membre de (24):

SI(SITIS) S) =Ty
et d’apres (19):
T =T ou T;=1. (26)

En tenant compte de (26), la relation (22) devient (27) (S} TQ) = 1.
Les quatre relations (19), (20), (21), (22) caractérisent &g, puisqu’on
en déduit le systeme (19), (20), (21), (26), (27) dont les relations sont
caractéristiques de ©41. De plus, les quatre relations de la base S,, T,
sont indépendantes.

6. J. J. BurckuaarpT (Zirich): Die astronomischen Tafeln von
Al Khwarizma.

Auf die Frage nach der Abhéngigkeit der astronomischen Tafeln
des Al-Khwarizmi [1] von der indischen Astronomie ist bereits der
Herausgeber der Tafeln, H. Sutkr, eingetreten (siehe [1], S. vii—viir,
S. 32—33), neuerdings wird sie in [2] und [3] besprochen. Wir wollen
im folgenden das Problem in bezug auf die mittlere Bewegung von
Sonne, Mond und Planeten beantworten.

1. Linge des siderischen Jahres bet Al-Khwarizmi.

In [1] finden wir in Tab. 115, S. 230, den Uberschuss des side-
rischen lber das dgyptische Jahr fir 1, 2, ..., 10, 20, ..., 100 Jahre
angegeben. Fir ein Jahr betragt er 61 12m fiir 100 Jahre 25 207 15m,
Hieraus ist ersichtlich, dass der genaue Wert fiir ein Jahr 6h 12m 9s
betrdgt, was genau mit dem in Graden angegebenen Wert von

1953 Les relations caractéristiques des bases du groupe symétrique. Thése. Neuchatel,
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93° 2" 15" ibereinstimmt. Somit ist die siderische Jahreslinge
3654 6h 12m 9s —= 365; 15, 30, 22, 30. Denselben Wert gibt Brahma-
gupta im Brahmasphuta-siddhanta (628 AD), siehe [1], S. 65, 103,
235; [2] S. 151.

2. Muitlere Bewegungen nach den Tab. 4-18.

Diese Tabellen geben die mittlere Bewegung pro 2, 4, ..., 60 Mi-
nuten, pro 1, 2, ..., 24 Stunden, pro 1, 2, ..., 30 Tage, pro 1, 2, ...,
30 Jahre, pro 30, 60, ..., 570 Jahre. Es handelt sich dabei um arabische
Mondjahre zu 354 Tage, eingeteilt in 12 Monate zu abwechselnd 30
und 29 Tage. Unter 30 Jahren treten 11 Schaltjahre zu 355 Tagen
auf. Die mittlere Bewegung wird stets in Graden, Minuten und
Sekunden angegeben. Bildet man die Differenztabellen, so findet man
nicht durchwegs konstante Werte. Dieser Umstand verhindert es,
die genaue mittlere Bewegung pro Tag zu berechnen. Will man daher
die Angaben von Al-Khwarizmi mit den indischen Werten ver-
gleichen, so muss man sie auf das indische System umrechnen. Die
indische Astronomie gibt die Umdrehungszahlen pro Mahéayuga
gleich 4 320 000 Jahre an, siehe [7]. Die verschiedenen indischen
Systeme unterscheiden sich sowohl in den Umdrehungszahlen, wie
auch 1n der Anzahl der Tage in einem Mahdayuga.

Das angegebene System von Brahmagupta gibt 1 577 916 450 Tage
und somit die oben angegebene Léinge des siderisches Jahres von 365;
15, 30, 22, 30 und als Umlaufszahlen:

Mond 57 753 300 Mars 2 296 828,522
Merkur 17 936 998,984 Jupiter 364 226,455
Venus 7022 389,492 Saturn 146 567,298

Rechnen wir nun die Bewegung der Sonne in einem Mahayuga
aus. In den ersten 30 arabischen Jahren zu 10 631 Tagen erhalten
wir 37° 57" 3" 4 29 360°. Fiir 570 Jahre rechnet Al-Kwarizmi 12 mal
diesen Wert plus 7 mal einen um eine Sekunde griosseren Wert und
erhélt 1° 4" 4" 4 553 360°. In einem Mah&ayuga ergeben sich hieraus
4 319 999,986 Umlaufe, also 0,014 zu wenig. Eine Fehlerrechnung
zeigt, dass streng genommen der Fehler hochstens 0,006 betragen
dirfte. Eine Zusatztafel von zweiter Hand erweitert die urspriigliche
Tabelle auf 720 Jahre. Berechnet man die Umlaufszahl an Hand
dieser erweiterten Tabelle, so erhédlt man einen Fehler von nur
— 0,004, also ein best mogliches Ergebnis.

Entsprechende Berechnungen fir den Mond und die tbrigen
Planeten lassen sich folgendermassen referieren:

Mond: Unsere Berechnungen ergeben einen Fehler von
— 0,013 bei Verwendung der Tabelle fiir 570 Jahre, einen solchen
von 0,019 bei Verwendung der ebenfalls aus zweiter Hand auf
720 Jahre verlangerten Tabelle. Der zu erwartende Fehler betrigt
0,006.
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Jupiter: Der Fehler betriagt 0,011, was von der Grosse des
zu erwartenden Fehlers ist.

Saturn: Der Fehler betrigt 2,032. Es scheint, dass Al-
Khwarizmi sich fiir Saturn bereits einer Umdrehungszahl bediente,
die erst etwas spéater in der indischen Astronomie verwendet wurde,
Alkhwarizmi verwendte aber nicht diese Umdrehungszahl, sondern
die von Alfazari iiberlieferte von 146 569,284, siehe [8], S. 16. Ihr
gegeniiber betrigt der Fehler nur noch 0,05, was etwas iiber dem zu
erwartenden liegt. Entsprechendes gilt fir die Bewegung des Mond-
knotens.

Mars: Der Fehler betrdgt — 0,005 und liegt innerhalb der
Fehlergrenze.

Bei Venus betrdagt der Fehler — 0,05, bei Merkur — 0,02, beide
sind etwas grosser als die zu erwartenden.

Zusammenfassend konnen wir sagen, dass die Jahresldnge, die
Umdrehungszahl von Mond, Jupiter und Mars bei Al-Kharizmi und
Brahmagupta iibereinstimmen, bei Venus und Merkur nur wenig
differieren, wéhrend bei Saturn die Differenz iiber zwei Umdrehungen
betragt.

Wir glauben mit obigen Ausfiihrungen einen neuen Beitrag zur
Frage der Abhédngigkeit von [1] von der indischen Astronomie zu
liefern, siehe hierzu insbesondere auch die Ausfithrungen von Kennedy
in [2] unter Zij, 28.
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7. P.-D. MerutEe (Lausanne): Transformées de Fourier de distribu-
tions wnvariantes.

Dans un travail antérieur (Comm. Math. Helo., vol. 28 (1954),
p. 225-269) ont été déterminées toutes les dlstrlbutlons — au sens
de M. Laurent Schwartz — qui sont invariantes par le groupe des
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rotations propres de Lorentz et qui vérifient I'équation des ondes
(00 + &) T = 0: [] est le dalembertien
FER Y
ox? o2’
n i=1 i

& une constante quelconque.

Le but de cette communication est de montrer comment on peut
déterminer les transformées de Fourier de celles de ces solutions qui
sont tempérées. En particulier, pour n = 4 et & > 0, les résultats
obtenus fournissent une justification rigoureuse des expressions sym-
boliques classiquement utilisées en physique théorique pour la repré-
sentation dans ’espace de Fourier de certaines « fonctions singuliéeres. »

On indique aussi comment obtenir les transformées de distribu-
tions invariantes étroitement liées aux solutions de I’équation des

ondes: les distributions H* et H: (k = 0, 1, 2, ...) et les distributions
Sp, Sp, &P (p nombre complexe quelconque).

8. S. Piccarp (Neuchatel): Etude de la structure d’'un groupe non
libre a partir de certaines propriétés des relations caractéristiques
ltant un systéme donné d’éléments générateurs du groupe.

Soit G un groupe fini ou infini non libre dont nous appelons mul-
tiplication la loi de composition, défini par un ensemble E d’éléments
générateurs et une famille F de relations fondamentales qui les lie.
Soit n un entier > 2 et soit e un sous-ensemble fini de E formé des
éléments a,, ..., a,. Supposons que quelle que soit la relation f =1
de la famille F, son premier membre f qui est une composition finie
d’un nombre fini d’éléments de E est de degré = 0 (mod. n) par
rapport a l’ensemble ou par rapport a chacun des éléments de e.
Nous disons alors que G jouit de la propriété P (mod. n) par rapport
a ’ensemble ou par rapport & chacun des éléments de e. 1l est alors
possible de répartir les éléments du groupe G en classes d’équivalence
ayant la méme puissance et pour lesquelles on peut définir une loi
de composition commutative. On peut établir I'existence de sous-
groupes distingués chez les groupes G jouissant des propriétés sus-
mentionnées. L’étude est particulierement intéressante si le groupe G
posseéde un systéme fini d’éléments générateurs et s’il Jouit de la
propriété P (mod. n) par rapport & chaque élément d’un tel systéme.
La plupart des résultats que nous avions établi dans le fascicule II
du tome 35¢ (1956) du Journal de mathématiques pures et appliquées,
Paris, pour les groupes d’ordre fini peuvent étre étendus aux groupes
ayant un nombre fini d’éléments générateurs.

On peut aussi se poser des problemes plus généraux. Nous avons
examiné le cas suivant. Soit encore G un groupe défini par un
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ensemble E d’éléments générateurs liés par une famille donnée F
de relations fondamentales; soit £ un entier > 2, solent ny, ..., ng
k nombres entiers dont chacun est > 2, soient e, ..., ex &k sous-
ensembles finis de E et supposons que, quelle que soit la relation
f = 1 de la famille F, son premier membre f est de degré = 0 (mod. n;)
par rapport a l’ensemble ou par rapport a chacun des éléments de
Pensemble ¢;, 1 = [, ..., k. On peut dans ce cas généraliser les résultats
mentionnés ci-dessus et établir de nombreux théorémes relatifs a la
structure du groupe G. En particulier, 1l existe une trés jolie méthode
de décomposition des éléments de G en classes d’équivalence per-
mettant de rechercher aisément les sous-groupes distingués de G.

Il est aisé de donner des exemples de groupes infinis jouissant des
propriétés signalées. Soient par exemple A et B deux points d’un axe,
soit a; la symétrie par rapport & A, soit a, la symétrie par rapport a B
et soit ay a, I'opération qui consiste & effectuer d’abord la symétrie
par rapport & A puis celle par rapport & B. Avec cette loi de composi-
tion, a; et a, engendrent un groupe dénombrable caractérisé par les
relations @} = 1, ai = 1 et ce groupe jouit de la propriété P (mod. 2)
par rapport a chacun de ses deux éléments générateurs.

9. H. LoEerreL (Zirich): Beitrage zur Theorie der charakteristischen
Funktionen stochastischer Vertetlungen.

(Erscheint in erweiterter Fassung in den Mitteilungen schweizer.
Versicherungs-Math., 1956, Heft 2.)
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