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ÜBER DIE VERBINDBARKEIT VON LINIEN-
UND KRÜMMUNGSELEMENTEN DURCH MONOTON

GEKRÜMMTE KURVENBOGEN

VON

Alexander Ostrowski in Basel

1. Im Zusammenhang mit dem Vierscheitelsatz von Mukho-
padhyaya ist das Problem von Interesse, wann sich zwei

gegebene orientierte Linienelemente durch einen monoton
gekrümmten Bogen verbinden lassen. Eine notwendige Bedingung

hierzu wurde von W. Vogt1 angegeben. Allerdings ist der
sehr scharfsinnige Beweis von W. Vogt recht lang und umständlich.

Ferner benutzt dieser Beweis einen Satz von A. Kneser
über Krümmungskreise, dessen Beweis auf den Evoluteneigenschaften

beruht und daher damals von der „dreimaligen Diffe-
renzierbarkeit" der Kurve Gebrauch machte. Seitdem sind für
den Vogtschen Satz einfachere Beweise gegeben worden2.
Unter diesen setzt namentlich der erste der beiden Beweise

von Hirano die Difïerenzierbarkeit der Krümmung nicht voraus,
womit wohl der Vogtsche Satz zum ersten Mal unter genügend
allgemeinen Annahmen bewiesen wurde. Inzwischen habe ich
aber die Gültigkeit der Evolutesätze auch unter der Annahme
der Stetigkeit der Krümmung allein bewiesen3, so dass damit
auch die übrigen Beweise des Vogtschen Satzes in ihrer Tragweite

entsprechend erweitert worden sind.

1 W. Vogt, Ueber monoton gekrümmte Kurven. Journal für die reine und ange
wandte Mathematik, 144 (1914), pp. 239-248.

2 S. Katsuura, Ein neuer Beweis des Vogtschen Satzes. Tohoku Mathematical
Journal, 47 (1940), pp. 94-95; K. Hirano, Simple proofs of Vogt's theorem, daselbst,
pp. 126-128.

3 Vgl. A. Ostrowski, Ueber Evoluten und Evolventen ebener Kurven. Archiv der
Mathematik, 6 (1955), pp. 170-179, sowie A. Ostrowski, Un'applicazione dell'integrale
di Stieltj es alla teoria elementare delle curve piane. Rendiconti delVAccademia Nazio-
nale dei Lincei, serie VIII, vol. XVIII, 1955, pp. 373-375.
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2. Nun lässt sich, wenn man direkt die Evolutebögen in
die Betrachtungen hereinzieht, der Beweis des Vogtschen Satzes
recht anschaulich führen, wenn auch dabei eine Reihe von
Fällen, je nach dem Verlauf der Evolutebögen, zu unterscheiden
sind. Diesen anschaulich sehr zugänglichen Beweis gebe ich im
folgenden in den Nrn. 7—10. Zuerst gebe ich in den Nrn. 3, 4

zwei analytische Beweise des Vogtschen Satzes. Der erste ist in
den benutzten Hilfsmitteln mit dem oben erwähnten Hirano-
schen Beweis verwandt, aber, wie mir scheint, etwas einfacher
angelegt. Der zweite in Nr. 7 dargelegte bemerkenswert kurze
Beweis geht in seinem Grundgedanken auf Herrn B. Eckmann
zurück, mit dessen freundlicher Erlaubnis ich ihn hier veröffentliche.

Doch setzt dieser Beweis in seiner ursprünglichen elementaren

Gestalt die Differenzierbarkeit der Krümmung voraus.
Wir machen nun hier, unter Benutzung einer in einem ähnlichen
Zusammenhang von uns kürzlich entwickelten Methodik 1, von
dem Begriff des Stieljesintegrals Gebrauch, womit sich ein auch
im Falle, dass die Krümmung lediglich als monoton vorausgesetzt

wird, gültiger Beweis ergibt, der zwar dadurch an seinem
elementaren Charakter, nicht aber an seiner Kürze einbüsst.

3. Andererseits wird in dieser Mitteilung gezeigt, dass die

Vogtsche Bedingung nicht nur notwendig, sondern auch
hinreichend ist. Die genaue Formulierung der damit sichergestellten
notwendigen und hinreichenden Bedingung findet man in der
Nr. 5 als Satz I.

Der Beweis der Umkehrung des Vogtschen Satzes wird am
Schluss der Arbeit in der Nr. 21 erbracht, und zwar als ein
Korollar eines anderen Satzes, durch den die Fragestellung des

Vogtschen Satzes wesentlich erweitert wird. Wir fragen nämlich:

in welchem Umfang lassen sich die Krümmungsradien
vorgeben, wenn sich die beiden zugehörigen Linienelemente durch
einen monoton gekrümmten Bogen verbinden lassen Man
erhält die notwendige und hinreichende Bedingung dazu, wenn
man über die Bedingungen des Satzes I hinaus verlangt, dass

die Differenz der vorgegebenen Krümmungsradien die Distanz

i Vgl. die zweite der in der Fussnote 3 zitierten Mitteilungen.
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der Krümmungsmittelpunkte überschreitet. Dieser Satz (Satz II)
wird in der Nr. 11 vollständig formuliert. Der Beweis, dass die

Bedingung dieses Satzes notwendig ist (Nr. 12), ist fast unmittelbar.

Zum Beweis hingegen, dass jene Bedingung auch hinreichend

ist, der in den Nrn. 13—20 erbracht wird, müssen wir eine Reihe

von Fällen genau diskutieren, die sich je nach der besonderen

Lage des vorkommenden Evolutebogens ergeben.

4. Bei diesen Betrachtungen erweist sich die Benutzung der
Evolute als erzeugendes Element eines monoton gekrümmten
Bogens besonders vorteilhaft. Wenn hiervon bisher, wie es

scheint, wenig Gebrauch gemacht wurde, so dürfte dies wohl
daran liegen, dass über die Differenzierbarkeitsbedingungen, die
der Fadenkonstruktion zu Grunde liegen, keine Klarheit
herrschte. Die direkte Durchführung der Rechnung scheint
zuerst die dreimalige Differenzierbarkeit vorauszusetzen 1. Durch
etwas sorgfältigeres Rechnen kann man die Differentiationsordnung

auf 2 herabdrücken. Durch eine Änderung des Ansatzes
ist es uns aber kürzlich gelungen zu zeigen, dass die
Fadenkonstruktion bereits auf Kurvenbögen monotoner Drehung
anwendbar ist und die sich ergebende Evolvente die ursprüngliche

Kurve zur Evolute hat3. Dadurch ist die Anwendbarkeit
dieser Methode in sinngemässem Umfang sichergestellt.

5. Wir nennen einen orientierten Kurvenbogen y einen
T-Bogen, wenn längs y der Krümmungsradius positiv und stetig
ist, monoton abnimmt mit eventuell höchstens endlich vielen
Konstanzintervallen und im Endpunkt kleiner als im Anfangspunkt

ist, während die Gesamtdrehung kleiner als 2tc bleibt.

Satz I. (Der Vogtsche Satz und seine Umkehrung.) —
Es seien a, ß zwei orientierte Linienelemente bzw. durch die
Punkte A, B, wobei a beim Durchlaufen der Strecke AB von A
nach B nach rechts und ß nach links weist. Notwendig und hinreichend

dafür, dass A und B durch einen ex. in A und ß in B berührenden

von A nach B laufenden Y-Bogen s verbindbar sind (vgl. Fig. 1

1 Vgl. A. Ostrowski, Vorlesungen über Differential- und Integralrechnung, 1, Basel,
1950, pp. 406-408.
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ist, dass der (in der Fig. 1 gleichfalls mit a bezeichnete) Winkel
aus a nach dem Verbindungsvektor AB kleiner ist als der (in der
Fig. 1 gleichfalls mit ß bezeichnete) Winkel aus dem Vektor AB
nach ß.

Fig. 1.

6. Beweis der Notwendigkeit (Der Vogtsche Satz). — Wir
legen die Achsen so, dass der Koordinatenursprung in A liegt
und die positive Richtung in die Richtung oc weist. Ist dann 0

der Tangentenrichtungswinkel längs s und p p (0) der als

Funktion von 0 ausgedrückte Krümmungsradius von s, so gilt
für den komplex geschriebenen allgemeinen Punkt Ç (0) x + iy
von «9, der zu einem 0-Wert gehört,

0

5(6) JP (6) ei0rf 6

0

und daher, wenn S a + ß die Gesamtdrehung länge s bedeutet,

im Endpunkt B von 5

s

5(8) ~ Jp(e)eied6 (1)
0

wobei \ (8) Teicc ist, unter T die Distanz | AB | und unter a

der in Frage kommende Winkel bei A (siehe Fig. 1) verstanden.

Dann haben wir ei8 Ç (S) 7Vß, wo ß der entsprechende Winkel
bei ^ ist.

Da nun sowohl a als auch ß jetzt zwischen 0 und iz gelegen

sind, folgt die Behauptung ß > a, wenn wir beweisen, dass

T cos a > T cos ß,
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s

dl Ç (8) > 9Î 5(8), J p (0) [cos 0 — cos (8 — 0)] d 0 >0
0

gilt. Da die Kosinusdifferenz unter dem Integralzeichen gleich
8 / 8 \ 8

2 sin sin — — 6 j und - < n ist, genügt es zu beweisen, dass

s

|p(0) sin(| — e)d0 > 0 (2)

5

8
ist. Führt man aber im Integral links — — 0 9 als neue

Integrationsvariable ein, so wird dieses Integral zu

s/2 o

j p(^| — 9) sin 9 d 9 -j- J p — 9^ sin 9^9
0 ~8k

Im zweiten Integral führen wir — 9 statt 9 als neue
Integrationsvariable ein. Dann verwandelt sich schliesslich das Integral

in (2) in

s/2

/ [p (I* ~ 9) ~~ p ("I + 9)]sin 9 d 9 '

0

und dies ist in der Tat grösser als Null; denn es könnte nur dann
gleich Null sein, wenn p (0) längs des ganzen Bogens s konstant
wäre, was aber ausgeschlossen ist.

7. Zweiter Beweis des Vogtschen Satzes. — Wir denken uns y
so orientiert, dass A und B auf der x-Achse liegen, während y
sonst unterhalb der x-Achse verläuft. Betrachten wir dann das

Integral
F xyds

AyB

wo x die Krümmung und s die Bogenlänge ist, so ist es wegen
xds dQ, y — sin 0 gleich

B

J sin 0 d 0 — cos 9 / cos a — cos ß

AyB A
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Anderseits kann das obige Integral, da y zuerst ab und dann
zunimmt und daher von beschränkter Variation ist, als das

Stielt]esintegral J xdy aufgefasst werden. Beachtet man nun,
AyB

dass y in den Endpunkten von y verschwindet und sonst negativ
ist, während x längs y monoton zunimmt, so lässt sich auf dieses

Integral die auf Stieltjessche Integrale anwendbare Umformung
durch partielle Integration wie folgt anwenden:

J xdy — J ydx > 0

AyB AyB

Wir sehen, dass cos a > cos ß, a < ß ist, w.z.b.w.

8. Dritter Beweis des Vogtschen Satzes. — Seien a, b die

Krümmungsmittelpunkte von s, die bzw. den Punkten A, B
entsprechen, und sei a die von a nach b durchlaufene Evolute
des T-Bogen s, längs deren dabei die Tangente sich im positiven
Sinne dreht; und zwar weist die Anfangstangente an er in a
nach A und die Endtangente an a in b nach B. Es ist dann
| g | — | A a I — I Bb |. S sei der Schnittpunkt der Normalen
an s in A und B.

Wir unterscheiden drei Fälle.

1. Fall, a < y— Wir nehmen an, dass ß < — ist, da

sonst nichts zu beweisen ist. Die Konfiguration entspricht dann
der Fig. 4 der Nr. 15. In dieser Figur verläuft er zuerst rechts
des Halbstrahls Aa, und da die Drehung oc + ß längs a kleiner
als tu ist, bleibt a rechts von Aa. Aus dem gleichen Grunde
bleibt er links von Bb, was nur dann möglich ist, wenn S in der

Fig. 4 zwischen a und A, und b zwischen B und S liegt und er

im Dreieck abS verläuft. Daher gilt
| | -H 1 bS t > | a | =* | Aa — | Bb \

und daher
| Bb | ^ | bS | > | Aa | — | aS |

d.h. | BS | > | AS |. Dann ist aber im Dreieck ABS die Seite BS

die grössere und der Winkel bei B, ~ — ß, kleiner als der

Winkel bei A, — a, w.z.b.w.
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2. Fall Sei a > j, ß > j. — Dann haben wir es mit einer

der vier Konfigurationen zu tun, die in den Fig. 7 in Nr. 19 und 8

in Nr. 20 gezeichnet sind, wobei von a die Lagen a' und a" und

von b die Lagen V und b" in Frage kommen. In diesen vier
Fällen haben wir aber für die Differenz | AS | — | BS | bzw. die

folgenden Ausdrücke:

\Aa'\ — \Bb'\Jr{\a'S\ — \b'S\)= \ a1 | — (| V S | — | A S |) ; (3)

| Aa' | — | Rh" | + | £ S | À I Sb" I I er | + (| a7 S 1 + I Sb" |) ; (4)

I Aa" \ — \Rb'\ — (\ Sa" | -f | V S |) « | | — (| Sa" | + | V S |) ; (5)

I Aa" I — I Rh" I — (I Sa" | — | Sb" |) | a | — (| Sa" | — | Sb" |) (6)

Nun gilt in den entsprechenden Figuren

I a, I > I a' V I I a | > | a" b" |

Daher sind die Ausdrücke (3) und (6) beide positiv. Beim
Ausdruck (4) ist dies evident, während beim Ausdruck (5) ein Blick
auf die Fig. 8 in Nr. 20 zeigt, dass unter den den Tangenten
an g1 in a" und b' auferlegten Bedingungen der Bogen a1 ausserhalb

des Winkels b'Sa" verläuft. Daher ist auch der Ausdruck
(5) positiv.

Daher ist im Dreieck ABS die Seite AS die grössere und der

Winkel a — ~ bei A kleiner als der Winkel ß — ~ bei B.

9. Wir betrachten endlich den 3. Fall, a > y > ß. Wäre

a ß -y? so lägen a und b auf der Geraden AB und daher

müsste or zuerst rechts von AB verlaufen und schliesslich von
links in b hineinkommen, während die Gesamtdrehung a + ß n
ist. Daher bleiben nur die beiden Möglichkeiten: a y, ß < ;

a > ß y- Verschiebt man nun die Gerade durch AB
stetig und parallel mit sich selbst nach rechts, so werden die
Winkel a und ß kleiner und, da der Winkel a dabei gegen Null
monoton abnimmt, wird er schliesslich kleiner als wobei
dann immer noch zuerst a > ß wäre. Dies steht aber im Wider-
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spruch zum oben erledigten Fall 1. Damit ist der Beweis des

Vogtschen Satzes erbracht.

10. Le m ma. — Es seien a', ß' zwei Halbstrahlen mit den

Anfangspunkten bzw. in A, B (A ^ B) und es sei der Winkel
y «s <) BAol' bei A spitz (eventuell 0). Dann lässt sich auf v!
ein Punkt a und auf ß' ein Punkt b so finden, dass

Fig. 2. Fig. 3.

gilt, und bei Vergrösserung der Distanz von a und A, sowie bei

Verkleinerung der Distanz von b und B bleibt die Relation (1
richtig.

Beweis des Lemmas. — Lässt man (vgl. Fig. 2 und 3) a längs
a' wandern und sich von A entfernen, so strebt der Winkel aBA

gegen n — y und wird von einem Punkt an grösser als der

Winkel y. Dann wird | aA | > ] aB |, und wenn b nahe genug
bei B auf ß' angenommen wird, bleibt (7) wahr.

Ist nun V auf der Strecke bB gewählt (vgl. Fig. 2, 3), so

gilt | ab' | < | ab | + | bb' | und daher | ab' | + | Bb' | < | ab \

+ | bb' | + | Bb' \ \ ab \ + \ bB \ < \ Aa \ Wird aber a' auf
der Verlängerung von Aa über a hinaus gewählt, so gilt | a' b |

< | a' a | + | ab | < | a' a\ + | aA | — | bB { \ a' A \ — | bB |.
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11. Satz II. — Es seien die Voraussetzungen des Satzes I
erfüllt und ferner sei der Winkel aus ol nach dem Verbindungsvektor

von A nach B kleiner als der Winkel aus diesem

Verbindungsvektor bei B nach ß. Sei a ein Punkt auf dem Lot in A

zu a auf der B zugewandten Seite und b ein Punkt auf dem Lot in B
zu ß auf der A zugewandten Seite. (Vgl. Fig. 4—8, in denen die
Strecke AB als vertikal und zwar von A nach B, von unten nach
oben, durchlaufen orientiert gedacht wird.)

Notwendig und hinreichend, damit es einen V-Bogen s gibt,
der von A nach B läuft und bei dem a als Krümmungsmittelpunkt
dem Punkte A und b als Krümmungsmittelpunkt dem Punkte B
entspricht, ist, dass die Relation

| aA | > | ab ] + j bB | (8)
besteht.

12. Beweis, dass (8) notwendig ist. — Sei a der von a nach b

verlaufende Evolutebogen zu «9. Dann gilt für die Länge von a
einerseits

| a | | Aa [ ~ | Bb [ (9)

und andererseits \ g \ > | ab |. Daraus folgt (8) unmittelbar.

13. Beweis, dass (8) hinreichend ist. — Wir bezeichnen,
wie im Satz I, den Winkel aus dem Linienelement a in die
Richtung AB wiederum mit a und analog den Winkel aus der
Verlängerung des Vektors AB über B hinaus in das
Linienelement ß mit ß. Wir verlängern die Strahlen Aa und Bb bis zu
ihrem Schnittpunkt S, wobei S für a + ß n im Unendlichen
liegt. Wir haben nur zu zeigen, dass es möglich ist, a mit b durch
einen Bogen er von der Länge | Aa | — \ Bb\ und der Gesamtdrehung

a + ß mit eigentlich monoton sich drehender und
stückweise stetiger Tangente zu verbinden, der Aa in a und Bb
in b berührt, und zwar so, dass, wenn cj von a nach b durchlaufen
wird, die gerichtete Tangente in a nach A und in b nach B weist.

14. Denn ist es möglich, einen solchen Kurvenbogen er zu
zeichnen, so erhalten wir in der Evolvente dieses Bogens mit dem
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Anfangspunkt in A gerade einen T-Bogen s, der die im Satze II
behauptete Eigenschaft hat.

In der Tat lässt sich nach einem von uns kürzlich bewiesenen
Satz 3 die Evolvente zu g mit den klassischen Eigenschaften
bereits dann bilden, wenn über g nicht mehr als die Existenz
einer sich eigentlich monoton drehenden und stückweise stetigen
Tangente vorausgesetzt wird, wobei also endlich viele Ecken
zugelassen werden. Andererseits wird auf diese Weise mit einem
geeigneten Bogen a jeder T-Bogen s erhalten, da, wie aus unseren
a.a.O. bewiesenen Resultaten folgt, jeder T-Bogen eine Evolute
mit den in den klassischen Sätzen gegebenen Eigenschaften
besitzt.

Um allerdings nur den Satz II, also die Existenz eines

T-Bogens s zu beweisen, genügt es bereits, cj z.B. aus Kreisbögen
zusammen zusetzen.

15. An sich lassen sich natürlich wegen (8) a und b durch
einen aus Kreisbögen zusammengesetzten Bogen er, der der
Bedingung (9) genügt, ohne weiteres verbinden. Die weiteren g

auferlegten Bedingungen verlangen indessen eine genauere
Diskussion, die die Betrachtung verschiedener von der geometrischen
Konfiguration abhängiger Fälle bedingt.

Fall /. — Seien die beiden Winkel a, ß spitz (vgl. Fig. 4).
Wir zeigen zuerst, dass S zwischen a und A und b zwischen S

und B liegt und zwar beide Male zwischen im eigentlichen
Sinne, so dass die gegenseitige Lage der Punkte der Fig. 4

entspricht. Nun ist im Dreieck ABS der Winkel bei A grösser
als derjenige bei B, so dass auf jeden Fall

| AS | < J BS | (10)

gilt. Läge S auf dem Halbstrahl von A nach a entweder in a
oder über a hinaus, so könnte nach dem Lemma der Nr. 10 in
der Ungleichung (8) a durch S ersetzt werden. Wir hätten dann
die Ungleichung

| SA | > | Sb | + | bB | > | SB |

entgegen (10). Läge aber S auf dem Strahl von B nach b in b

oder zwischen B und 6, so könnte man in (8) nach dem obigen
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Lemma b durch S ersetzen. Wir erhalten aber dann

| aA | > | aS | + I SB |

oder, wenn auf beiden Seiten | aS | abgezogen wird,

| SA | > I SB |

was (10) widerspricht.

Fig. 4.

16. Aus der Fig. 4 folgt nunmehr

| AS | | Aa | — I Sa | | BS | | Bb \ + j Sb {

Trägt man das in (10) ein, so ergibt sich

\Aa\ — \Sa\<\Bb\ + \Sb\,
\Aa\ — \Bb\<\Sa\ + \Sb\.

Daraus folgt wegen (8) :

\ab \ < \Aa\ — \Bb \ < \Sa \ + \Sb\ (11)

Man kann daher im Dreieck aSb einen mit stetig und im
eigentlichen Sinne monoton sich drehender Tangente versehenen

Bogen er einzeichnen, der aS in a, bS in b berührt, im Uebrigen
vollständig innerhalb des Dreiecks abS verläuft und für den (9)
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gilt, womit in diesem Falle die Behauptung des Satzes II
bewiesen ist.

17. Fall II. — Sei <* < y ^ ß, a + ß < 7r (vgl. Fig. 5).

Dann verläuft der von B über b gehende Halbstrahl rechts von
der Strecke AB (oder für ß über diese Strecke), während

der von A über a gehende Halbstrahl links von dieser Strecke

verläuft. S kann (für a + ß n) auch ins Unendliche rücken.
Wir wollen nun zeigen, dass b zwischen B und S liegt, so dass

die Verhältnisse in der Fig. 5 richtig wiedergegeben sind. Läge
in der Tat S in b oder zwischen b und B, so würde nach dem
Lemma die Relation (8) gültig bleiben, wenn in ihr b durch S

ersetzt wird. Dann wäre aber J aA | > | aS | + | Sb |, während
sicher | aA | < | aS | ist.

Ferner ist die Differenz | A a | — | Bb | sicher kleiner als die
Summe der beiden Seiten | aS j, | bS | im Dreieck abS, da ja

a

S
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bereits | aA | < | aS | ist. Daher kann man einen mit stetiger

Tangente versehenen Bogen er zwischen a und b zeichnen, der

die Länge | a | | A a | — | Bb | hat und aA sowie bB berührt.

Damit ist der Fall II erledigt und zwar auch im Grenzfall ß ~,
wo S in A hineinfällt.

a"

Fig. 6.

18. Fall III. — Es sei a < y < ß, a + ß > tc (vgl.

Fig. 6). Dann verläuft der Halbstrahl Bb rechts von AB, während
der Halbstrahl A a entweder links von AB verläuft oder in die
Gerade durch A und B hineinfällt. Im ersten Falle liegt S links

L'Enseignement mathém., t. II, fasc. 4. 3
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von AB, im zweiten fällt S in B hinein, a kann entweder in der
Lage a! zwischen A und S oder in der Lage von a", über S hinaus,
liegen, oder sogar in S hineinfallen. In jedem Falle kann man b

mit a durch einen Bogen g verbinden, der Bb in b und AS in a

Fig. 7

berührt und zugleich die Länge | Aa | — | Bb | > | ab |, sowie
die verlangten Endtangenten besitzt. Da bei der geometrischen
Konfiguration des Falles III die Länge von g nicht nach oben
beschränkt ist, ist damit dieser Fall erledigt.

19. Wir betrachten nunmehr den (letzten) Fall IV. Sei

ß > oc > Y (vgl. Fig. 7, 8). Hier laufen die Halbstrahlen Bb
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und Aa rechts von AB, und S liegt im Endlichen rechts von AB.

a kann entweder die Lage von a! zwischen A und S im eigentlichen

Sinne (Fig. 7), oder die Lage von a" jenseits von S odei

in S haben (Fig. 8). b kann ähnlich die Lage V oder b"
einnehmen, entweder zwischen ß und S inklusive S, oder jenseits

Hat a die Lage von a', so lässt sich, wie aus der Fig. 7 ersichtlich,

a' mit b' oder b" durch einen Bogen g mit den verlangten
Eigenschaften verbinden, wobei in diesem Falle aus der
geometrischen Konfiguration sich keine obere Schranke für die Länge
dieses Bogens ergibt.

20. Hat a die Lage von a" und b die Lage von so gilt
(vgl. Fig. 8) dasselbe. Hat dagegen dann b die Lage von so

verläuft der Verbindungsbogen er von a" nach b' mit den
verlangten Berührungseigenschaften, wie aus der Fig. 8 ersichtlich,
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so, dass er eine Schleife macht und ausserhalb des Winkels b'S a"
bleibt bis auf seine Endpunkte, und zwar gilt dies auch dann,
wenn b' oder a" oder beide in S hineinfallen. Hier ist die Länge
von er nach unten durch | b' S | -f- [ a" S | beschränkt, und wir
haben nur zu zeigen, dass in diesem Falle die Ungleichung

\Aa"\ — \Bb'\ > | a" S | + | KS | (12)

gilt. Nun beachte man, dass im Dreieck ABS wegen ß > a der
Winkel bei B der grössere ist. Daher gilt

\AS\>\BS\
| Aa" | — | Sa" | > | BV | + | SV |

woraus (12) ohne weiteres folgt. Damit ist auch der Fall IV
erledigt und der Beweis des Satzes II vollendet.

21. Beweis der Umkehrung des Vogtschen Satzes. — Unter
den Voraussetzungen dieser Umkehrung ist das Lemma der
Nr. 10 anwendbar, so dass sich für geeignete Punkte a, b die
Relation (7) verifizieren lässt. Dann folgt aber aus dem Satz II,
dass A mit B sich durch einen T-Bogen verbinden lassen, der a
in A und ß in B berührt. Damit ist der Beweis des Satzes I
vollendet.
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