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298 M. ZAMANSKY

permettent alors de calculer plus aisément que ne l'indiquaient
les définitions, la somme et le produit de polynômes.

Ainsi :

«0 bo eo + K bi + «i b0) ex + (% bx + a2 bo) ^2

AB (a0e0 + a1e1 a2 e2) (b0e0 -f b1e1)

On retrouve les règles de calcul élémentaires.
Enfin la règle de calcul ep eq — ep+q pour le produit de

deux polynômes de la base permet de montrer facilement que
si A et B sont deux polynômes tels que AB 0, l'un au moins
des polynômes est nul. Supposons en effet que ni A, ni B ne
sont nuls; alors soit parmi les termes ak ek de A celui d'indice
le plus élevé ap ep tel que ap =£ 0 et de même bq eq dans B.
Dans AB figure ap bq ep+q et comme ap ^ 0, bq ^ 0, AB ^ 0.

Ainsi AB — 0 entraîne A 0 ou B 0. Il en résulte que
si A ^ 0 et si AB 0, alors B 0. Il en résulte encore que
si A 0 et si AB AC, on a A (B — C) 0, donc B —- C 0,
donc B C. En d'autres termes cela signifie que tout polynôme
différent de 0 est régulier pour la multiplication.

Degré, valuation d'un polynome

Définition. — Soit A (a0, %, an, 0, un polynôme.
Nous appellerons degré de A et nous le désignerons par degA,
le plus grand entier n > 0 tel que an =£ 0:

n deg A

Cela signifie que si k < ra, il y a au moins un ak ^ 0 et

que ak 0 quel que soit k > n.

deg A 0 signifie que A est une constante, mais ne signifie
pas nécessairement que A 0.

Le degré de 0 n'est pas défini.

Le degré et les deux lois algébriques.

D'après la définition du degré, on a les propriétés suivantes:

1° Si deg A > degB, alors deg (A + B) deg A
Si deg A deg B n et si an + bn =£ 0, alors

deg (A + B) deg A deg B.
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Dans le cas général:

deg (A + B) < max (deg A, degB), c'est-à-dire est inférieur

ou égal au plus grand des entiers deg A, deg B.

2° Si AB ^ 0, deg AB deg A + deg B.

Définition. — Soit A — (a0, an1 0, un polynôme. Nous

appellerons valuation de A et nous la désignerons par v (A),
le plus petit entier m > 0 tel que am A1 0.

Cela entraîne que si m > 1 on a % 0 pour 0 < k < m—1.

La valuation de 0 n'est pas définie.
On remarquera que quel que soit A: v (A) < deg A.

La valuation et les deux lois algébriques.

D'après la définition, on a les propriétés suivantes:

1° Si v (A) > v (B), alors v (A + B) v (B).
Si v (A) v (B) m et si am + bm 7^ 0,

alors v (A -f~ B) v (A) v (B).

Dans le cas général: v (A + B) > min (v (A), v (B)), c'est-
à-dire supérieure ou égale au plus petit des entiers v (A), v (B).

2o Si AB ^ 0, alors o (AB) v (A) + v (B).

Remarque. — Une condition nécessaire (seulement) pour que
A B est que deg A degB et v (A) v (B). La négation
de cette proposition signifie que si l'une des conditions deg A ~
degB ou v (A) v (B) n'est pas réalisée, alors A ^B. -

Le problème de la division des polynômes

L'ensemble ^ des polynômes est un anneau commutatif
unitaire, mais n'est pas un corps, c'est-à-dire que la division
n'est pas en général possible, c'est-à-dire encore, que deux
polynômes A et B étant donnés il n'existe pas en général de

polynômes X tel que A BX.

Définition. — On dit que A est divisible par B^O, s'il existe
Q tel que A BQ. On dit aussi que A est multiple de B ou que B
divise A ou est diviseur de A. Alors A est aussi multiple de Q.

Si Q existe, il est unique car s'il existait encore Q' tel que
A — BQ' on aurait BQ BQ' et comme B ^ 0, Q Q'.
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