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Dans le cas général:

deg (A 4+ B) < max (deg A, deg B), c’est-a-dire est inférieur
ou égal au plus grand des entiers deg A, deg B.

20 Si AB = 0, deg AB = deg A + deg B.

Définition. — Soit A = (aq, ..., 4y, 0, ...) un polynoéme. Nous
appellerons caluation de A et nous la désignerons par ¢ (A),
le plus petit entier m > 0 tel que a,, #* 0.

Cela entraine que si m > 1 on a @, = 0 pour 0 < k < m—1.
La valuation de O n’est pas définie. ,

On femarquer_a que quel que soit A: ¢ (A) < deg A.

La valuation et les deux lois algébriques.
D’aprés la définition, on a les propriétés suivantes:
10 Si ¢ (A) > ¢ (B), alors ¢ (A + B) = ¢ (B).

Siv(A) =v¢(B)=metsia, + b, # 0,
alors ¢ (A 4+ B) = ¢ (A) = ¢ (B).

Dans le cas général: ¢ (A + B) > min (¢ (A), ¢ (B)), c’est-
A-dire supérieure ou égale au plus petit des entiers ¢ (A), ¢ (B).
20 Si AB £ 0, alors ¢ (AB) = ¢ (A) 4 ¢ (B).

Remarque. — Une condition nécessaire (seulement) pour que
A = B est que deg A = degB et ¢ (A) = ¢ (B). La négation
de cette proposition signifie que si 'une des conditions deg A =
deg B ou ¢ (A) = ¢ (B) n’est pas réalisée, alors A # B. .

LE PROBLEME DE LA DIVISION DES POLYNOMES

L’ensemble ¢ des polyndmes est un anneau commutatif
unitaire, mais n’est pas un corps, c’est-a-dire que la division
n’est pas en général possible, c’est-a-dire encore, que deux
polynomes A et B étant donnés il n’existe pas en général de
polynoémes X tel que A = BX.

Définition. — On dit que A est divisible par B # 0, §’il existe
Q tel que A = BQ. On dit aussi que A est multiple de B ou que B
divise A ou est diviseur de A. Alors A est aussi multiple de Q.

St Q existe, il est unique car s'il existait encore Q' tel que
A = BQ’ on aurait BQ = BQ’ et comme B 3£ 0, Q = Q'.




300 | M. ZAMANSKY

On peut alors présenter cette définition de la facon suivante:

Soit A et B % 0 deux polyndémes; considérons tous les
polyndmes A — BX ou X parcourt ¢ (c’est-a-dire ou X est
un polynéme quelconque); dire que A-est divisible par B c’est
dire qu’il existe Q € ¥ tel que A — BQ = 0; Q est alors unique.

Lorsque A n’est pas divisible par B, il est alors naturel
d’étudier les polyndmes A — BX ou X parcourt ¢ et de tenter
de trouver X de facon que A — BX possede quelque propriété
vrale lorsque A = BQ. Or si A = BQ, nécessairement deg A =
deg BQ et ¢ (A) = ¢ (BQ); st A £ 0(A = 0 n’offre pas d’in-
térét) on doit avoir deg A = degB + deg Q et ¢ (A) = ¢ (B) +
o(Q).

On peut étre tenté de chercher pour deux polynémes A et B,
un polynéme X tel que simultanément deg A = deg B + deg X
et v (A) = ¢ (B) + ¢ (X). Il est facile de voir par un exemple
que c’est en général impossible.

On peut alors chercher a sauvegarder 'une des deux pro-
priétés précédentes pour tout couple A, B; en d’autres termes
la propriété cherchée doit étre vraie quels que soient les poly-
noémes A et B. Mais si alors on cherche X en lui imposant la
seule condition deg A = deg B + deg X, on peut satisfaire a
cette condition d’une infinité de maniéres; nous sommes done
amenés a chercher parmi tous les X possibles, ceux qui possédent
une autre propriété. Cette discussion motive le point de vue
qui suit.

Considérons une famille quelconque de polyndmes non nuls.
Comme les degrés sont des entiers > 0, il existe dans cette
famille, au moins un polynéme dont le degré est inférieur ou
égal & tous les degrés des polyndmes de cette famille. Considé-
rons alors la famille de tous les polynémes A — BX ou X € %,
Si & cette famille on applique la remarque qui vient d’étre faite
on en conclut qu’il existe au moins un polynéme Q tel que deg
(A — BQ) < deg (A — BX) quel que soit X € €. Nous verrons
alors que nécessairement deg (A — BQ) < deg B et que pour
tout couple A, B, le polynéme Q tel que deg (A — BQ) < deg B
est unique. Ce sera la division euclidienne de A par B ou division
sutvant les puissances décroissantes.

L’idée de la division suivant les puissances croissantes sera
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déduite de la précédente division, puis nous montrerons que les
deux divisions peuvent étre ramenées l'une a l'autre.

LA DIVISION EUCLIDIENNE

Soit A et B deux polyndémes. Soit B £ 0. S1 A = 0, on
a A = BO donc A est divisible par B. Supposons A # 0 et
parmi tous les polynémes A — BX soit A — BQ tel que
deg (A — BQ) << deg (A — BX) quel que soit X, lorsque A
n’est pas divisible par B.

Montrons que 1°: deg (A — BQ) < deg B; 2° ) est unique.

10 Soit en effet:

B = bye, + ... + bpep(bp # 0)
A—BQ =cye, + ... + cpep + o+ ey

et supposons m > p et ¢, % 0, m étant le plus petit degré
possible de tous les polynomes A — BX.

On a alors:
m~pB = boem_p + ...+ bp em
Cim by c Eon
b_e'm—pB: b em—p+"‘+b bpimi—l- m ém -
D D D
D’ou

m cm
A—BQ—g=e, , B=A—B (Q N b_p_ewp) -

D y

(&
= Cpey + ... + (Cm~1 bm bp 1> Cm-1 -
Yy

Q" désignant le polyndme Q + Cb—m—em_p, A — BQ’ serait de
p

degré << m ce qui est en contradiction avec I’hypothése faite
sur m. L’hypothése m > p est donc incompatible avec " m est
le plus petit degré possible de tous les A — BX”. On a donec
m < p, c’est-a-dire deg (A — BQ) < deg B. |

20 Si existait Q" # Q tel que deg (A — BQ’) < deg (A—BX)
quel que soit X, on aurait deg (A — BQ’) < deg B d’aprés ce
qui précede. Donc

deg (A —BQ — (A —BQ’)) = deg B (Q’ — Q) < deg B .
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