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294 M. ZAMANSKY

Egalité de deux polynômes

Deux polynômes A (a0, al7 an1 0, 0, et B
(b0, bly bm, 0, seront dits égaux si quel que soit k: ak — bk,

(k > 0). Cette définition entraîne qu'à partir du même rang ak
et bk sont nuls.

On écrira A B, le symbole pouvant alors être employé
de nouveau.

Lois algébriques sur l'ensemble des polynômes

Lois internes

Les conventions suivantes construisent des polynômes à

partir de polynômes; elles définissent ce qu'on appelle des

lois internes. Ce seront l'addition et la multiplication. Leur
définition entraîne des propriétés qui feront de l'ensemble
des polynômes muni de ces deux lois, un anneau commutatif
unitaire.

1° Addition.

Soit A (a0, al7 B (à0, àl7 deux polynômes. Par
définition le polynôme (a0 + à0, a1 + èl7..., ak + est appelé
somme de A et B et on écrit:

A + B (a0 -j- bQ, % + bt, ak + bk,

Les propriétés des nombres complexes montrent que cette
addition est associative, c'est-à-dire que (A + B) + C A +
(B Ar C) commutative, c'est-à-dire que A + B B + A,
quels que soient A, B, C.

Désignons par 0 le polynôme dont tous les coefficients sont
nuls: ak 0 pour k — 0, 1, 2, On a alors quel que soit le

polynôme A:
A + 0 0 + A A

0 est donc Yélément neutre pour l'addition.
Désignons par (— A) le polynôme (— a0, — al5 — ak,

On a alors: A + (—A) 0. Donc tout polynôme A a un
symétrique (— A) pour l'addition.
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Ces propriétés de l'addition signifient que l'ensemble des

polynômes muni de l'addition est un groupe commutatif ou

groupe abélien.

2° Multiplication.
Soit A («o, «x, B (b0, bv deux polynômes. Par

définition le polynôme a0b0,a0 b1 + ax a0 bk + a1 bk_{ +
a2 bh_,+ + akb0,est appelé produit de A par B et on

écrit :

AB (a0 b0, a0 b± + a± b0,

Cette multiplication est évidemment associative et commutative,

c'est-à-dire que quels que soient A, B, C: (AB) C A (BC)

et AB BA.
Désignons par I le polynôme dont tous les coefficients sont

nuls sauf le premier a0 qui vaut 1:1 (1, 0, 0, ...)• On a quel

que soit A:
IA AI

I est donc Yélément neutre pour la multiplication.
En général A n'a pas de symétrique pour la multiplication.

Car s'il existe B, tel que AB I, on doit avoir a0 b0 1 ce qui
exige Uq 0, bß 0.

3° Propriété de la multiplication par rapport à Vaddition.

De la distributivité de la multiplication par rapport a l'addition

dans le corps des nombres complexes résulte que quels

que soient les polynômes A, B, C:

A (B H- C) (B A C) A AB + AC

La multiplication des polynômes est donc distributive
(doublement) par rapport à l'addition.

4° U anneau des polynômes.

Les propriétés de l'addition jointes à l'associativité et la
distributivité (par rapport à l'addition) de la multiplication font
de l'ensemble des polynômes un anneau.

Si on y ajoute la commutativité de la multiplication, cet
ensemble prend le nom dé anneau commutatif.
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Si on y ajoute encore l'existence de l'élément neutre I, cet
ensemble prend le nom Yanneau commutatif unitaire.

II. Loi externe

On peut définir une opération qui construira un polynôme
à partir de deux êtres qui seront l'un un polynôme, l'autre un
nombre du corps des complexes. A tout polynôme A et tout
nombre a, on fait correspondre le polynôme (aa0, aa1, aafe,

qu'on désigne par a A et qu'on appelle produit de A par ol.

Les propriétés suivantes, vraies quels que soient les
polynômes A, B, C et les nombres a, ß, découlent immédiatement
des définitions et propriétés qui précèdent:

1) a (A + B) aA + aB
2) a (ßA) (aß) A
3) 1 A A
4) (a + ß) A aA -f- ßA

5) a (AB) (a A) B A (aB)

De ces propriétés, résulte que quel que soit A, OA — 0.
Désormais nous remplaçons 0 par 0. D'autre part comme
l.A A et I.A A, nous remplacerons I par 1 et de façon
générale, le polynôme (a0, 0, 0, pouvant être considéré comme
le produit de (1, 0, 0, par a0 nous identifions le polynôme
(a0, 0, 0, où ak 0 si k > 1 et le nombre a0. Un tel
polynôme s'appelle parfois une constante.

Enfin (—A), symétrique de A pour l'addition, est aussi le

polynôme (— 1) A obtenu en multipliant A par (— 1). Nous

ne les distinguerons donc pas.

III. Espace vectoriel

Si on considère l'ensemble des polynômes muni de l'addition
et de la précédente loi• externe, les propriétés de l'addition et
les quatre premières propriétés de la loi externe font de cet
ensemble un espace vectoriel sur le corps des nombres complexes.
Mais comme on le verra ci-dessous cet espace n'est pas de

dimension finie.
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