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294 M. ZAMANSKY

Egalité de deux polynomes

Deux polynémes A = (a, a4, ...,2,,0,0,...) et B =
(bg, b1y .y b, 0, ...) seront dits égaux si quel que soit k: a, = b,
(k > 0). Cette définition entraine qu’a partir du méme rang a,
et b, sont nuls.

On écrira A = B, le symbole = pouvant alors étre employé
de nouveau.

LLois ALGEBRIQUES SUR L’ENSEMBLE DES POLYNOMES

Lois internes

Les conventions suivantes construisent des polynémes a
partir de polyndmes; elles définissent ce qu’on appelle des
lois internes. Ce seront l'addition et la multiplication. Leur
définition entraine des propriétés qui feront de I'ensemble
des polyndémes muni de ces deux lois, un anneau commutatif
unitaire.

10 Addition.

Soit A = (a,, a4, ...), B = (b, by, ...), deux polynoémes. Par
définition le polynéme (a, + by, a; + b4, ..., @, + b,,...) est appelé
somme de A et B et on écrit:

A+ B = (ay+ by, ar + by, ..o, ap + by, -..) .

Les propriétés des nombres complexes montrent que cette
addition est associative, c’est-a-dire que (A + B) +C = A +
(B + C) et commutative, c’est-a-dire que A + B =B + A,
quels que soient A, B, C.

Désignons par @ le polyndéme dont tous les coefficients sont
nuls: a, = 0 pour £ = 0,1,2,... On a alors quel que soit le
polynéme A: ,
A4+0=0+A=A

O est donc 1'élément neutre pour ’addition.

Désignons par (— A) le polyndéme (— ay, — a,, ..., — @, ...).
On a alors: A 4 (— A) = 0. Donc tout polynéme A a un
symétrigue (— A) pour 'addition.
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Ces propriétés de I'addition signifient que lensemble des
polyndmes muni de laddition est un groupe commutatif ou
groupe abélien.

20 Multiplication.

Soit A = (ay, @y, ...), B = (b, by, ...) deux polyndémes. Par
définition le polynéme (aq by, @ by + @y g, -.y @ by, =+ 01 by +
ay b, o + ... + @, by, ...) est appelé produit de A par B et on
écrit:

AB = (aq by, ag by + ay by, ...) .

Cette multiplication est évidemment associative et commu-
tative, ¢’est-a-dire que quels que soient A, B, C: (AB) G = A (B()
et AB = BA.

Désignons par I le polynéme dont tous les coefficients sont
nuls sauf le premier a, qui vaut 1:1 = (1,0,0, ...). On a quel

que soit A:
IA = Al

I est donc 1'élément neutre pour la multiplication.

En général A n’a pas de symétrique pour la multiplication.
Car il existe B, tel que AB = I, on doit avoir a, b, = 1 ce qui
exige a, = 0, by #~ 0.

30 Propriété de la multiplication par rapport a I’addition.

De la distributivité de la multiplication par rapport a I’addi-
tion dans le corps des nombres complexes résulte que quels
que soient les polynomes A, B, C:

A(B+C =B+ CA=AB+ AC.

La multiplication des polyndmes est donc distributive (dou-
blement) par rapport a ’addition.

40 L’anneaun des polynomes.

Les propriétés de l’addition jointes & l’associativité et la
distributivité (par rapport a I’addition) de la multiplication font
de 'ensemble des polyndémes un anneau.

Si on y ajoute la commutativité de la multiplication, cet
ensemble prend le nom d’anneau commutatif.
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Si on y ajoute encore l'existence de I’élément neutre I, cet
ensemble prend le nom d’anneau commutatif unitaire.

I1. Lot externe

On peut définir une opération qui construira un polyndme
a partir de deux étres qui seront 'un un polyndéme, 'autre un
nombre du corps des complexes. A tout polynéme A et tout
nombre «, on fait correspondre le polynome (aa,, aay, ..., aq,, ...)
qu’on désigne par « A et qu’on appelle produit de A par «.

Les propriétés suivantes, vraies quels que soient les poly-
nomes A, B, C et les nombres «, 8, ... découlent immédiatement
des définitions et propriétés qui précedent:

1) «(A+B)=aoA + B

2) o« (PA) = () A

3) 1. A=A

&) (o + B)A = oA + BA

5) «(AB) = (¢ A)B = A (aB) .

De ces propriétés, résulte que quel que soit A, OA = 0.
Désormais nous remplacons ® par O. D’autre part comme
1.A = A et I.A = A, nous remplacerons I par 1 et de fagon
générale, le polyndme (a,, 0, 0, ...) pouvant étre considéré comme
le produit de (1,0, 0,...) par a, nous identifions le polyndome
(a9, 0,0,...) ot @, =0 s1 k>1 et le nombre g, Un tel poly-
nome s’appelle parfois une constante.

Enfin (— A), symétrique de A pour l'addition, est aussi le
polynéme (— 1) A obtenu en multipliant A par (— 1). Nous
ne les distinguerons donc pas.

I11. Espace vectoriel

Si on considére ’ensemble des polyndmes muni de 'addition
et de la précédente loi-externe, les propriétés de I'addition et
les quatre premieres propriétés de la lo1 externe font de cet
ensemble un espace vectoriel sur le corps des nombres complexes.
Mais comme on le verra ci-dessous cet espace n’est pas de
dimension finie.
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