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ALGEBRE DES POLYNOMES

PAR

Marc Zavansky, Paris

INTRODUCTION

L’objet de cet article est de présenter les propriétés algé-
briques fondamentales des étres qu’on appelle polynbémes a
une indéterminée ou improprement, polynomes & une variable.

On n’y trouvera que des résultats élémentaires bien connus
(sauf peut-étre celui qui concerne le lien entre les deux divisions)
mais tout ce qui pourrait rappeler ’analyse a été banni de la
présentation car la confusion de notations entraine souvent
chez les jeunes étudiants la confusion des concepts et des
propriétés.

PREMIERES DEFINITIONS. NOTATIONS.

Définition d’un polynime

On appelle polynéme un ensemble ordonné d’une infinité
dénombrable de nombres (réels ou complexes) tous nuls &
partir d’un certain rang.

Nous représenterons au début un polynéme par (aq,, a,, a,,
ey @y, 0,0, ...). Les nombres a, sont appelés coefficients et dans
cette écriture l'entier %k repére le rang d’ordre du coefficient
(a, est le (k + 1) coefficient).

Nous désignons aussi un polynéme par une seule lettre et
écrirons:

A = (ag, ag, v, a,, 0,0, ...) .

n?




294 M. ZAMANSKY

Egalité de deux polynomes

Deux polynémes A = (a, a4, ...,2,,0,0,...) et B =
(bg, b1y .y b, 0, ...) seront dits égaux si quel que soit k: a, = b,
(k > 0). Cette définition entraine qu’a partir du méme rang a,
et b, sont nuls.

On écrira A = B, le symbole = pouvant alors étre employé
de nouveau.

LLois ALGEBRIQUES SUR L’ENSEMBLE DES POLYNOMES

Lois internes

Les conventions suivantes construisent des polynémes a
partir de polyndmes; elles définissent ce qu’on appelle des
lois internes. Ce seront l'addition et la multiplication. Leur
définition entraine des propriétés qui feront de I'ensemble
des polyndémes muni de ces deux lois, un anneau commutatif
unitaire.

10 Addition.

Soit A = (a,, a4, ...), B = (b, by, ...), deux polynoémes. Par
définition le polynéme (a, + by, a; + b4, ..., @, + b,,...) est appelé
somme de A et B et on écrit:

A+ B = (ay+ by, ar + by, ..o, ap + by, -..) .

Les propriétés des nombres complexes montrent que cette
addition est associative, c’est-a-dire que (A + B) +C = A +
(B + C) et commutative, c’est-a-dire que A + B =B + A,
quels que soient A, B, C.

Désignons par @ le polyndéme dont tous les coefficients sont
nuls: a, = 0 pour £ = 0,1,2,... On a alors quel que soit le
polynéme A: ,
A4+0=0+A=A

O est donc 1'élément neutre pour ’addition.

Désignons par (— A) le polyndéme (— ay, — a,, ..., — @, ...).
On a alors: A 4 (— A) = 0. Donc tout polynéme A a un
symétrigue (— A) pour 'addition.
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Ces propriétés de I'addition signifient que lensemble des
polyndmes muni de laddition est un groupe commutatif ou
groupe abélien.

20 Multiplication.

Soit A = (ay, @y, ...), B = (b, by, ...) deux polyndémes. Par
définition le polynéme (aq by, @ by + @y g, -.y @ by, =+ 01 by +
ay b, o + ... + @, by, ...) est appelé produit de A par B et on
écrit:

AB = (aq by, ag by + ay by, ...) .

Cette multiplication est évidemment associative et commu-
tative, ¢’est-a-dire que quels que soient A, B, C: (AB) G = A (B()
et AB = BA.

Désignons par I le polynéme dont tous les coefficients sont
nuls sauf le premier a, qui vaut 1:1 = (1,0,0, ...). On a quel

que soit A:
IA = Al

I est donc 1'élément neutre pour la multiplication.

En général A n’a pas de symétrique pour la multiplication.
Car il existe B, tel que AB = I, on doit avoir a, b, = 1 ce qui
exige a, = 0, by #~ 0.

30 Propriété de la multiplication par rapport a I’addition.

De la distributivité de la multiplication par rapport a I’addi-
tion dans le corps des nombres complexes résulte que quels
que soient les polynomes A, B, C:

A(B+C =B+ CA=AB+ AC.

La multiplication des polyndmes est donc distributive (dou-
blement) par rapport a ’addition.

40 L’anneaun des polynomes.

Les propriétés de l’addition jointes & l’associativité et la
distributivité (par rapport a I’addition) de la multiplication font
de 'ensemble des polyndémes un anneau.

Si on y ajoute la commutativité de la multiplication, cet
ensemble prend le nom d’anneau commutatif.
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Si on y ajoute encore l'existence de I’élément neutre I, cet
ensemble prend le nom d’anneau commutatif unitaire.

I1. Lot externe

On peut définir une opération qui construira un polyndme
a partir de deux étres qui seront 'un un polyndéme, 'autre un
nombre du corps des complexes. A tout polynéme A et tout
nombre «, on fait correspondre le polynome (aa,, aay, ..., aq,, ...)
qu’on désigne par « A et qu’on appelle produit de A par «.

Les propriétés suivantes, vraies quels que soient les poly-
nomes A, B, C et les nombres «, 8, ... découlent immédiatement
des définitions et propriétés qui précedent:

1) «(A+B)=aoA + B

2) o« (PA) = () A

3) 1. A=A

&) (o + B)A = oA + BA

5) «(AB) = (¢ A)B = A (aB) .

De ces propriétés, résulte que quel que soit A, OA = 0.
Désormais nous remplacons ® par O. D’autre part comme
1.A = A et I.A = A, nous remplacerons I par 1 et de fagon
générale, le polyndme (a,, 0, 0, ...) pouvant étre considéré comme
le produit de (1,0, 0,...) par a, nous identifions le polyndome
(a9, 0,0,...) ot @, =0 s1 k>1 et le nombre g, Un tel poly-
nome s’appelle parfois une constante.

Enfin (— A), symétrique de A pour l'addition, est aussi le
polynéme (— 1) A obtenu en multipliant A par (— 1). Nous
ne les distinguerons donc pas.

I11. Espace vectoriel

Si on considére ’ensemble des polyndmes muni de 'addition
et de la précédente loi-externe, les propriétés de I'addition et
les quatre premieres propriétés de la lo1 externe font de cet
ensemble un espace vectoriel sur le corps des nombres complexes.
Mais comme on le verra ci-dessous cet espace n’est pas de
dimension finie.
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BASE DE L’ESPACE VECTORIEL DES POLYNOMES

Les propriétés de Pespace vectoriel des polyndmes permettent
d’écrire tout polyndéme A sous la forme:

A=a,(1,0,0,..) + a (0,1,0,..) + ... + @, (0,0, ..,1,0,...)

c’est-a-dire, en désighant par e, le polyndéme dont tous les
coefficients sont nuls sauf celui de rang £ + 1 qui vaut 1,

A: a0€0+a161+ ...+an6n.

L’ensemble des polyndmes e, s’appelle base et ’écriture pré-
cédente réalise ce qu’on appelle la décomposition de A sur la
base. a, e, s’appelle terme de degré p.

La définition de I’égalité de deux polyndémes entraine que
cette décomposition est unigue.

Appliquons la définition du produit de deux polyndmes a
deux polyndmes e,, e,. On a e, = (o, % .oy %y, %y 1y, -..) OU
o, = 081 k#pet a =1;¢ = (Bp Prs s By Bgrsy +-) O1
Br=105s1 k#qet g, =1

Le (k + 1)° coefficient de e, e, est o, Bo + oy By + o
ay B,. Ce coefficient ne peut étre différent de zéro que s’il con-
tient o, B,. Or le (k + 1)2 coefficient de e, €, est une somme
de termes tels que la somme des indices de chaque terme

[

% B €8t K5 00 ne trouvera done «, 3, que dans le (p + q + 1)°

coefficient ce qui entraine que seul le (p 4+ g + 1)* coefficient
de e, e, n’est pas nul. Ce dernier coefficient est par définition:

“p+qﬂo+ ocp+q_1ﬁl—l— e. + ochq—}— e + ocOBp+q= ochq——: 1.

Donc:
®p€q = €% = €piq-
Les propriétés suivantes:
x(A 4+ B)=aA 4+ aB
(0 + B)A=0aA+ BA

% (BA) = a8 A
A(B + C) = AB + AC
e.e — e

bq p+q -
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permettent alors de calculer plus aisément que ne l'indiquaient
les définitions, la somme et le produit de polynomes.
Ainsi:

= a9 by eg + (a9 by + a; by) g + (ay by + ay by) ey .
AB = (agey + ae; + azey) (byeg + by e

On retrouve les régles de calcul élémentaires.

Enfin la reégle de calcul e, e, = e,,, pour le produit de
deux polynomes de la base permet de montrer facilement que
si A et B sont deux polynomes tels que AB = 0, I’'un au moins
des polyndémes est nul. Supposons en effet que ni A, ni B ne
sont nuls; alors soit parmi les termes a, ¢, de A celul d’indice
le plus élevé a, e, tel que a, # 0 et de méme b, e, dans B.
Dans AB figure a, b,e,+, et comme a, 7 0,6, # 0, AB # 0.

Ainsi AB = 0 entraine A = 0 ou B = 0. Il en résulte que
si A s£0et st AB =0, alors B = 0. Il en résulte encore que
stA #0etsiAB = AC,ona A(B—C) = 0,doncB—C =0,
donc B = C. En d’autres termes cela signifie que tout polynéme
différent de O est régulier pour la multiplication.

DEGRE, VALUATION D'UN POLYNOME

Définition. — Soit A = (ay, @4, ..., a,, 0, ...) un polynome.
Nous appellerons degré de A et nous le désignerons par degA,
le plus grand entier n > 0 tel que ¢, #* O:

n = deg A

Cela signifie que si £ << n, il y a au moins un q, # 0 et
que a, = 0 quel que soit £ > n.

deg A = 0 signifie que A est une constante, mais ne signifie
pas nécessairement que A = 0.

Le degré de O n’est pas défini.

Le degré et les deux lois algébriques.

D’apres la définition du degré, on a les propriétés suivantes:

10 Si deg A > deg B, alors deg (A + B) = deg A
Si deg A =degB =n et si a, + b, # 0, alors
deg (A 4+ B) = deg A = deg B.
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Dans le cas général:

deg (A 4+ B) < max (deg A, deg B), c’est-a-dire est inférieur
ou égal au plus grand des entiers deg A, deg B.

20 Si AB = 0, deg AB = deg A + deg B.

Définition. — Soit A = (aq, ..., 4y, 0, ...) un polynoéme. Nous
appellerons caluation de A et nous la désignerons par ¢ (A),
le plus petit entier m > 0 tel que a,, #* 0.

Cela entraine que si m > 1 on a @, = 0 pour 0 < k < m—1.
La valuation de O n’est pas définie. ,

On femarquer_a que quel que soit A: ¢ (A) < deg A.

La valuation et les deux lois algébriques.
D’aprés la définition, on a les propriétés suivantes:
10 Si ¢ (A) > ¢ (B), alors ¢ (A + B) = ¢ (B).

Siv(A) =v¢(B)=metsia, + b, # 0,
alors ¢ (A 4+ B) = ¢ (A) = ¢ (B).

Dans le cas général: ¢ (A + B) > min (¢ (A), ¢ (B)), c’est-
A-dire supérieure ou égale au plus petit des entiers ¢ (A), ¢ (B).
20 Si AB £ 0, alors ¢ (AB) = ¢ (A) 4 ¢ (B).

Remarque. — Une condition nécessaire (seulement) pour que
A = B est que deg A = degB et ¢ (A) = ¢ (B). La négation
de cette proposition signifie que si 'une des conditions deg A =
deg B ou ¢ (A) = ¢ (B) n’est pas réalisée, alors A # B. .

LE PROBLEME DE LA DIVISION DES POLYNOMES

L’ensemble ¢ des polyndmes est un anneau commutatif
unitaire, mais n’est pas un corps, c’est-a-dire que la division
n’est pas en général possible, c’est-a-dire encore, que deux
polynomes A et B étant donnés il n’existe pas en général de
polynoémes X tel que A = BX.

Définition. — On dit que A est divisible par B # 0, §’il existe
Q tel que A = BQ. On dit aussi que A est multiple de B ou que B
divise A ou est diviseur de A. Alors A est aussi multiple de Q.

St Q existe, il est unique car s'il existait encore Q' tel que
A = BQ’ on aurait BQ = BQ’ et comme B 3£ 0, Q = Q'.
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On peut alors présenter cette définition de la facon suivante:

Soit A et B % 0 deux polyndémes; considérons tous les
polyndmes A — BX ou X parcourt ¢ (c’est-a-dire ou X est
un polynéme quelconque); dire que A-est divisible par B c’est
dire qu’il existe Q € ¥ tel que A — BQ = 0; Q est alors unique.

Lorsque A n’est pas divisible par B, il est alors naturel
d’étudier les polyndmes A — BX ou X parcourt ¢ et de tenter
de trouver X de facon que A — BX possede quelque propriété
vrale lorsque A = BQ. Or si A = BQ, nécessairement deg A =
deg BQ et ¢ (A) = ¢ (BQ); st A £ 0(A = 0 n’offre pas d’in-
térét) on doit avoir deg A = degB + deg Q et ¢ (A) = ¢ (B) +
o(Q).

On peut étre tenté de chercher pour deux polynémes A et B,
un polynéme X tel que simultanément deg A = deg B + deg X
et v (A) = ¢ (B) + ¢ (X). Il est facile de voir par un exemple
que c’est en général impossible.

On peut alors chercher a sauvegarder 'une des deux pro-
priétés précédentes pour tout couple A, B; en d’autres termes
la propriété cherchée doit étre vraie quels que soient les poly-
noémes A et B. Mais si alors on cherche X en lui imposant la
seule condition deg A = deg B + deg X, on peut satisfaire a
cette condition d’une infinité de maniéres; nous sommes done
amenés a chercher parmi tous les X possibles, ceux qui possédent
une autre propriété. Cette discussion motive le point de vue
qui suit.

Considérons une famille quelconque de polyndmes non nuls.
Comme les degrés sont des entiers > 0, il existe dans cette
famille, au moins un polynéme dont le degré est inférieur ou
égal & tous les degrés des polyndmes de cette famille. Considé-
rons alors la famille de tous les polynémes A — BX ou X € %,
Si & cette famille on applique la remarque qui vient d’étre faite
on en conclut qu’il existe au moins un polynéme Q tel que deg
(A — BQ) < deg (A — BX) quel que soit X € €. Nous verrons
alors que nécessairement deg (A — BQ) < deg B et que pour
tout couple A, B, le polynéme Q tel que deg (A — BQ) < deg B
est unique. Ce sera la division euclidienne de A par B ou division
sutvant les puissances décroissantes.

L’idée de la division suivant les puissances croissantes sera
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déduite de la précédente division, puis nous montrerons que les
deux divisions peuvent étre ramenées l'une a l'autre.

LA DIVISION EUCLIDIENNE

Soit A et B deux polyndémes. Soit B £ 0. S1 A = 0, on
a A = BO donc A est divisible par B. Supposons A # 0 et
parmi tous les polynémes A — BX soit A — BQ tel que
deg (A — BQ) << deg (A — BX) quel que soit X, lorsque A
n’est pas divisible par B.

Montrons que 1°: deg (A — BQ) < deg B; 2° ) est unique.

10 Soit en effet:

B = bye, + ... + bpep(bp # 0)
A—BQ =cye, + ... + cpep + o+ ey

et supposons m > p et ¢, % 0, m étant le plus petit degré
possible de tous les polynomes A — BX.

On a alors:
m~pB = boem_p + ...+ bp em
Cim by c Eon
b_e'm—pB: b em—p+"‘+b bpimi—l- m ém -
D D D
D’ou

m cm
A—BQ—g=e, , B=A—B (Q N b_p_ewp) -

D y

(&
= Cpey + ... + (Cm~1 bm bp 1> Cm-1 -
Yy

Q" désignant le polyndme Q + Cb—m—em_p, A — BQ’ serait de
p

degré << m ce qui est en contradiction avec I’hypothése faite
sur m. L’hypothése m > p est donc incompatible avec " m est
le plus petit degré possible de tous les A — BX”. On a donec
m < p, c’est-a-dire deg (A — BQ) < deg B. |

20 Si existait Q" # Q tel que deg (A — BQ’) < deg (A—BX)
quel que soit X, on aurait deg (A — BQ’) < deg B d’aprés ce
qui précede. Donc

deg (A —BQ — (A —BQ’)) = deg B (Q’ — Q) < deg B .
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Or si on suppose Q" £ Q, on a deg (Q"— Q) > 0, donc
deg B (Q"— Q) > deg B ce qui contredit degB (Q'— Q) < degB.

Nécessairement Q' = Q.
D’ou:

THEOREME. — Eltant donnés deux polynomes A et B, B £ 0
U existe un polynéme Q et un seul tel que A — BQ = 0 ou bien
tel que deg (A — BQ) << deg (A — BX) quel que soit le poly-
nome X ; de plus dans le second cas deg (A — BQ) < deg B.

Ce résultat peut alors étre écrit:

A=BQ+ R, deg R < deg B

ou le couple Q, R est unique. Q est le quotient, R le reste.
On notera que la premiere partie de la démonstration fournit
la méthode pratique bien connue.

LA DIVISION SUIVANT LES PUISSANCES CROISSANTES

Soit A = a,e, + ... + a, e, un polyndme non nul, de
degré n (a, # 0). Appelons polynéme transposé de A le poly-
ndéme A = a,e, + a, ;¢ + ... + a,¢e,. Quel que soit A # 0,
0 (A) = Oetdeg A = deg A — ¢ (A); on a donc deg A < deg A.

Cherchons les propriétés de 'opération qui a A associe A
relativement au produit de A par une croissante «, a la somme
A + B, au produit AB.

10 Si o £ 0, on a («A) = oA.

20 Soit A = agey + ... + a,¢, (a, ;ﬁ())etB_-beO—l— L
b, e, (b, # 0) et supposons par exemple deg A = n > deg B = p.

Remarquons que quel que soit &, (e, A) = A €

a) Sideg A =n > p = degB, on a:
(A+B)=A+e¢, B

b) Sideg A =n =p = degB et si deg(A 4 B) = deg A
(c’est-a-dire si a, + b, # 0), on a:
A+B=A+3B
c) Si deg A = degB et si deg(A + B) < deg A (c’est-
a-dire si a, + b, # 0), soit alors m = deg (A 4 B) < n.
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On a:
A+ B =(a,+ bye + - + (a0 + bo) ey
A+ B=(a, + by e, + - + (a4 bo) e, = ¢, (A + B) .

Donc A + B =¢,_,, (A + B).
30 Soit «, # 0, b, # 0.

AB = A bp e, + Abp_1 ep 4 ...+ Abje, .

En appliquant le résultat du 2° a) précédent on a:

AB=Rbyey+ pppinipty Dby epyg + ) =
= Kbpeo +- 91Kbp_1 + ...
D’ou AB = A B.
Ces régles étant établies, soient A et B non nuls et supposons

deg A > deg B. Soient Q et R les quotient et reste de la division
euclidienne de A par B:

A=BQ+ R, deg R < deg B .

Soit n =deg A, p =degB,r =deg R < p
On a alors:

A= BQ + e, ,R=BQ + ¢4e5 A—gec (a-Bg) }

Comme deg Q = n—p, degQ < n—p et comme 7 < p,

n—p<v(e_ R) = ¢ —BQ
Ainsi aux polynomes A, B, transposés de A et B est associé
un polynéme Q tel que deg Q < ¢ (A — B Q). [On notera que

¢ (A) = ¢ (B) = 0].
Donc dans certains cas (jusqu’a présent), a deux polyndémes
A, B on peut associer un polynoéme Q tel que deg Q < ¢v (A —BQ).
C’est Iorigine du théoréme suivant:

THEOREME. — Etant donnés deux polynomes A, B tels que
¢(B) = 0 et un entier k > 0, il existe un polynéme Q et un seul

tel que
deg Q < k < ¢ (A—DQ)

a moins que A —BQ = 0.
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Ezxistence. — Considérons tous les polyndémes X tels que

deg X < k. Tous les polyndmes A —BX ont une valuation
bornée car

¢ (A —BX) < deg (A — BX) < max (deg A, k + deg B) .

Il existe donc au moins un polyndéme Q (deg Q < k) pour
lequel ¢ (A —BX) < ¢(A — BQ) quel que soit X. Je dis que
pour ce polynome (), on a ¢ (A — BQ) > k. En effet supposons
que Q donne & A — BQ la plus grande valuation possible et
que cette valuation soit m < k.

On aurait alors

A—BQ =-c,e, + ...+ cpe, + ... + e

B = boeo "l"‘ oo "}— bpep

A—BQ——e¢ B-—lem+1+....
by

Donc A—B <Q + b m) aurait une valuation > m et

Q + %m“em serait de degré < k, ce qui contredit I’hypothese
0
faite sur Q.

Unicité. — S1 existait Q £ Q tel que deg Q' < ket bk <<v
(A — BQ’) on aurait:

k<¢o(A—BQ—A4+BQ)=9¢B(Q —Q)=0¢(B)+¢Q —Q)=
0 (Q'—Q) <deg (Q'—Q) <k
ce qui est impossible.
Ainsi a tout couple de polyndéme A, B (¢ (B) = 0) et un

entier £ > 0 correspond un couple unique de polynémes Q, R
tels que

A=BQ+ e, R et degQ<k

Cette opération s’appelle division suivant les puissances
croissantes a lordre k.
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RELATIONS ENTRE LES DEUX DIVISIONS

Nous avons introduit la seconde division en écrivant 1’égalité
déduite de A = BQ + R, deg R < deg B, pour les polynémes
transposeés:

A=BQ+e¢..R
ou n = deg A, r = deg R.

Il est évident que dans ce cas les coefficients de Q et R dans
la division suivant les puissances croissantes sont les mémes
que ceux de Q et R, écrits dans 1’ordre inverse.

Nous montrerons maintenant qu’on obtient la méme pro-
priété en partant de la division suivant les puissances croissantes.

Soit A = BQ + ¢,y R avec ¢ (B) =0, deg Q < .

Posons deg A = n, degB = p, degQ = ¢ < k. Comme
¢(B) = O, on a: degB = deg B = p. Ecrivons R = A — BQ
et distinguons les quatre cas possibles suivants:

1er cas. Si deg A > degBQ, on a: A —e, . BQ = R.

2¢ cas. S1 deg A = deg BQ et deg (A —BQ) = deg A, on a:
‘ A—BQ = R

3¢ cas. Si deg A = deg BQ et si m = deg (A — BQ) < deg A,

ona A—BQ = e,, R

4¢ cas. Si deg A < degBQ, on a:e,,, ., A—BQ = R.

Je dis que dans tous ces cas on a I’égalité d’une division
euclidienne.

Remarquons qu’on a toujours deg R < deg R = deg (A —
BQ) — &k —1 < deg (A — BQ) —q.

Examinons les quatre cas:
1ef cas. — On a deg R < deg (A —BQ) — ¢ = n — ¢ = deg

(¢yp B) puisque deg B = p.

Donc Q et R sont les quotient et reste de la division eucli-
dienne de A par e, B.
2¢cas. —OnadegR<p-+¢—q=p=degB.

Donc —Q et R sont les quotient et reste de la division eucli-
dienne de A par B.
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3¢ cas. — On a deg R < m — ¢, donc deg (e,_,, R) < n—m -+
m-—gq = n—q = deg B = deg B.

Donc () et e,_,, R sont les quotient et reste de la division
euclidienne de A par B.

4¢ cas. — Onadeg R < p + ¢—¢q = p = degB. Donc Q et R
sont les quotient et reste de la division euclidienne de
€prqn A Par B.

Concluston

Dans tous les cas on peut obtenir les coefficients des quo-
tient Q et reste R de la division de A par B suivant les puis-
sances croissantes a un ordre k, en effectuant la division eucli-
dienne des transposés A, B de A, B multipliés éventuellement
par un ¢, et en prenant les coefficients des transposés des quotient
et reste de cette division euclidienne.
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