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Dans le cas général:

deg (A + B) < max (deg A, degB), c'est-à-dire est inférieur

ou égal au plus grand des entiers deg A, deg B.

2° Si AB ^ 0, deg AB deg A + deg B.

Définition. — Soit A — (a0, an1 0, un polynôme. Nous

appellerons valuation de A et nous la désignerons par v (A),
le plus petit entier m > 0 tel que am A1 0.

Cela entraîne que si m > 1 on a % 0 pour 0 < k < m—1.

La valuation de 0 n'est pas définie.
On remarquera que quel que soit A: v (A) < deg A.

La valuation et les deux lois algébriques.

D'après la définition, on a les propriétés suivantes:

1° Si v (A) > v (B), alors v (A + B) v (B).
Si v (A) v (B) m et si am + bm 7^ 0,

alors v (A -f~ B) v (A) v (B).

Dans le cas général: v (A + B) > min (v (A), v (B)), c'est-
à-dire supérieure ou égale au plus petit des entiers v (A), v (B).

2o Si AB ^ 0, alors o (AB) v (A) + v (B).

Remarque. — Une condition nécessaire (seulement) pour que
A B est que deg A degB et v (A) v (B). La négation
de cette proposition signifie que si l'une des conditions deg A ~
degB ou v (A) v (B) n'est pas réalisée, alors A ^B. -

Le problème de la division des polynômes

L'ensemble ^ des polynômes est un anneau commutatif
unitaire, mais n'est pas un corps, c'est-à-dire que la division
n'est pas en général possible, c'est-à-dire encore, que deux
polynômes A et B étant donnés il n'existe pas en général de

polynômes X tel que A BX.

Définition. — On dit que A est divisible par B^O, s'il existe
Q tel que A BQ. On dit aussi que A est multiple de B ou que B
divise A ou est diviseur de A. Alors A est aussi multiple de Q.

Si Q existe, il est unique car s'il existait encore Q' tel que
A — BQ' on aurait BQ BQ' et comme B ^ 0, Q Q'.
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On peut alors présenter cette définition de la façon suivante:
Soit A et B ^ 0 deux polynômes; considérons tous les

polynômes A — BX où X parcourt L$ (c'est-à-dire où X est

un polynôme quelconque); dire que A est divisible par B c'est
dire qu'il existe Q G 6? tel que A — BQ 0; Q est alors unique.

Lorsque A n'est pas divisible par B, il est alors naturel
d'étudier les polynômes A — BX où X parcourt ® et de tenter
de trouver X de façon que A — BX possède quelque propriété
vraie lorsque A — BQ. Or si A BQ, nécessairement deg A
degBQ et v (A) v (BQ); si A ^ 0 (A 0 n'offre pas
d'intérêt) on doit avoir deg A deg B + deg Q et v (A) v (B) -)-

"(Q)-
On peut être tenté de chercher pour deux polynômes A et B,

un polynôme X tel que simultanément deg A deg B -f- deg X
et v (A) v (B) -f- v (X). Il est facile de voir par un exemple
que c'est en général impossible.

On peut alors chercher à sauvegarder l'une des deux
propriétés précédentes pour tout couple A, B; en d'autres termes
la propriété cherchée doit être vraie quels que soient les
polynômes A et B. Mais si alors on cherche X en lui imposant la
seule condition deg A deg B + deg X, on peut satisfaire à

cette condition d'une infinité de manières; nous sommes donc
amenés à chercher parmi tous les X possibles, ceux qui possèdent
une autre propriété. Cette discussion motive le point de vue
qui suit.

Considérons une famille quelconque de polynômes non nuls.
Comme les degrés sont des entiers > 0, il existe dans cette
famille, au moins un polynôme dont le degré est inférieur ou
égal à tous les degrés des polynômes de cette famille. Considérons

alors la famille de tous les polynômes A — BX où X G

Si à cette famille on applique la remarque qui vient d'être faite
on en conclut qu'il existe au moins un polynôme Q tel que deg

(A - BQ) < deg (A — BX) quel que soit X G c$. Nous verrons
alors que nécessairement deg (A — BQ) < deg B et que pour
tout couple A, B, le polynôme Q tel que deg (A — BQ) < deg B

est unique. Ce sera la division euclidienne de A par B ou division
suivant les puissances décroissantes.

L'idée de la division suivant les puissances croissantes sera
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déduite de la précédente division, puis nous montrerons que les

deux divisions peuvent être ramenées l'une à l'autre.

La division euclidienne

Soit A et B deux polynômes. Soit B 7^ 0. Si A 0, on
a A BO donc A est divisible par B. Supposons A ^ 0 et

parmi tous les polynômes A — BX soit A — BQ tel que
deg (A — BQ) < deg (A — BX) quel que soit X, lorsque A
n'est pas divisible par B.

Montrons que 1°: deg (A — BQ) < degB; 2° Q est unique.
1° Soit en effet:

B b0 eo + ••• + bp ep (bp ^ 0)

A BQ c0 e0 4- -f Cpep -f + cm em

et supposons m > p et cm 7^ 0, m étant le plus petit degré
possible de tous les polynômes A — BX.

On a alors:

em-pB boem-p + ••• + hpem

cm
y,

bo cm cmL
h m-p h em-p 1 l p-\ em-1 + cmem '
p p p

D'où

A BQ
C~~

empBA b(q + ^- em-pJ=

c0e0 + + ^cm-i — ~ bp_^j

Q

Q' désignant le polynôme Q + A — BQ' serait de

degré < mce qui est en contradiction avec l'hypothèse faite
sur m. L'hypothèse m> pest donc incompatible avec " m est
le plus petit degré possible de tous les A — BX". On a donc
m < p, c'est-à-dire deg (A — BQ) < deg B.

2° Si existait Q' ^ Q tel que deg (A — BQ') < deg (A—BX)
quel que soit X, on aurait deg (A — BQ') < deg B d'après ce
qui précède. Donc

deg (A — BQ — (A — BQ')) deg B (Q' — Q) < deg B
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