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ALGÈBRE DES POLYNOMES 301

déduite de la précédente division, puis nous montrerons que les

deux divisions peuvent être ramenées l'une à l'autre.

La division euclidienne

Soit A et B deux polynômes. Soit B 7^ 0. Si A 0, on
a A BO donc A est divisible par B. Supposons A ^ 0 et

parmi tous les polynômes A — BX soit A — BQ tel que
deg (A — BQ) < deg (A — BX) quel que soit X, lorsque A
n'est pas divisible par B.

Montrons que 1°: deg (A — BQ) < degB; 2° Q est unique.
1° Soit en effet:

B b0 eo + ••• + bp ep (bp ^ 0)

A BQ c0 e0 4- -f Cpep -f + cm em

et supposons m > p et cm 7^ 0, m étant le plus petit degré
possible de tous les polynômes A — BX.

On a alors:

em-pB boem-p + ••• + hpem

cm
y,

bo cm cmL
h m-p h em-p 1 l p-\ em-1 + cmem '
p p p

D'où

A BQ
C~~

empBA b(q + ^- em-pJ=

c0e0 + + ^cm-i — ~ bp_^j

Q

Q' désignant le polynôme Q + A — BQ' serait de

degré < mce qui est en contradiction avec l'hypothèse faite
sur m. L'hypothèse m> pest donc incompatible avec " m est
le plus petit degré possible de tous les A — BX". On a donc
m < p, c'est-à-dire deg (A — BQ) < deg B.

2° Si existait Q' ^ Q tel que deg (A — BQ') < deg (A—BX)
quel que soit X, on aurait deg (A — BQ') < deg B d'après ce
qui précède. Donc

deg (A — BQ — (A — BQ')) deg B (Q' — Q) < deg B
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Or si on suppose Q' ^ Q, on a deg (Q' — Q) > 0, donc
deg B (Q' — Q) > deg B ce qui contredit deg B (Q' — Q) < deg B.
Nécessairement Q' — Q.

D'où:

Théorème. — Etant donnés deux polynômes A et B, B 7^ 0
il existe un polynôme Q et un seul tel que A — BQ 0 ou bien
tel que deg (A — BQ) < deg (A — BX) quel que soit le
polynôme X ; de plus dans le second cas deg (A — BQ) < deg B.

Ce résultat peut alors être écrit:

A BQ + R deg R < deg B

où le couple Q, R est unique. Q est le quotient, R le reste.
On notera que la première partie de la démonstration fournit

la méthode pratique bien connue.

La division suivant les puissances croissantes

Soit A — a0 e0 + + un polynôme non nul, de

degré n (an 7^ 0). Appelons polynôme transposé de A le
polynôme A an e0 + an_{ e± + + a0 en. Quel que soit A ^0,
v (A) 0 et deg A deg A •— v (A) ; on a donc deg A < deg A.

Cherchons les propriétés de l'opération qui à A associe A
relativement au produit de A par une croissante oc, à la somme
A + B, au produit AB.

1° Si oc 7^ 0, on a (aA) ^A-
2° Soit A aQ Cq —j— -{- an en {an 7^- 0) et B :::::::: bq Cq —|— —(—

bp ep (bp 7^ 0) et supposons par exemple deg A n > deg B p.
Remarquons que quel que soit Ä, (eh A) A e0

a) Si deg A n > p degB, on a:

(A + B) A + en_p B

b) Si deg A n p deg B et si deg (A + B) deg A
(c'est-à-dire si an + bn # 0), on a:

A + B Ä + B

c) Si deg A degB et si deg (A + B) < deg A (c'est-
à-dire si an + bn 7^ 0), soit alors m deg (A + B) < n.
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