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ALGÈBRE DES POLYNOMES

PAR

Marc Zamansky, Paris

Introduction

L'objet de cet article est de présenter les propriétés
algébriques fondamentales des êtres qu'on appelle polynômes à

une indéterminée ou improprement, polynômes à une variable.
On n'y trouvera que des résultats élémentaires bien connus

(sauf peut-être celui qui concerne le lien entre les deux divisions)
mais tout ce qui pourrait rappeler l'analyse a été banni de la
présentation car la confusion de notations entraîne souvent
chez les jeunes étudiants la confusion des concepts et des

propriétés.

Premières définitions. Notations.

Définition dé un polynôme

On appelle polynôme un ensemble ordonné d'une infinité
dénombrable de nombres (réels ou complexes) tous nuls à

partir d'un certain rang.
Nous représenterons au début un polynôme par (a0, a2,

an, 0, 0, Les nombres ak sont appelés coefficients et dans
cette écriture l'entier k repère le rang d'ordre du coefficient
(ak est le (k + 1)- coefficient).

Nous désignons aussi un polynôme par une seule lettre et
écrirons :

A (a0, a1} an, 0, 0,
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Egalité de deux polynômes

Deux polynômes A (a0, al7 an1 0, 0, et B
(b0, bly bm, 0, seront dits égaux si quel que soit k: ak — bk,

(k > 0). Cette définition entraîne qu'à partir du même rang ak
et bk sont nuls.

On écrira A B, le symbole pouvant alors être employé
de nouveau.

Lois algébriques sur l'ensemble des polynômes

Lois internes

Les conventions suivantes construisent des polynômes à

partir de polynômes; elles définissent ce qu'on appelle des

lois internes. Ce seront l'addition et la multiplication. Leur
définition entraîne des propriétés qui feront de l'ensemble
des polynômes muni de ces deux lois, un anneau commutatif
unitaire.

1° Addition.

Soit A (a0, al7 B (à0, àl7 deux polynômes. Par
définition le polynôme (a0 + à0, a1 + èl7..., ak + est appelé
somme de A et B et on écrit:

A + B (a0 -j- bQ, % + bt, ak + bk,

Les propriétés des nombres complexes montrent que cette
addition est associative, c'est-à-dire que (A + B) + C A +
(B Ar C) commutative, c'est-à-dire que A + B B + A,
quels que soient A, B, C.

Désignons par 0 le polynôme dont tous les coefficients sont
nuls: ak 0 pour k — 0, 1, 2, On a alors quel que soit le

polynôme A:
A + 0 0 + A A

0 est donc Yélément neutre pour l'addition.
Désignons par (— A) le polynôme (— a0, — al5 — ak,

On a alors: A + (—A) 0. Donc tout polynôme A a un
symétrique (— A) pour l'addition.
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