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ALGEBRE DES POLYNOMES 297

BASE DE L’ESPACE VECTORIEL DES POLYNOMES

Les propriétés de Pespace vectoriel des polyndmes permettent
d’écrire tout polyndéme A sous la forme:

A=a,(1,0,0,..) + a (0,1,0,..) + ... + @, (0,0, ..,1,0,...)

c’est-a-dire, en désighant par e, le polyndéme dont tous les
coefficients sont nuls sauf celui de rang £ + 1 qui vaut 1,

A: a0€0+a161+ ...+an6n.

L’ensemble des polyndmes e, s’appelle base et ’écriture pré-
cédente réalise ce qu’on appelle la décomposition de A sur la
base. a, e, s’appelle terme de degré p.

La définition de I’égalité de deux polyndémes entraine que
cette décomposition est unigue.

Appliquons la définition du produit de deux polyndmes a
deux polyndmes e,, e,. On a e, = (o, % .oy %y, %y 1y, -..) OU
o, = 081 k#pet a =1;¢ = (Bp Prs s By Bgrsy +-) O1
Br=105s1 k#qet g, =1

Le (k + 1)° coefficient de e, e, est o, Bo + oy By + o
ay B,. Ce coefficient ne peut étre différent de zéro que s’il con-
tient o, B,. Or le (k + 1)2 coefficient de e, €, est une somme
de termes tels que la somme des indices de chaque terme

[

% B €8t K5 00 ne trouvera done «, 3, que dans le (p + q + 1)°

coefficient ce qui entraine que seul le (p 4+ g + 1)* coefficient
de e, e, n’est pas nul. Ce dernier coefficient est par définition:

“p+qﬂo+ ocp+q_1ﬁl—l— e. + ochq—}— e + ocOBp+q= ochq——: 1.

Donc:
®p€q = €% = €piq-
Les propriétés suivantes:
x(A 4+ B)=aA 4+ aB
(0 + B)A=0aA+ BA

% (BA) = a8 A
A(B + C) = AB + AC
e.e — e

bq p+q -
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permettent alors de calculer plus aisément que ne l'indiquaient
les définitions, la somme et le produit de polynomes.
Ainsi:

= a9 by eg + (a9 by + a; by) g + (ay by + ay by) ey .
AB = (agey + ae; + azey) (byeg + by e

On retrouve les régles de calcul élémentaires.

Enfin la reégle de calcul e, e, = e,,, pour le produit de
deux polynomes de la base permet de montrer facilement que
si A et B sont deux polynomes tels que AB = 0, I’'un au moins
des polyndémes est nul. Supposons en effet que ni A, ni B ne
sont nuls; alors soit parmi les termes a, ¢, de A celul d’indice
le plus élevé a, e, tel que a, # 0 et de méme b, e, dans B.
Dans AB figure a, b,e,+, et comme a, 7 0,6, # 0, AB # 0.

Ainsi AB = 0 entraine A = 0 ou B = 0. Il en résulte que
si A s£0et st AB =0, alors B = 0. Il en résulte encore que
stA #0etsiAB = AC,ona A(B—C) = 0,doncB—C =0,
donc B = C. En d’autres termes cela signifie que tout polynéme
différent de O est régulier pour la multiplication.

DEGRE, VALUATION D'UN POLYNOME

Définition. — Soit A = (ay, @4, ..., a,, 0, ...) un polynome.
Nous appellerons degré de A et nous le désignerons par degA,
le plus grand entier n > 0 tel que ¢, #* O:

n = deg A

Cela signifie que si £ << n, il y a au moins un q, # 0 et
que a, = 0 quel que soit £ > n.

deg A = 0 signifie que A est une constante, mais ne signifie
pas nécessairement que A = 0.

Le degré de O n’est pas défini.

Le degré et les deux lois algébriques.

D’apres la définition du degré, on a les propriétés suivantes:

10 Si deg A > deg B, alors deg (A + B) = deg A
Si deg A =degB =n et si a, + b, # 0, alors
deg (A 4+ B) = deg A = deg B.
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