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ALGEBRE DES POLYNOMES

PAR

Marc Zavansky, Paris

INTRODUCTION

L’objet de cet article est de présenter les propriétés algé-
briques fondamentales des étres qu’on appelle polynbémes a
une indéterminée ou improprement, polynomes & une variable.

On n’y trouvera que des résultats élémentaires bien connus
(sauf peut-étre celui qui concerne le lien entre les deux divisions)
mais tout ce qui pourrait rappeler ’analyse a été banni de la
présentation car la confusion de notations entraine souvent
chez les jeunes étudiants la confusion des concepts et des
propriétés.

PREMIERES DEFINITIONS. NOTATIONS.

Définition d’un polynime

On appelle polynéme un ensemble ordonné d’une infinité
dénombrable de nombres (réels ou complexes) tous nuls &
partir d’un certain rang.

Nous représenterons au début un polynéme par (aq,, a,, a,,
ey @y, 0,0, ...). Les nombres a, sont appelés coefficients et dans
cette écriture l'entier %k repére le rang d’ordre du coefficient
(a, est le (k + 1) coefficient).

Nous désignons aussi un polynéme par une seule lettre et
écrirons:

A = (ag, ag, v, a,, 0,0, ...) .

n?
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Egalité de deux polynomes

Deux polynémes A = (a, a4, ...,2,,0,0,...) et B =
(bg, b1y .y b, 0, ...) seront dits égaux si quel que soit k: a, = b,
(k > 0). Cette définition entraine qu’a partir du méme rang a,
et b, sont nuls.

On écrira A = B, le symbole = pouvant alors étre employé
de nouveau.

LLois ALGEBRIQUES SUR L’ENSEMBLE DES POLYNOMES

Lois internes

Les conventions suivantes construisent des polynémes a
partir de polyndmes; elles définissent ce qu’on appelle des
lois internes. Ce seront l'addition et la multiplication. Leur
définition entraine des propriétés qui feront de I'ensemble
des polyndémes muni de ces deux lois, un anneau commutatif
unitaire.

10 Addition.

Soit A = (a,, a4, ...), B = (b, by, ...), deux polynoémes. Par
définition le polynéme (a, + by, a; + b4, ..., @, + b,,...) est appelé
somme de A et B et on écrit:

A+ B = (ay+ by, ar + by, ..o, ap + by, -..) .

Les propriétés des nombres complexes montrent que cette
addition est associative, c’est-a-dire que (A + B) +C = A +
(B + C) et commutative, c’est-a-dire que A + B =B + A,
quels que soient A, B, C.

Désignons par @ le polyndéme dont tous les coefficients sont
nuls: a, = 0 pour £ = 0,1,2,... On a alors quel que soit le
polynéme A: ,
A4+0=0+A=A

O est donc 1'élément neutre pour ’addition.

Désignons par (— A) le polyndéme (— ay, — a,, ..., — @, ...).
On a alors: A 4 (— A) = 0. Donc tout polynéme A a un
symétrigue (— A) pour 'addition.
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