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ALGÈBRE DES POLYNOMES 297

Base de l'espace vectoriel des polynômes

Les propriétés de l'espace vectoriel des polynômes permettent
d'écrire tout polynôme A sous la forme:

A a0 (1, 0, 0, + % (0,1, o, + + an (0, 0, 1, 0,

c'est-à-dire, en désignant par ek le polynôme dont tous les

coefficients sont nuls sauf celui de rang k + 1 qui vaut 1,

A a0 e0 + ax ex -f + an en

L'ensemble des polynômes ek s'appelle base et l'écriture
précédente réalise ce qu'on appelle la décomposition de A sur la
base. ap ep s'appelle terme de degré p.

La définition de l'égalité de deux polynômes entraîne que
cette décomposition est unique.

Appliquons la définition du produit de deux polynômes à

deux polynômes ep, eq. On a ep (oc0, oq, ocp, ocp+1, où

at 0 si M P et ci,, 1; e, (ß0, ß1? ßa, ßa+1, où
ßft 0 si k =£ qet ßa 1.

Le (k + 1)- coefficient de ep eq est oq ß0 + ock_{ ßx + -f
a0 ßÄ. Ce coefficient ne peut être différent de zéro que s'il
contient olp ßp. Or le (k + 1)- coefficient de ep eq est une somme
de termes tels que la somme des indices de chaque terme

afc-m ßm est A; on ne trouvera donc ocp ßp que dans le (p + q + 1)~

coefficient ce qui entraîne que seul le (p + q + 1)* coefficient
de ep eq n'est pas nul. Ce dernier coefficient est par définition:

ap + Q
ß0 ap-fg_l ßl + ••• HH ap ßg + ••• + <*() ßp^g 0Cp 1

Donc:
6P eQ ~ 6qep ep + Q '

Les propriétés suivantes :

a (A + B) aA + iB
(a + ß) A aA + ß A
a (ß A) aß A
A (B + C) AB + AC
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permettent alors de calculer plus aisément que ne l'indiquaient
les définitions, la somme et le produit de polynômes.

Ainsi :

«0 bo eo + K bi + «i b0) ex + (% bx + a2 bo) ^2

AB (a0e0 + a1e1 a2 e2) (b0e0 -f b1e1)

On retrouve les règles de calcul élémentaires.
Enfin la règle de calcul ep eq — ep+q pour le produit de

deux polynômes de la base permet de montrer facilement que
si A et B sont deux polynômes tels que AB 0, l'un au moins
des polynômes est nul. Supposons en effet que ni A, ni B ne
sont nuls; alors soit parmi les termes ak ek de A celui d'indice
le plus élevé ap ep tel que ap =£ 0 et de même bq eq dans B.
Dans AB figure ap bq ep+q et comme ap ^ 0, bq ^ 0, AB ^ 0.

Ainsi AB — 0 entraîne A 0 ou B 0. Il en résulte que
si A ^ 0 et si AB 0, alors B 0. Il en résulte encore que
si A 0 et si AB AC, on a A (B — C) 0, donc B —- C 0,
donc B C. En d'autres termes cela signifie que tout polynôme
différent de 0 est régulier pour la multiplication.

Degré, valuation d'un polynome

Définition. — Soit A (a0, %, an, 0, un polynôme.
Nous appellerons degré de A et nous le désignerons par degA,
le plus grand entier n > 0 tel que an =£ 0:

n deg A

Cela signifie que si k < ra, il y a au moins un ak ^ 0 et

que ak 0 quel que soit k > n.

deg A 0 signifie que A est une constante, mais ne signifie
pas nécessairement que A 0.

Le degré de 0 n'est pas défini.

Le degré et les deux lois algébriques.

D'après la définition du degré, on a les propriétés suivantes:

1° Si deg A > degB, alors deg (A + B) deg A
Si deg A deg B n et si an + bn =£ 0, alors

deg (A + B) deg A deg B.
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