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302 M. ZAMANSKY

Or si on suppose Q' ^ Q, on a deg (Q' — Q) > 0, donc
deg B (Q' — Q) > deg B ce qui contredit deg B (Q' — Q) < deg B.
Nécessairement Q' — Q.

D'où:

Théorème. — Etant donnés deux polynômes A et B, B 7^ 0
il existe un polynôme Q et un seul tel que A — BQ 0 ou bien
tel que deg (A — BQ) < deg (A — BX) quel que soit le
polynôme X ; de plus dans le second cas deg (A — BQ) < deg B.

Ce résultat peut alors être écrit:

A BQ + R deg R < deg B

où le couple Q, R est unique. Q est le quotient, R le reste.
On notera que la première partie de la démonstration fournit

la méthode pratique bien connue.

La division suivant les puissances croissantes

Soit A — a0 e0 + + un polynôme non nul, de

degré n (an 7^ 0). Appelons polynôme transposé de A le
polynôme A an e0 + an_{ e± + + a0 en. Quel que soit A ^0,
v (A) 0 et deg A deg A •— v (A) ; on a donc deg A < deg A.

Cherchons les propriétés de l'opération qui à A associe A
relativement au produit de A par une croissante oc, à la somme
A + B, au produit AB.

1° Si oc 7^ 0, on a (aA) ^A-
2° Soit A aQ Cq —j— -{- an en {an 7^- 0) et B :::::::: bq Cq —|— —(—

bp ep (bp 7^ 0) et supposons par exemple deg A n > deg B p.
Remarquons que quel que soit Ä, (eh A) A e0

a) Si deg A n > p degB, on a:

(A + B) A + en_p B

b) Si deg A n p deg B et si deg (A + B) deg A
(c'est-à-dire si an + bn # 0), on a:

A + B Ä + B

c) Si deg A degB et si deg (A + B) < deg A (c'est-
à-dire si an + bn 7^ 0), soit alors m deg (A + B) < n.
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Oïl a:

A -f- B (am -j- bm) 6q -{- ••• T (ao T ^o) em

A + B (am + bm) en_m + + [a0 + b0) en en_m (A -f B) -

Donc Â + B en_m (A + B).

3° Soit an 0, bp ^ 0.

AB A bp ep -f- A bp_^ + A Ab0e0

En appliquant le résultat du 2° a) précédent on a:

AB A bQe0 + en+p_(n+p_1) (A bp_{ ep_{ +

A bpe0 -j- e± A bp i +

D'où AB ÄB.
Ces règles étant établies, soient A et B non nuls et supposons

deg A > deg B. Soient Q et R les quotient et reste de la division
euclidienne de A par B:

A BQ + R deg R < deg B

Soit n deg A, p deg B, r deg R < p
On a alors:

A B Q + en_r R B Q + edeg A_deg (A-BQ) R *

Comme deg Q n —p, deg Q < n — p et comme r < p>

n — p < v (en_r R) — v (A — B Q).
Ainsi aux polynômes A, B, transposés de A et B est associé

un polynôme Q tel que deg Q < v (A — B Q). [On notera que
v (Ä) f (B) - 0].

Donc dans certains cas (jusqu'à présent), à deux polynômes
A, B on peut associer un polynôme Q tel que deg Q < v (A — BQ).

C'est l'origine du théorème suivant;

Théorème. — Etant donnés deux polynômes A, B tels que
e(B) 0 et un entier k > 0, il existe un polynôme Q et un seul
tel que

deg Q < k < ç (A — DQ)

à moins que A — BQ 0.
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Existence. — Considérons tous les polynômes X tels que
degX < k. Tous les polynômes A — BX ont une valuation
bornée car

v (A — BX) < deg (A — BX) < max (deg A, k + deg B)

Il existe donc au moins un polynôme Q (deg Q < k) pour
lequel v (A — BX) < e(A — BQ) quel que soit X. Je dis que
pour ce polynôme Q, on a v (A — BQ) > k. En effet supposons
que Q donne à A — BQ la plus grande valuation possible et

que cette valuation soit m < k.
On aurait alors

A — BQ cmem -f + cheh + + cN

B b0 e0 + -f bp ep

A BQ Y 6 k em+l + *

uo

Donc A — B ^Q + ~Yerr}j aurait une valuation > m et

cm
Q + -r-em serait de degré < k, ce qui contredit l'hypothèse

o0

faite sur Q.

Unicité. — Si existait Q' ^ Q tel que deg Q' < k et k < v

(A — BQ') on aurait:

k < ç (A — BQ — A + BQ') (B (Q' — Q)) ç (B) + ^ (Q' — Q) -
c (Q' — Q) < deg (Q' — Q) < k

ce qui est impossible.
Ainsi à tout couple de polynôme A, B (e (B) 0) et un

entier k > 0 correspond un couple unique de polynômes Q, R

tels que

A BQ + ekJri R et deg Q < k

Cette opération s'appelle division suivant les puissances
croissantes à Vordre k.
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