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UBER DIE VERBINDBARKEIT VON LINIEN-
UND KRUMMUNGSELEMENTEN DURCH MONOTON
GEKRUMMTE KURVENBOGEN

VON

Alexander OsTrowskI in Basel

1. Im Zusammenhang mit dem Vierscheitelsatz von Mukho-
padhyaya ist das Problem von Interesse, wann sich zwel
gegebene orientierte Linienelemente durch einen monoton
gekriimmten Bogen verbinden lassen. Eine notwendige Bedin-
gung hierzu wurde von W. Voar ! angegeben. Allerdings 1st der
sehr scharfsinnige Beweis von W. Voar recht lang und umstand-
lich. Ferner benutzt dieser Beweis einen Satz von A. KNESER
iiber Krimmungskreise, dessen Beweis auf den Evoluteneigen-
schaften beruht und daher damals von der ,,dreimaligen Diffe-
renzierbarkeit der Kurve Gebrauch machte. Seitdem sind fiir
den Vogtschen Satz einfachere Beweise gegeben worden 2.
Unter diesen setzt namentlich der erste der beiden Beweise
von Hirano die Differenzierbarkeit der Kriimmung nicht voraus,
womit wohl der Vogtsche Satz zum ersten Mal unter geniigend
allgemeinen Annahmen bewiesen wurde. Inzwischen habe ich
aber die Giiltigkeit der Evolutesitze auch unter der Annahme
der Stetigkeit der Kriimmung allein bewiesen 3, so dass damit
auch die tibrigen Beweise des Vogtschen Satzes in ihrer Trag-
weite entsprechend erweitert worden sind.

1 W. Voer, Ueber monoton gekrimmte Kurven. Journal fiir die reine und ange
wandte Mathematik, 144 (1914), pp. 239-248.

2 8. Karsuura, Ein neuer Beweis des Vogtschen Satzes. Tohoku Mathematical
Journal, 47 (1940), pp. 94-9%; K. Hirano, Simple proofs of Vogt’s theorem, daselbst,
pp. 126-128.

3 Vgl. A. Ostrowskl, Ueber Evoluten und Evolventen ebener Kurven. Archiv der
Mathematik, 6 (1955), pp. 170-179, sowie A. OsTrRowskI, Un’applicazione dell’integrale
di Stieltjes alla teoria elementare delle curve piane. Rendiconti dell’ Accademia Nazio-
nale dei Lincet, serie VIII, vol. XVIII, 1955, pp. 373-375.
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2. Nun lasst sich, wenn man direkt die Evolutebiégen in
die Betrachtungen hereinzieht, der Beweis des Vogtschen Satzes
recht anschaulich fithren, wenn auch dabei eine Reihe von
Fallen, je nach dem Verlauf der Evolutebogen, zu unterscheiden
sind. Diesen anschaulich sehr zugéinglichen Beweis gebe ich im
folgenden in den Nrn. 7—10. Zuerst gebe ich in den Nrn. 3, 4
zwel analytische Beweise des Vogtschen Satzes. Der erste ist in
den benutzten Hilfsmitteln mit dem oben erwidhnten Hirano-
schen Beweis verwandt, aber, wie mir scheint, etwas einfacher
angelegt. Der zweite in Nr. 7 dargelegte bemerkenswert kurze
Beweis geht in seinem Grundgedanken auf Herrn B. Eckmann
zuriick, mit dessen freundlicher Erlaubnis ich ihn hier veroffent-
liche. Doch setzt dieser Beweis in seiner urspriinglichen elemen-
taren Gestalt die Differenzierbarkeit der Krimmung voraus.
Wir machen nun hier, unter Benutzung einer in einem #hnlichen
Zusammenhang von uns kiirzlich entwickelten Methodik !, von
dem Begriff des Stieljesintegrals Gebrauch, womit sich ein auch
im Falle, dass die Krimmung lediglich als monoton voraus-
gesetzt wird, giiltiger Beweis ergibt, der zwar dadurch an seinem
elementaren Charakter, nicht aber an seiner Kiirze einbiisst.

3. Andererseits wird in dieser Mitteilung gezeigt, dass die
Vogtsche Bedingung nicht nur notwendig, sondern auch hin-
reichend ist. Die genaue Formulierung der damit sichergestellten
notwendigen und hinreichenden Bedingung findet man in der
Nr. 5 als Satz I.

Der Beweis der Umkehrung des Vogtschen Satzes wird am
Schluss der Arbeit in der Nr. 21 erbracht, und zwar als ein
Korollar eines anderen Satzes, durch den die Fragestellung des
Vogtschen Satzes wesentlich erweitert wird. Wir fragen nim-
lich: in welchem Umfang lassen sich die Kriimmungsradien vor-
geben, wenn sich die beiden zugehorigen Linienelemente durch
einen monoton gekrimmten Bogen verbinden lassen ? Man
erhilt die notwendige und hinreichende Bedingung dazu, wenn
man iiber die Bedingungen des Satzes I hinaus verlangt, dass
die Differenz der vorgegebenen Kriimmungsradien die Distanz

1 Vgl. die zweite der in der Fussnote 3 zitierten Mitteilungen.
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der Kriimmungsmittelpunkte iiberschreitet. Dieser Satz (Satz IT)
wird in der Nr. 11 vollstindig formuliert. Der Beweis, dass die
Bedingung dieses Satzes notwendig ist (Nr. 12), ist fast unmittel-
bar. Zum Beweis hingegen, dass jene Bedingung auch hinreichend
ist, der in den Nrn. 13—20 erbracht wird, miissen wir eine Reihe
von Fillen genau diskutieren, die sich je nach der besonderen
Lage des vorkommenden Evolutebogens ergeben.

4. Bel diesen Betrachtungen erweist sich die Benutzung der
Evolute als erzeugendes Element eines monoton gekriimmten
Bogens besonders vorteilhaft. Wenn hiervon bisher, wie es
scheint, wenig Gebrauch gemacht wurde, so diirfte dies wohl
daran liegen, dass iiber die Differenzierbarkeitsbedingungen, die
der Fadenkonstruktion zu Grunde liegen, keine Klarheit
herrschte. Die direkte Durchfithrung der Rechnung scheint
zuerst die dreimalige Differenzierbarkeit vorauszusetzen 1. Durch
etwas sorgfialtigeres Rechnen kann man die Differentiations-
ordnung auf 2 herabdriicken. Durch eine Anderung des Ansatzes
ist es uns aber kiirzlich gelungen zu zeigen, dass die Faden-
konstruktion bereits auf Kurvenbdgen monotoner Drehung
anwendbar i1st und die sich ergebende Evolvente die urspriing-
liche Kurve zur Evolute hat 3. Dadurch 1st die Anwendbarkeit
dieser Methode in sinngeméssem Umfang sichergestellt.

T T AR R

5. Wir nennen einen orientierten Kurvenbogen < einen
I’-Bogen, wenn ldngs v der Kriitmmungsradius positiv und stetig
1st, monoton abnimmt mit eventuell héchstens endlich vielen
Konstanzintervallen und im Endpunkt kleiner als im Anfangs-
punkt 1st, wahrend die Gesamtdrehung kleiner als 2x bleibt.

Sarz I. (DEr VoeTrscHE SATZ UND SEINE UMKEHRUNG.) —
Es seien o, B zwel orientierte Linienelemente bzw. durch die
Punkte A, B, wober o betm Durchlaufen der Strecke AB von A
nach B nach rechts und B nach links weist. Notwendig und hinrei-
chend dafiir, dass A und B durch einen o in A und p in B beriihren-
den von A nach B laufenden I'-Bogen s verbindbar sind (vgl. Fig. 1),

1 Vgl. A. Ostrowski, Vorlesungen iiber Differential- und Integralrechnung, 2, Basel,
1950, pp. 406-408.
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ist, dass der (in der Fig. 1 gleichfalls mit « bezeichnete) Winkel
aus o nach dem Verbindungsvektor AB kleiner ist als der (in der
Fig. 1 gleichfalls mit $ bezeichnete) Winkel aus dem Vektor AB
nach {.

Fig. 1.

6. DBeweis der Notwendigkeit (Der Vogtsche Satz). — Wir
legen die Achsen so, dass der Koordinatenursprung in 4 liegt
und die positive z-Richtung in die Richtung « weist. Ist dann 6
der Tangentenrichtungswinkel lings s und p = p (0) der als
Funktion von 0 ausgedriickte Kriimmungsradius von s, so gilt
fiir den komplex geschriebenen allgemeinen Punkt & (0) = = + 1y
von s, der zu einem 6-Wert gehort,

0
E(0) = [e(0)ed0
0
und daher, wenn 8 = « + [ die Gesamtdrehung ldnge s bedeu-

tet, im Endpunkt B von s

5
E(8) = [e(0)ed0 , (1)
0
wobei £ (8) = Te* ist, unter T die Distanz | AB | und unter «
der in Frage kommende Winkel bei 4 (siehe Fig. 1) verstanden.

Dann haben wir ¢ £ (8) = T¢®, wo B der entsprechende Winkel
bei B ist.

Da nun sowohl « als auch B jetzt zwischen O und = gelegen
sind, folgt die Behauptung § > «, wenn wir beweisen, dass
T cos o« > T cos B,
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3
RED) > RPEQD) , [p(6)[cos 06— cos (53— 6)]d6 >0
0

gilt. Da die Kosinusdifferenz unter dem Integralzeichen gleich

2 sin % sin (—i— — 6) und g < 7 ist, geniigt es zu beweisen, dass

8

[p(%)) sin<%~—6>d6>0 (2)
0

ist. Fithrt man aber im Integral links g— — 0 = ¢ als neue Inte-

grationsvariable ein, so wird dieses Integral zu

%/

f<—~—cp>$lncpd<p+f< <p>sin<pd<p.

0 ~0/y

Im zweiten Integral fithren wir — ¢ statt ¢ als neue Integra-
tionsvariable ein. Dann verwandelt sich schliesslich das Inte-
gral in (2) in

82

) ) .
(o) (3 ) smove.
| 1

und dies ist in der Tat grésser als Null; denn es konnte nur dann
gleich Null sein, wenn p (0) langs des ganzen Bogens s konstant
wére, was aber ausgeschlossen ist.

1. Zwetter Beweis des Vogtschen Saizes. — Wir denken uns v
so orientlert, dass A und B auf der z-Achse liegen, withrend v
sonst unterhalb der x-Achse verlduft. Betrachten wir dann das
Integral

J‘xg./ds ,

AYB
wo x die Kriimmung und s die Bogenldnge ist, so ist es wegen
xds = d, y = sin 0 gleich

fsm@dG———cos 6/—COSoc——cos[3

AYB
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‘Anderseits kann das obige Integral, da y zuerst ab und dann
zunimmt und daher von beschrankter Variation ist, als das

Stieltjesintegral [ »dy aufgefasst werden. Beachtet man nun,
AYB
dass y in den Endpunkten von y verschwindet und sonst negativ

1st, wihrend x langs y monoton zunimmt, so lisst sich auf dieses
Integral die auf Stieltjessche Integrale anwendbare Umformung
durch partielle Integration wie folgt anwenden:

fxdy:-—fydx>0.

AYB AYB

Wir sehen, dass cos a« > cos 3, « < B ist, w.z.b.w.

8. Drutter Beweis des Vogtschen Satzes. — Seien a, b die
Kriimmungsmittelpunkte von s, die bzw. den Punkten A4, B
entsprechen, und sei ¢ die von a nach b durchlaufene Evolute
des I'-Bogen s, langs deren dabei die Tangente sich im positiven
Sinne dreht; und zwar weist die Anfangstangente an o in «a
nach A und die Endtangente an o in b nach B. Es ist dann
|o| = | Aa| — | Bb|. S sei der Schnittpunkt der Normalen
an s in 4 und B.

Wir unterscheiden drei Félle.

1. Fall. o < -— Wir nehmen an, dass § < - ist, da

sonst nichts zu beweisen ist. Die Konfiguration entspricht dann
der Fig. 4 der Nr. 15. In dieser Figur verlduft ¢ zuerst rechts
des Halbstrahls Aa, und da die Drehung « 4 8 ldngs ¢ kleiner
als = ist, bleibt ¢ rechts von Aa. Aus dem gleichen Grunde
bleibt ¢ links von Bb, was nur dann moglich ist, wenn § in der
Fig. 4 zwischen a und A, und b zwischen B und § liegt und o«
im Dreieck ab$ verlauft. Daher gilt

' laS| + [b6S] >]|o|=|A4da|—|Bb|
und daher
|Bb| + | 0S| >[d4da|—|aS ],

d.h.| BS| > | AS|. Dann ist aber im Dreieck ABS die Seite BS

die grossere und der Winkel bei B, —~ — 8, kleiner als der

2
Winkel bei A, —;5 — «, W.z.b.w.




LINIEN- UND KRUMMUNGSELEMENTEN 283

2. Fall. Sei o > %, B> -g— — Dann haben wir es mit einer

der vier Konfigurationen zu tun, die in den Fig. 7 in Nr. 19 und 8
in Nr. 20 gezeichnet sind, wobei von ¢ die Lagen &’ und a”’ und
von b die Lagen b’ und b" in Frage kommen. In diesen vier
Fillen haben wir aber fiir die Differenz | AS|—| BS| bzw. die
folgenden Ausdriicke:

| Aa’ | — | BY | + (&’ S| — |V S]) = o | — (bS] —]a"S]); (3)
| Ao’ | — | Bb” | 4+ |’ S| + [ Sb"] = o]+ (1" S] 4+ [ S67]) 5 (4)
| Aa” | — | BY | — (| Sa” | + |0/ S]) = o | — (I Sa” |+ [0S 1) 5 (5)
| Ao’ | — | B | — (| Sa” | — | 86" [) = |o | — (| Sa” | —| 8" [) . (6)

Nun gilt in den entsprechenden Figuren
oy | >1a’b"|, lol>]a”b"],

Daher sind die Ausdriicke (3) und (6) beide positiv. Beim Aus-
druck (&) ist dies evident, wihrend beim Ausdruck (5) ein Blick
auf die Fig. 8 in Nr. 20 zeigt, dass unter den den Tangenten
an o; in @'’ und b’ auferlegten Bedingungen der Bogen o, ausser-
halb des Winkels b'Sa’” verlauft. Daher ist auch der Ausdruck
(5) positiv.

Daher ist im Dreieck ABS die Seite AS die grossere und der

Winkel o — < bei A kleiner als der Winkel § — < bei B.

9. Wir betrachten endlich den 3. Fall, « = & > g. Wiire

o= f = %, so lagen @ und b auf der Geraden AB und daher

miisste o zuerst rechis von AB verlaufen und schliesslich von
links in b hineinkommen, wihrend die Gesamtdrehung « + 8 ==

1st. Daher bleiben nur die beiden Moglichkeiten: o« = g—, B < % :
o > %, B = % Verschiebt man nun die Gerade durch 4B

stetig und parallel mit sich selbst nach rechts, so werden die
Winkel o« und @ kleiner und, da der Winkel « dabei gegen Null

monoton abnimmt, wird er schliesslich kleiner als ‘_7;’

dann immer noch zuerst « > {3 wiire. Dies steht aber im Wider-

wobei
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spruch zum oben erledigten Fall 1. Damit ist der Beweis des
Vogtschen Satzes erbracht.

10. Lemma. — Es seien o, B’ zweir Halbstrahlen mit den
Anfangspunkten bzw. in A, B (A # B) und es sei der Winkel
v = <) BAo' bet A spitz (eventuell = 0). Dann ldsst sich auf o’
ein Punkt a und auf B’ ein Punkt b so finden, dass

lab| < |Aa|—|Bb]| (7)

]
@ a

Fig. 2. Fig. 3.

gilt, und bet Vergrisserung der Distanz von a und A, sowte bet
Verkleinerung der Distanz von b und B bletbt die Relation (7)

richtig.

Beweis des Lemmas. — Lasst man (vgl. Fig. 2 und 3) a langs
o wandern und sich von A entfernen, so strebt der Winkel aBA
gegen © — v und wird von einem Punkt an grosser als der
Winkel v. Dann wird | ¢4 | > | aB |, und wenn b nahe genug
bei B auf B’ angenommen wird, bleibt (7) wahr.

Ist nun &' auf der Strecke bB gewihlt (vgl. Fig. 2, 3), so
gilt |ab’| <|ab| + | bb" | und daher |ab’| 4 | Bb'| < | ab|
+ | 00| + | Bb' | =|ab| 4+ | bB| < | Aa|. Wird aber a’ auf
der Verlingerung von Aa iiber a hinaus gewéhlt, so gilt | a’ b |
<|aa|+|ab|<|aa +|aAd]|—|bB| =|a A|—]|bB].
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11. Sarz II. — Es seien die Voraussetzungen des Salzes I
erfiillt und ferner sei der Winkel aus « nach dem Verbindungs-
pektor von A nach B kleiner als der Winkel aus diesem Ver-
bindungsvektor bet B nach B. Sei a ein Punkt auf dem Lot in A
zu o auf der B zugewandten Seite und b etn Punkt auf dem Lot in B
zu B auf der A zugewandten Seite. (Vgl. Fig. 4—8 in denen die
Strecke AB als vertikal und zwar von A nach B, von unten nach
oben, durchlaufen orientiert gedacht wird.)

Notwendig und hinreichend, damit es einen I'-Bogen s gibt,
der von A nach B liuft und ber dem a als Kriimmungsmittelpunkt
dem Punkte A und b als Kriimmungsmittelpunkt dem Punkte B
entspricht, ist, dass die Relation

laA | > |ab| + | bB | C(8)
besteht.

12. Beweis, dass (8) notwendig ist. — Sei o der von a nach b
verlaufende Evolutebogen zu s. Dann gilt fiir die Linge von o
einerseits

lo| =ld4da|—|Bb| (9)

und andererseits | o | > | ab |. Daraus folgt (8) unmittelbar.

13. Bewers, dass (8) hinreichend ist. — Wir bezeichnen,
wie 1m Satz I, den Winkel aus dem Linienelement « in die
Richtung AB wiederum mit « und analog den Winkel aus der
Verlangerung des Vektors AB iiber B hinaus in das Linien-
element § mit 8. Wir verldngern die Strahlen Aa und Bb bis zu
threm Schnittpunkt §, wobei § fiir « + 8 = = im Unendlichen
liegt. Wir haben nur zu zeigen, dass es moglich ist, ¢ mit b durch
einen Bogen o von der Linge | Aa| — | Bb| und der Gesamt-
drehung « 4 £ mit eigentlich monoton sich drehender und
stlickweise stetiger Tangente zu verbinden, der 4a in ¢ und Bb
in b beriihrt, und zwar so, dass, wenn ¢ von a nach » durchlaufen
wird, die gerichtete Tangente in @ nach 4 und in » nach B weist.

14. Denn ist es moglich, einen solchen Kurvenbogen o zu
zelchnen, so erhalten wir in der Evolvente dieses Bogens mit dem
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Anfangspunkt in A gerade einen I'-Bogen s, der die im Satze 11
behauptete Eigenschaft hat.

In der Tat lasst sich nach einem von uns kiirzlich bewiesenen
Satz 3 die Evolvente zu o mit den klassischen Eigenschaften
bereits dann bilden, wenn iiber o nicht mehr als die Existenz
einer sich eigentlich monoton drehenden und stiickweise stetigen
Tangente vorausgesetzt wird, wobei also endlich viele Ecken zu-
gelassen werden. Andererseits wird auf diese Weise mit einem
geeigneten Bogen o jeder I'-Bogen s erhalten, da, wie aus unseren
a.a.0. bewiesenen Resultaten folgt, jeder I'-Bogen eine Evolute
mit den in den klassischen Sdtzen gegebenen Eigenschaften
besitzt.

Um allerdings nur den Satz II, also die FExistenz eines
I'-Bogens s zu beweisen, geniigt es bereits, ¢ z.B. aus Kreishogen
zusammenzusetzen.

15. An sich lassen sich natiirlich wegen (8) ¢ und b durch
einen aus Kreisbogen zusammengesetzten Bogen o, der der
Bedingung (9) geniigt, ohne weiteres verbinden. Die weiteren o
auferlegten Bedingungen verlangen indessen eine genauere Dis-
kussion, die die Betrachtung verschiedener von der geometrischen
Konfiguration abhéngiger Fille bedingt.

Fall 1. — Seien die beiden Winkel o, § sputz (vgl. Fig. 4).
Wir zeigen zuerst, dass S zwischen ¢ und 4 und b zwischen §
und B liegt und zwar beide Male zw it schen tm eigentlichen
Stnne, so dass die gegenseitige Lage der Punkte der Fig. 4
entspricht. Nun ist im Dreieck ABS der Winkel be1 A grisser
als derjenige bei B, so dass auf jeden Fall

| AS| < | BS| (10)

gilt. Lage S auf dem Halbstrahl von 4 nach a entweder in «
oder iiber ¢ hinaus, so konnte nach dem Lemma der Nr. 10 in
der Ungleichung (8) a durch § ersetzt werden. Wir hiatten dann
die Ungleichung )

| SA | > |Sb| +|bB|>2|SB|,

entgegen (10). Lige aber § auf dem Strahl von B nach b in b
oder zwischen B und b, so konnte man in (8) nach dem obigen
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Lemma b durch S ersetzen. Wir erhalten aber dann
lad | > |aS| 4+ | SB ]
oder, wenn auf beiden Seiten | aS | abgezogen wird,

| SA| > |8B ],
was (10) widerspricht.

a
Fig. 4.
16. Aus der Fig. 4 folgt nunmehr
| AS| = |Aa | —|Sa], [|BS|=|Bb|+ [Sb].
Tragt man das in (10) ein, so ergibt sich
|Aa | —]Sa|l < |Bb|+[Sb],
| Aa| — | Bb| < |Sa|+ |Sb] .
Daraus folgt wegen (8):
lab| < |Aa|— |Bb| < |Sa|+ |Sb]|. (11)

Man kann daher im Dreieck aSb einen mit stetig und im
eigentlichen Sinne monoton sich drehender Tangente versehenen
Bogen o einzeichnen, der a$§ in a, bS in b beriihrt, im Uebrigen
vollstdndig innerhalb des Dreiecks ab$ verlauft und fiir den (9)




288 A. OSTROWSKI

gilt, womit in diesem Falle die Behauptung des Satzes II
bewiesen ist.

17. Fall II. — Sei o < <8, « + B = = (vgl. Fig. 5).
Dann verlduft der von B iiber b gehende Halbstrahl rechts von
der Strecke AB (oder fiir § = —;—c tiiber diese Strecke), wihrend

der von A tiiber a gehende Halbstrahl links von dieser Strecke

'S

verlauft. S kann (fiir « + 8 = =) auch ins Unendliche riicken.
Wir wollen nun zeigen, dass b zwischen B und S liegt, so dass
die Verhéltnisse in der Fig. 5 richtig wiedergegeben sind. Lége
in der Tat § in b oder zwischen b und B, so wiirde nach dem
Lemma die Relation (8) giiltig bleiben, wenn in ihr & durch S
ersetzt wird. Dann wiére aber | ad | > | aS| + | Sb |, wahrend
sicher | aA | = | a$ | ist.

Ferner ist die Differenz | Aa | — | Bb | sicher kleiner als die
Summe der beiden Seiten | aS |, | bS | im Dreieck abS, da ja
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bereits | @A | < | aS | ist. Daher kann man einen mit stetiger

Tangente versehenen Bogen o zwischen a und b zeichnen, der
die Linge | 6| = | Aa| — | Bb| hat und a4 sowie bB beriihrt.

Damit ist der Fall IT erledigt und zwar auch im Grenzfall B = 123,

wo § in A4 hineinfallt.

Fig. 6.

18. Fall III. — Es sei « =4 <8, « +p>mn (vgl

Fig. 6). Dann verlduft der Halbstrahl Bb rechts von A B, wihrend
der Halbstrahl Aa entweder links von AB verlauft oder in die
Gerade durch A und B hineinféllt. Im ersten Falle liegt S links

L’Enseignement mathém., t. II, fasc. 4. 3
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von AB, im zweiten fallt S in B hinein. ¢ kann entweder in der
Lage a’ zwischen A und § oder in der Lage von a”, iiber § hinaus,
liegen, oder sogar in § hineinfallen. In jedem Falle kann man &
mit a durch einen Bogen ¢ verbinden, der Bb in b und AS in «

Fig. 7

beriihrt und zugleich die Léange | Aa| — | Bb| > | ab|, sowie
die verlangten Endtangenten besitzt. Da bei der geometrischen
Konfiguration des Falles II1 die Linge von ¢ nicht nach oben
beschrinkt ist, ist damit dieser Fall erledigt.

19. Wir betrachten nunmehr den (letzten) Fall IV. Sei
8 > o« > = (vgl. Fig. 7, 8). Hier laufen die Halbstrahlen Bb
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und Aa rechts von AB, und S liegt im Endlichen rechts von AB.
a kann entweder die Lage von a’ zwischen 4 und § im eigentli-
chen Sinne (Fig. 7), oder die Lage von a” jenseits von S oder
in S haben (Fig. 8). b kann dhnlich die Lage " oder b'" ein-
nehmen, entweder zwischen B und S inklusive S, oder jenseits
von . ’

a’“
B ( B b’
<
' -
B
61 6 g

‘A

A

a
Fig. 8.

Hat a die Lage von a’, so lasst sich, wie aus der Fig. 7 ersicht-
lich, a’ mit b’ oder 6" durch einen Bogen o mit den verlangten
Eigenschaften verbinden, wobei in diesem Falle aus der geome-
trischen Konfiguration sich keine obere Schranke fiir die Linge
dieses Bogens ergibt.

20. Hat a die Lage von &' und b die Lage von 4", so gilt
(vgl. Fig. 8) dasselbe. Hat dagegen dann b die Lage von b’, so
verlduft der Verbindungsbogen ¢ von &'’ nach 4" mit den ver-
langten Beriihrungseigenschaften, wie aus der Fig. 8 ersichtlich,
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so, dass er eine Schleife macht und ausserhalb des Winkels 'S a”’
bleibt bis auf seine Endpunkte, und zwar gilt dies auch dann,
wenn b’ oder a’’ oder beide in S hineinfallen. Hier ist die Linge
von ¢ nach unten durch | " S| + | @” §| beschrinkt, und wir
haben nur zu zeigen, dass in diesem Falle die Ungleichung

| Aa” | — [ Bb | > [a” S|+ [ bS] (12)

gilt. Nun beachte man, dass im Dreieck ABS wegen 8 > o der
Winkel bei B der grissere ist. Daher gilt

| AS| > [BS]|,
| Aa” | —[Sa” | > | Bb"| + | Sb" |,

woraus (12) ohne weiteres folgt. Damit ist auch der Fall 1V
erledigt und der Beweis des Satzes II vollendet.

21. Beweis der Umkehrung des Vogtschen Satzes. — Unter
den Voraussetzungen dieser Umkehrung ist das Lemma der
Nr. 10 anwendbar, so dass sich fiir geeignete Punkte a, b die
Relation (7) verifizieren ldsst. Dann folgt aber aus dem Satz II,
dass A mit B sich durch einen I'-Bogen verbinden lassen, der «
in A und B in B berithrt. Damit ist der Beweis des Satzes I
vollendet.
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