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ALGÈBRE DES POLYNOMES

PAR

Marc Zamansky, Paris

Introduction

L'objet de cet article est de présenter les propriétés
algébriques fondamentales des êtres qu'on appelle polynômes à

une indéterminée ou improprement, polynômes à une variable.
On n'y trouvera que des résultats élémentaires bien connus

(sauf peut-être celui qui concerne le lien entre les deux divisions)
mais tout ce qui pourrait rappeler l'analyse a été banni de la
présentation car la confusion de notations entraîne souvent
chez les jeunes étudiants la confusion des concepts et des

propriétés.

Premières définitions. Notations.

Définition dé un polynôme

On appelle polynôme un ensemble ordonné d'une infinité
dénombrable de nombres (réels ou complexes) tous nuls à

partir d'un certain rang.
Nous représenterons au début un polynôme par (a0, a2,

an, 0, 0, Les nombres ak sont appelés coefficients et dans
cette écriture l'entier k repère le rang d'ordre du coefficient
(ak est le (k + 1)- coefficient).

Nous désignons aussi un polynôme par une seule lettre et
écrirons :

A (a0, a1} an, 0, 0,
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Egalité de deux polynômes

Deux polynômes A (a0, al7 an1 0, 0, et B
(b0, bly bm, 0, seront dits égaux si quel que soit k: ak — bk,

(k > 0). Cette définition entraîne qu'à partir du même rang ak
et bk sont nuls.

On écrira A B, le symbole pouvant alors être employé
de nouveau.

Lois algébriques sur l'ensemble des polynômes

Lois internes

Les conventions suivantes construisent des polynômes à

partir de polynômes; elles définissent ce qu'on appelle des

lois internes. Ce seront l'addition et la multiplication. Leur
définition entraîne des propriétés qui feront de l'ensemble
des polynômes muni de ces deux lois, un anneau commutatif
unitaire.

1° Addition.

Soit A (a0, al7 B (à0, àl7 deux polynômes. Par
définition le polynôme (a0 + à0, a1 + èl7..., ak + est appelé
somme de A et B et on écrit:

A + B (a0 -j- bQ, % + bt, ak + bk,

Les propriétés des nombres complexes montrent que cette
addition est associative, c'est-à-dire que (A + B) + C A +
(B Ar C) commutative, c'est-à-dire que A + B B + A,
quels que soient A, B, C.

Désignons par 0 le polynôme dont tous les coefficients sont
nuls: ak 0 pour k — 0, 1, 2, On a alors quel que soit le

polynôme A:
A + 0 0 + A A

0 est donc Yélément neutre pour l'addition.
Désignons par (— A) le polynôme (— a0, — al5 — ak,

On a alors: A + (—A) 0. Donc tout polynôme A a un
symétrique (— A) pour l'addition.
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Ces propriétés de l'addition signifient que l'ensemble des

polynômes muni de l'addition est un groupe commutatif ou

groupe abélien.

2° Multiplication.
Soit A («o, «x, B (b0, bv deux polynômes. Par

définition le polynôme a0b0,a0 b1 + ax a0 bk + a1 bk_{ +
a2 bh_,+ + akb0,est appelé produit de A par B et on

écrit :

AB (a0 b0, a0 b± + a± b0,

Cette multiplication est évidemment associative et commutative,

c'est-à-dire que quels que soient A, B, C: (AB) C A (BC)

et AB BA.
Désignons par I le polynôme dont tous les coefficients sont

nuls sauf le premier a0 qui vaut 1:1 (1, 0, 0, ...)• On a quel

que soit A:
IA AI

I est donc Yélément neutre pour la multiplication.
En général A n'a pas de symétrique pour la multiplication.

Car s'il existe B, tel que AB I, on doit avoir a0 b0 1 ce qui
exige Uq 0, bß 0.

3° Propriété de la multiplication par rapport à Vaddition.

De la distributivité de la multiplication par rapport a l'addition

dans le corps des nombres complexes résulte que quels

que soient les polynômes A, B, C:

A (B H- C) (B A C) A AB + AC

La multiplication des polynômes est donc distributive
(doublement) par rapport à l'addition.

4° U anneau des polynômes.

Les propriétés de l'addition jointes à l'associativité et la
distributivité (par rapport à l'addition) de la multiplication font
de l'ensemble des polynômes un anneau.

Si on y ajoute la commutativité de la multiplication, cet
ensemble prend le nom dé anneau commutatif.
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Si on y ajoute encore l'existence de l'élément neutre I, cet
ensemble prend le nom Yanneau commutatif unitaire.

II. Loi externe

On peut définir une opération qui construira un polynôme
à partir de deux êtres qui seront l'un un polynôme, l'autre un
nombre du corps des complexes. A tout polynôme A et tout
nombre a, on fait correspondre le polynôme (aa0, aa1, aafe,

qu'on désigne par a A et qu'on appelle produit de A par ol.

Les propriétés suivantes, vraies quels que soient les
polynômes A, B, C et les nombres a, ß, découlent immédiatement
des définitions et propriétés qui précèdent:

1) a (A + B) aA + aB
2) a (ßA) (aß) A
3) 1 A A
4) (a + ß) A aA -f- ßA

5) a (AB) (a A) B A (aB)

De ces propriétés, résulte que quel que soit A, OA — 0.
Désormais nous remplaçons 0 par 0. D'autre part comme
l.A A et I.A A, nous remplacerons I par 1 et de façon
générale, le polynôme (a0, 0, 0, pouvant être considéré comme
le produit de (1, 0, 0, par a0 nous identifions le polynôme
(a0, 0, 0, où ak 0 si k > 1 et le nombre a0. Un tel
polynôme s'appelle parfois une constante.

Enfin (—A), symétrique de A pour l'addition, est aussi le

polynôme (— 1) A obtenu en multipliant A par (— 1). Nous

ne les distinguerons donc pas.

III. Espace vectoriel

Si on considère l'ensemble des polynômes muni de l'addition
et de la précédente loi• externe, les propriétés de l'addition et
les quatre premières propriétés de la loi externe font de cet
ensemble un espace vectoriel sur le corps des nombres complexes.
Mais comme on le verra ci-dessous cet espace n'est pas de

dimension finie.
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Base de l'espace vectoriel des polynômes

Les propriétés de l'espace vectoriel des polynômes permettent
d'écrire tout polynôme A sous la forme:

A a0 (1, 0, 0, + % (0,1, o, + + an (0, 0, 1, 0,

c'est-à-dire, en désignant par ek le polynôme dont tous les

coefficients sont nuls sauf celui de rang k + 1 qui vaut 1,

A a0 e0 + ax ex -f + an en

L'ensemble des polynômes ek s'appelle base et l'écriture
précédente réalise ce qu'on appelle la décomposition de A sur la
base. ap ep s'appelle terme de degré p.

La définition de l'égalité de deux polynômes entraîne que
cette décomposition est unique.

Appliquons la définition du produit de deux polynômes à

deux polynômes ep, eq. On a ep (oc0, oq, ocp, ocp+1, où

at 0 si M P et ci,, 1; e, (ß0, ß1? ßa, ßa+1, où
ßft 0 si k =£ qet ßa 1.

Le (k + 1)- coefficient de ep eq est oq ß0 + ock_{ ßx + -f
a0 ßÄ. Ce coefficient ne peut être différent de zéro que s'il
contient olp ßp. Or le (k + 1)- coefficient de ep eq est une somme
de termes tels que la somme des indices de chaque terme

afc-m ßm est A; on ne trouvera donc ocp ßp que dans le (p + q + 1)~

coefficient ce qui entraîne que seul le (p + q + 1)* coefficient
de ep eq n'est pas nul. Ce dernier coefficient est par définition:

ap + Q
ß0 ap-fg_l ßl + ••• HH ap ßg + ••• + <*() ßp^g 0Cp 1

Donc:
6P eQ ~ 6qep ep + Q '

Les propriétés suivantes :

a (A + B) aA + iB
(a + ß) A aA + ß A
a (ß A) aß A
A (B + C) AB + AC
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permettent alors de calculer plus aisément que ne l'indiquaient
les définitions, la somme et le produit de polynômes.

Ainsi :

«0 bo eo + K bi + «i b0) ex + (% bx + a2 bo) ^2

AB (a0e0 + a1e1 a2 e2) (b0e0 -f b1e1)

On retrouve les règles de calcul élémentaires.
Enfin la règle de calcul ep eq — ep+q pour le produit de

deux polynômes de la base permet de montrer facilement que
si A et B sont deux polynômes tels que AB 0, l'un au moins
des polynômes est nul. Supposons en effet que ni A, ni B ne
sont nuls; alors soit parmi les termes ak ek de A celui d'indice
le plus élevé ap ep tel que ap =£ 0 et de même bq eq dans B.
Dans AB figure ap bq ep+q et comme ap ^ 0, bq ^ 0, AB ^ 0.

Ainsi AB — 0 entraîne A 0 ou B 0. Il en résulte que
si A ^ 0 et si AB 0, alors B 0. Il en résulte encore que
si A 0 et si AB AC, on a A (B — C) 0, donc B —- C 0,
donc B C. En d'autres termes cela signifie que tout polynôme
différent de 0 est régulier pour la multiplication.

Degré, valuation d'un polynome

Définition. — Soit A (a0, %, an, 0, un polynôme.
Nous appellerons degré de A et nous le désignerons par degA,
le plus grand entier n > 0 tel que an =£ 0:

n deg A

Cela signifie que si k < ra, il y a au moins un ak ^ 0 et

que ak 0 quel que soit k > n.

deg A 0 signifie que A est une constante, mais ne signifie
pas nécessairement que A 0.

Le degré de 0 n'est pas défini.

Le degré et les deux lois algébriques.

D'après la définition du degré, on a les propriétés suivantes:

1° Si deg A > degB, alors deg (A + B) deg A
Si deg A deg B n et si an + bn =£ 0, alors

deg (A + B) deg A deg B.
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Dans le cas général:

deg (A + B) < max (deg A, degB), c'est-à-dire est inférieur

ou égal au plus grand des entiers deg A, deg B.

2° Si AB ^ 0, deg AB deg A + deg B.

Définition. — Soit A — (a0, an1 0, un polynôme. Nous

appellerons valuation de A et nous la désignerons par v (A),
le plus petit entier m > 0 tel que am A1 0.

Cela entraîne que si m > 1 on a % 0 pour 0 < k < m—1.

La valuation de 0 n'est pas définie.
On remarquera que quel que soit A: v (A) < deg A.

La valuation et les deux lois algébriques.

D'après la définition, on a les propriétés suivantes:

1° Si v (A) > v (B), alors v (A + B) v (B).
Si v (A) v (B) m et si am + bm 7^ 0,

alors v (A -f~ B) v (A) v (B).

Dans le cas général: v (A + B) > min (v (A), v (B)), c'est-
à-dire supérieure ou égale au plus petit des entiers v (A), v (B).

2o Si AB ^ 0, alors o (AB) v (A) + v (B).

Remarque. — Une condition nécessaire (seulement) pour que
A B est que deg A degB et v (A) v (B). La négation
de cette proposition signifie que si l'une des conditions deg A ~
degB ou v (A) v (B) n'est pas réalisée, alors A ^B. -

Le problème de la division des polynômes

L'ensemble ^ des polynômes est un anneau commutatif
unitaire, mais n'est pas un corps, c'est-à-dire que la division
n'est pas en général possible, c'est-à-dire encore, que deux
polynômes A et B étant donnés il n'existe pas en général de

polynômes X tel que A BX.

Définition. — On dit que A est divisible par B^O, s'il existe
Q tel que A BQ. On dit aussi que A est multiple de B ou que B
divise A ou est diviseur de A. Alors A est aussi multiple de Q.

Si Q existe, il est unique car s'il existait encore Q' tel que
A — BQ' on aurait BQ BQ' et comme B ^ 0, Q Q'.
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On peut alors présenter cette définition de la façon suivante:
Soit A et B ^ 0 deux polynômes; considérons tous les

polynômes A — BX où X parcourt L$ (c'est-à-dire où X est

un polynôme quelconque); dire que A est divisible par B c'est
dire qu'il existe Q G 6? tel que A — BQ 0; Q est alors unique.

Lorsque A n'est pas divisible par B, il est alors naturel
d'étudier les polynômes A — BX où X parcourt ® et de tenter
de trouver X de façon que A — BX possède quelque propriété
vraie lorsque A — BQ. Or si A BQ, nécessairement deg A
degBQ et v (A) v (BQ); si A ^ 0 (A 0 n'offre pas
d'intérêt) on doit avoir deg A deg B + deg Q et v (A) v (B) -)-

"(Q)-
On peut être tenté de chercher pour deux polynômes A et B,

un polynôme X tel que simultanément deg A deg B -f- deg X
et v (A) v (B) -f- v (X). Il est facile de voir par un exemple
que c'est en général impossible.

On peut alors chercher à sauvegarder l'une des deux
propriétés précédentes pour tout couple A, B; en d'autres termes
la propriété cherchée doit être vraie quels que soient les
polynômes A et B. Mais si alors on cherche X en lui imposant la
seule condition deg A deg B + deg X, on peut satisfaire à

cette condition d'une infinité de manières; nous sommes donc
amenés à chercher parmi tous les X possibles, ceux qui possèdent
une autre propriété. Cette discussion motive le point de vue
qui suit.

Considérons une famille quelconque de polynômes non nuls.
Comme les degrés sont des entiers > 0, il existe dans cette
famille, au moins un polynôme dont le degré est inférieur ou
égal à tous les degrés des polynômes de cette famille. Considérons

alors la famille de tous les polynômes A — BX où X G

Si à cette famille on applique la remarque qui vient d'être faite
on en conclut qu'il existe au moins un polynôme Q tel que deg

(A - BQ) < deg (A — BX) quel que soit X G c$. Nous verrons
alors que nécessairement deg (A — BQ) < deg B et que pour
tout couple A, B, le polynôme Q tel que deg (A — BQ) < deg B

est unique. Ce sera la division euclidienne de A par B ou division
suivant les puissances décroissantes.

L'idée de la division suivant les puissances croissantes sera
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déduite de la précédente division, puis nous montrerons que les

deux divisions peuvent être ramenées l'une à l'autre.

La division euclidienne

Soit A et B deux polynômes. Soit B 7^ 0. Si A 0, on
a A BO donc A est divisible par B. Supposons A ^ 0 et

parmi tous les polynômes A — BX soit A — BQ tel que
deg (A — BQ) < deg (A — BX) quel que soit X, lorsque A
n'est pas divisible par B.

Montrons que 1°: deg (A — BQ) < degB; 2° Q est unique.
1° Soit en effet:

B b0 eo + ••• + bp ep (bp ^ 0)

A BQ c0 e0 4- -f Cpep -f + cm em

et supposons m > p et cm 7^ 0, m étant le plus petit degré
possible de tous les polynômes A — BX.

On a alors:

em-pB boem-p + ••• + hpem

cm
y,

bo cm cmL
h m-p h em-p 1 l p-\ em-1 + cmem '
p p p

D'où

A BQ
C~~

empBA b(q + ^- em-pJ=

c0e0 + + ^cm-i — ~ bp_^j

Q

Q' désignant le polynôme Q + A — BQ' serait de

degré < mce qui est en contradiction avec l'hypothèse faite
sur m. L'hypothèse m> pest donc incompatible avec " m est
le plus petit degré possible de tous les A — BX". On a donc
m < p, c'est-à-dire deg (A — BQ) < deg B.

2° Si existait Q' ^ Q tel que deg (A — BQ') < deg (A—BX)
quel que soit X, on aurait deg (A — BQ') < deg B d'après ce
qui précède. Donc

deg (A — BQ — (A — BQ')) deg B (Q' — Q) < deg B
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Or si on suppose Q' ^ Q, on a deg (Q' — Q) > 0, donc
deg B (Q' — Q) > deg B ce qui contredit deg B (Q' — Q) < deg B.
Nécessairement Q' — Q.

D'où:

Théorème. — Etant donnés deux polynômes A et B, B 7^ 0
il existe un polynôme Q et un seul tel que A — BQ 0 ou bien
tel que deg (A — BQ) < deg (A — BX) quel que soit le
polynôme X ; de plus dans le second cas deg (A — BQ) < deg B.

Ce résultat peut alors être écrit:

A BQ + R deg R < deg B

où le couple Q, R est unique. Q est le quotient, R le reste.
On notera que la première partie de la démonstration fournit

la méthode pratique bien connue.

La division suivant les puissances croissantes

Soit A — a0 e0 + + un polynôme non nul, de

degré n (an 7^ 0). Appelons polynôme transposé de A le
polynôme A an e0 + an_{ e± + + a0 en. Quel que soit A ^0,
v (A) 0 et deg A deg A •— v (A) ; on a donc deg A < deg A.

Cherchons les propriétés de l'opération qui à A associe A
relativement au produit de A par une croissante oc, à la somme
A + B, au produit AB.

1° Si oc 7^ 0, on a (aA) ^A-
2° Soit A aQ Cq —j— -{- an en {an 7^- 0) et B :::::::: bq Cq —|— —(—

bp ep (bp 7^ 0) et supposons par exemple deg A n > deg B p.
Remarquons que quel que soit Ä, (eh A) A e0

a) Si deg A n > p degB, on a:

(A + B) A + en_p B

b) Si deg A n p deg B et si deg (A + B) deg A
(c'est-à-dire si an + bn # 0), on a:

A + B Ä + B

c) Si deg A degB et si deg (A + B) < deg A (c'est-
à-dire si an + bn 7^ 0), soit alors m deg (A + B) < n.
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Oïl a:

A -f- B (am -j- bm) 6q -{- ••• T (ao T ^o) em

A + B (am + bm) en_m + + [a0 + b0) en en_m (A -f B) -

Donc Â + B en_m (A + B).

3° Soit an 0, bp ^ 0.

AB A bp ep -f- A bp_^ + A Ab0e0

En appliquant le résultat du 2° a) précédent on a:

AB A bQe0 + en+p_(n+p_1) (A bp_{ ep_{ +

A bpe0 -j- e± A bp i +

D'où AB ÄB.
Ces règles étant établies, soient A et B non nuls et supposons

deg A > deg B. Soient Q et R les quotient et reste de la division
euclidienne de A par B:

A BQ + R deg R < deg B

Soit n deg A, p deg B, r deg R < p
On a alors:

A B Q + en_r R B Q + edeg A_deg (A-BQ) R *

Comme deg Q n —p, deg Q < n — p et comme r < p>

n — p < v (en_r R) — v (A — B Q).
Ainsi aux polynômes A, B, transposés de A et B est associé

un polynôme Q tel que deg Q < v (A — B Q). [On notera que
v (Ä) f (B) - 0].

Donc dans certains cas (jusqu'à présent), à deux polynômes
A, B on peut associer un polynôme Q tel que deg Q < v (A — BQ).

C'est l'origine du théorème suivant;

Théorème. — Etant donnés deux polynômes A, B tels que
e(B) 0 et un entier k > 0, il existe un polynôme Q et un seul
tel que

deg Q < k < ç (A — DQ)

à moins que A — BQ 0.
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Existence. — Considérons tous les polynômes X tels que
degX < k. Tous les polynômes A — BX ont une valuation
bornée car

v (A — BX) < deg (A — BX) < max (deg A, k + deg B)

Il existe donc au moins un polynôme Q (deg Q < k) pour
lequel v (A — BX) < e(A — BQ) quel que soit X. Je dis que
pour ce polynôme Q, on a v (A — BQ) > k. En effet supposons
que Q donne à A — BQ la plus grande valuation possible et

que cette valuation soit m < k.
On aurait alors

A — BQ cmem -f + cheh + + cN

B b0 e0 + -f bp ep

A BQ Y 6 k em+l + *

uo

Donc A — B ^Q + ~Yerr}j aurait une valuation > m et

cm
Q + -r-em serait de degré < k, ce qui contredit l'hypothèse

o0

faite sur Q.

Unicité. — Si existait Q' ^ Q tel que deg Q' < k et k < v

(A — BQ') on aurait:

k < ç (A — BQ — A + BQ') (B (Q' — Q)) ç (B) + ^ (Q' — Q) -
c (Q' — Q) < deg (Q' — Q) < k

ce qui est impossible.
Ainsi à tout couple de polynôme A, B (e (B) 0) et un

entier k > 0 correspond un couple unique de polynômes Q, R

tels que

A BQ + ekJri R et deg Q < k

Cette opération s'appelle division suivant les puissances
croissantes à Vordre k.
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Relations entre les deux divisions

Nous avons introduit la seconde division en écrivant l'égalité
déduite de A BQ + R, deg R < deg B, pour les polynômes
transposés:

A B Q + en-r ^

où n deg A, r deg R.

Il est évident que dans ce cas les coefficients de Q et R dans
la division suivant les puissances croissantes sont les mêmes

que ceux de Q et R, écrits dans l'ordre inverse.
Nous montrerons maintenant qu'on obtient la même

propriété en partant de la division suivant les puissances croissantes.
Soit A BQ + ek+i R avec v (B) 0, deg Q < k.
Posons deg A n, deg B p, deg Q q < k. Comme

v (B) 0, on a: deg B deg B p. Ecrivons R A — BQ
et distinguons les quatre cas possibles suivants:

1er cas. Si deg A > deg BQ, on a: A — en_p_q BQ - R.

2e cas. Si deg A degBQ et deg (A — BQ) «=» deg A, on a:
A — B Q R.

3e cas. Si deg A — degBQ et si m deg (A — BQ) < deg A,
on a A —B Q — cn_m R.

4e cas. Si deg A < degBQ, on a: ep+q_n A — B Q R.

Je dis que dans tous ces cas on a l'égalité d'une division
euclidienne.

Remarquons qu'on a toujours deg R < deg R deg (A —
BQ) — k — 1 < deg (A — BQ) — q.

Examinons les quatre cas:

1er cas. —^On a deg R < deg (A — BQ) — q n — q deg
{en_p_qB) puisque deg B p.

Donc Q et R sont les quotient et reste de la division
euclidienne de A par en_p_q B-

2e cas. — OnedegB<p + q — q p deg B.

Donc Q et R sont les quotient et reste de la division
euclidienne de A par B-
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3e cas. — On a deg R < m — <7, donc deg (en_m R) < n — m -f
m — q n — q deg R — deg R.

Donc Q et en_m R sont les quotient et reste de la division
euclidienne de A par B.

4e cas. — On a deg R < p + <7 — q p — deg B- Donc Q et R
sont les quotient et reste de la division euclidienne de

ep+q_n Ä par B.

Conclusion

Dans tous les cas on peut obtenir les coefficients des
quotient Q et reste R de la division de A par B suivant les

puissances croissantes à un ordre k, en effectuant la division
euclidienne des transposés A, B de A, B multipliés éventuellement

par un eh et en prenant les coefficients des transposés des quotient
et reste de cette division euclidienne.
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