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302 M. ZAMANSKY

Or si on suppose Q" £ Q, on a deg (Q"— Q) > 0, donc
deg B (Q"— Q) > deg B ce qui contredit degB (Q'— Q) < degB.

Nécessairement Q' = Q.
D’ou:

THEOREME. — Eltant donnés deux polynomes A et B, B £ 0
U existe un polynéme Q et un seul tel que A — BQ = 0 ou bien
tel que deg (A — BQ) << deg (A — BX) quel que soit le poly-
nome X ; de plus dans le second cas deg (A — BQ) < deg B.

Ce résultat peut alors étre écrit:

A=BQ+ R, deg R < deg B

ou le couple Q, R est unique. Q est le quotient, R le reste.
On notera que la premiere partie de la démonstration fournit
la méthode pratique bien connue.

LA DIVISION SUIVANT LES PUISSANCES CROISSANTES

Soit A = a,e, + ... + a, e, un polyndme non nul, de
degré n (a, # 0). Appelons polynéme transposé de A le poly-
ndéme A = a,e, + a, ;¢ + ... + a,¢e,. Quel que soit A # 0,
0 (A) = Oetdeg A = deg A — ¢ (A); on a donc deg A < deg A.

Cherchons les propriétés de 'opération qui a A associe A
relativement au produit de A par une croissante «, a la somme
A + B, au produit AB.

10 Si o £ 0, on a («A) = oA.

20 Soit A = agey + ... + a,¢, (a, ;ﬁ())etB_-beO—l— L
b, e, (b, # 0) et supposons par exemple deg A = n > deg B = p.

Remarquons que quel que soit &, (e, A) = A €

a) Sideg A =n > p = degB, on a:
(A+B)=A+e¢, B

b) Sideg A =n =p = degB et si deg(A 4 B) = deg A
(c’est-a-dire si a, + b, # 0), on a:
A+B=A+3B
c) Si deg A = degB et si deg(A + B) < deg A (c’est-
a-dire si a, + b, # 0), soit alors m = deg (A 4 B) < n.
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On a:
A+ B =(a,+ bye + - + (a0 + bo) ey
A+ B=(a, + by e, + - + (a4 bo) e, = ¢, (A + B) .

Donc A + B =¢,_,, (A + B).
30 Soit «, # 0, b, # 0.

AB = A bp e, + Abp_1 ep 4 ...+ Abje, .

En appliquant le résultat du 2° a) précédent on a:

AB=Rbyey+ pppinipty Dby epyg + ) =
= Kbpeo +- 91Kbp_1 + ...
D’ou AB = A B.
Ces régles étant établies, soient A et B non nuls et supposons

deg A > deg B. Soient Q et R les quotient et reste de la division
euclidienne de A par B:

A=BQ+ R, deg R < deg B .

Soit n =deg A, p =degB,r =deg R < p
On a alors:

A= BQ + e, ,R=BQ + ¢4e5 A—gec (a-Bg) }

Comme deg Q = n—p, degQ < n—p et comme 7 < p,

n—p<v(e_ R) = ¢ —BQ
Ainsi aux polynomes A, B, transposés de A et B est associé
un polynéme Q tel que deg Q < ¢ (A — B Q). [On notera que

¢ (A) = ¢ (B) = 0].
Donc dans certains cas (jusqu’a présent), a deux polyndémes
A, B on peut associer un polynoéme Q tel que deg Q < ¢v (A —BQ).
C’est Iorigine du théoréme suivant:

THEOREME. — Etant donnés deux polynomes A, B tels que
¢(B) = 0 et un entier k > 0, il existe un polynéme Q et un seul

tel que
deg Q < k < ¢ (A—DQ)

a moins que A —BQ = 0.
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Ezxistence. — Considérons tous les polyndémes X tels que

deg X < k. Tous les polyndmes A —BX ont une valuation
bornée car

¢ (A —BX) < deg (A — BX) < max (deg A, k + deg B) .

Il existe donc au moins un polyndéme Q (deg Q < k) pour
lequel ¢ (A —BX) < ¢(A — BQ) quel que soit X. Je dis que
pour ce polynome (), on a ¢ (A — BQ) > k. En effet supposons
que Q donne & A — BQ la plus grande valuation possible et
que cette valuation soit m < k.

On aurait alors

A—BQ =-c,e, + ...+ cpe, + ... + e

B = boeo "l"‘ oo "}— bpep

A—BQ——e¢ B-—lem+1+....
by

Donc A—B <Q + b m) aurait une valuation > m et

Q + %m“em serait de degré < k, ce qui contredit I’hypothese
0
faite sur Q.

Unicité. — S1 existait Q £ Q tel que deg Q' < ket bk <<v
(A — BQ’) on aurait:

k<¢o(A—BQ—A4+BQ)=9¢B(Q —Q)=0¢(B)+¢Q —Q)=
0 (Q'—Q) <deg (Q'—Q) <k
ce qui est impossible.
Ainsi a tout couple de polyndéme A, B (¢ (B) = 0) et un

entier £ > 0 correspond un couple unique de polynémes Q, R
tels que

A=BQ+ e, R et degQ<k

Cette opération s’appelle division suivant les puissances
croissantes a lordre k.
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