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264 J. BRACONNIER

quelconque. On a toutefois des résultats analogues aux précédents,

dans le cas de G R2, lorsqu'on substitue à l'espace
£ (R2) l'espace des fonctions entières, le plan complexe étant
identifié à R2 [29].

Il est naturellement entendu que ce qu'on vient de lire ne
saurait passer pour un exposé de la théorie de la transformation
de Laplace et que le lecteur devra se reporter aux travaux la
concernant pour avoir d'autres renseignements.

§ 8. Représentations des groupes et de leurs algèbres

On sait l'intérêt considérable que l'on trouve à faire opérer
les groupes finis et les groupes compacts dans les espaces
vectoriels de dimensions finies, et les rapports étroits qui lient les

algèbres de ces groupes et les représentations ainsi obtenues.
De telles représentations s'avèrent insuffisantes dans le cas des

groupes localement compacts quelconques et il est nécessaire
de représenter ceux-ci comme groupes d'opérateurs dans des

espaces tels que les espaces de Banach ou de Hilbert. Bien que
l'on puisse pratiquement, dans le cas des groupes abéliens, se

borner à l'étude de leurs caractères, ces représentations sont si

étroitement liées à l'analyse harmonique qu'il a semblé utile
de résumer ici quelques-unes de leurs propriétés. L'exposé qu'on
lira ici est très succinct et on n'y trouvera pas trace des travaux
importants dont a été l'objet, en ces dernières années, la théorie
de la représentation des groupes h

1. Dans ce paragraphe, on désigne par G un groupe localement

compact, non nécessairement abélien. Soit E un espace
de Banach complexe et £ (E) l'algèbre normée des endomor-

phismes continus de E. Soit T une représentation de G dans le

groupe des éléments invêrsibles de £ (E) telle que, si on désigne

par Tx l'endomorphisme de E correspondant à x G G et par Tx.sl

i On ne peut que citer ici, sans autres précisions, les travaux de F. Bruhat,
I. Oelfand, R. Oodement, Harish-Chandra, O. W. Mackey, E. Mautner, M. Neu-
mark, I. Segal, etc.
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l'image de a G E par cet endomorphisme, l'application x-> Tx.a
de G dans E soit continue pour tout a G E; on dit brièvement

que l'objet (E, T) est une représentation de G dans E; si la
dimension de E est finie, cette dimension s'appelle encore la
dimension de la représentation (E, T). Ainsi une représentation
de dimension 1 (c'est-à-dire dans le groupe multiplicatif des

nombres complexes ^ 0) d'un groupe abélien G est ce qu'on a

appelé un caractère généralisé de G dans le § 7, n° 1. Toute
représentation de dimension n du groupe additif R est de la forme

x** exp (Ax) où A G £ (Cn). Remarquons que toute représentation

du groupe additif Z dans E est de la forme n -> An où A
est un endomorphisme inversible de E.

Soit (E, T) une représentation du groupe G; la fonction
x | [ Tx 11 tù (x) est une semi-norme sur G, semi-continue
inférieurement et bornée sur tout compact de G (cf. § 7, n° 2). On

désignera encore par L1 (G, co) l'algèbre normée obtenue en
munissant l'espace des fonctions intégrables dans G pour la
mesure de densité co de la norme Nx (/, co) J| / (x) |

• || Tx 11 dx
et du produit de composition. Si / G L1 (G, co) on pose

Tf > a § Tx • af(x) dx (a G E) (1)

On a alors Tf G £ (E) et j| Tf |J < N1 (/, co) et / Tf est une
représentation continue de Valgèbre normée L1 (G, co) dans

Valgèbre normée .C*(E), représentation qu'on désigne encore par
T. On a lim0(G) Tu a a pour tout vecteur a G E, ce qui
montre que l'ensemble des vecteurs a (a G E, / G L1 (G, co))

où / G JC (G) est total; on résume cette propriété en disant que T
n'est pas dégénérée. Il revient au même d'étudier les représentations

dans E du groupe G ou les représentations non dégénérées

des algèbres L1 (G, co) dans £ (E). En effet, soit co une semi-
norme sur G, vérifiant les conditions indiquées ci-dessus et soit T
une représentation (continue) et non dégénérée de L1 (G, co) dans
C(E), telle que l'on ait || Tf || < Nx (/, co) pour toute / GL1
(G, co); alors T se déduit d'une représentation de G dans E au
moyen de la formule (1).

Car, pour tout vecteur b E Tf. aj (aj G E, fa G L1 (G, co)) et
j

tout x G G, limo(G-) T Ux u • b Tx .h existe et, comme T n'est
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pas dégénérée, Tx se prolonge (par continuité) en un endomor-
phisme continu de E que l'on note encore Tx; comme l'application
x -* Ux j est continue dans G pour toute / G L1 (G, co), on vérifie
qu'il en est de même de l'application x -> Tx b et (E, T) est une
représentation de G dans E; enfin, comme g / — J(ê/x /) g dx
(la fonction intégrée prenant ses valeurs dans l'espace de Banach
L1 (G, ça)), on voit que T se déduit de la représentation (E, T) au
moyen de la formule (1) 1.

Par exemple, si I est un idéal à gauche fermé de L1 (G, co),

les translations Us (s G G) définissent par passage aux quotients
des endomorphismes de l'espace de Banach L1 (G, co)/I et on
obtient ainsi une représentation de G dans L1 (G, co)/I, représentation

à laquelle correspond, à l'aide de la formule (1), la
représentation canonique de L1 (G, co) dans l'algèbre des endomorphismes

de L1 (G, co)/I.
Soit (E, T) une représentation dans E du groupe G; on dit

qu'un sous-espace vectoriel fermé F de E est invariant par T s'il
est stable pour tous les endomorphismes Tx (x G G), ou, ce qui
est équivalent, par tous les Tf (/ G L1 (G, co)). Il est clair que,
si B est une partie de E, il existe un plus petit sous-espace vectoriel

fermé de E, invariant par T et contenant B; ce sous-espace
est dit engendré par B. On dit que la représentation (E, T) est

monogène s'il existe un vecteur a G E engendrant E ; a s'appelle
alors un générateur de (E, T).

On dit que la représentation (E, T) de G est irréductible si E
et { 0 } sont les seuls sous-espaces vectoriels fermés de E
invariants par T; pour qu'il en soit ainsi, il faut et il suffit que tout
vecteur a ^ 0 de E soit un générateur de (E, T). Toute
représentation de G, de dimension 1, est évidemment irréductible.
On verra plus loin une réciproque de cette propriété lorsque G

est abélien.

2. On dit que la représentation (E, T) du groupe G est
bornée si co (x) [( T^\\ 1 ; on a alors L1 (G, co) LX(G);
de plus T se prolonge en une représentation continue de l'algèbre
normée JTl1 (G) dans C'(E) en posant

1 On trouvera des applications de ceci dans R. Godement, A theory of spherical
functions, I. Trans. Amer. Math. Soc., t. 73, pp. 496-556 (1952).
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a \TXady.(x)(aëE), (2)

formule qui généralise évidemment (1).
Par exemple, si 1 < p < + oo, (Lp (G), U) est une représentation

bornée de G, dite régulière; son prolongement à JI11(G)
s'obtient naturellement en prenant pour U[X l'endomorphisme

de LP(G). Toute représentation bornée du groupe
additif R est de la forme ^->exp (Ax) où A est un endomor-

phisme convenable de E.

Supposons maintenant le groupe G abélien. On appelle spectre
de la représentation bornée (E, T) de G le cospectre de l'idéal
fermé de L1 (G), noyau de T; c'est aussi le spectre de la famille
des fonctions <Tx a, a'> où a est un vecteur de E et a' un
élément du dual de E. Si le spectre de la représentation (E, T) est

réduit à un point x £ G, le noyau de T est Vidéal Z (x), d'après le

théorème taubérien généralisé (§ 6, n° 3); il en résulte que

Tx (x, /, où / est l'endomorphisme identique de E, et

que Tf / (x) I (pour le voir, il suffit de remarquer que chacune
des fonctions <TX a, a'> est orthogonale à Z (i), donc

proportionnelle à <#, £>, ce qui entraîne aussitôt le résultat [13]).
Pour qu'une représentation bornée (E, T) du groupe abélien G

soit irréductible, il faut et il suffit qu'elle soit de dimension 1 : pour
voir que cette condition, trivialement suffisante, est nécessaire,
on prouve d'abord que le spectre de (E, T) est réduit à un point
x G G, ce qui entraîne que (E, T) est le caractère x^<(x,xy,
d'après ce qui précède, puisque (E, T) est monogène.

On ignore ce qui subsiste de ce critère d'irréductibilité lorsque
la représentation (E, T) n'est pas bornée. Toutefois, lorsque G
est un groupe élémentaire (§ 5, n° 3, b)), on peut montrer que si

(E, T) est une représentation de G, irréductible et à croissance
lente (i.e. telle que w soit majorée par un polynôme), (E, T) est
de dimension 1. Ce résultat est dû à L. Schwartz et généralise
un résultat un peu plus fin dû à J. Wermer 1 dans le cas où
G - Z.

i Cf. J. Wermer, The existence of invariant subspaces. Duke Math. J., t. 19,
pp. 615-622 (1952) et l'exposé de R. Pallu de la Barrière au Séminaire Bourbaki
(Paris, déc. 1953).
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On remarque que si (E, T) est une représentation à croissance
lente de G, T définit une distribution à valeurs dans C(E), tempérée
dans G; la transformée de Fourier de cette distribution a comme
support le spectre de la représentation (E, T) \ cette propriété permet
de construire des sous-espaces fermés de E, invariants par 71, de
telle sorte que si (E, T) est irréductible, son spectre se réduit à un
point de G et on conclut comme on l'a fait plus haut.

3. Soit maintenant E un espace hilbertien, dont la structure
est définie par une forme hermitienne positive qu'on désignera

par (a | b). On dit qu'une représentation (E, T) de G dans E est
unitaire si tous les opérateurs Tx sont unitaires, ou ce qui revient
au même, si l'adjoint T* de Tx est Tx-1 pour tout iGG. Une
représentation unitaire (E, T) de G est bornée et son prolongement

à JTL1 (G), défini par (2), est alors une représentation de

l'algèbre involutive JTt^G) dans l'algèbre involutive C(E), c'est-
à-dire que l'on a T* T~x. Inversement, si T est une représentation

continue de l'algèbre involutive normée L (G) dans

l'algèbre involutive C(E), la représentation de G dans E qu'on
en déduit, comme il a été dit au n° 1, est unitaire. La représentation

régulière (L2 (G), U) de G est évidemment unitaire.
Pour qu'une représentation unitaire (E, T) de G soit

irréductible, il faut et il suffit que la sous-algèbre formée des opérateurs
Tf (/ L1 (G), ou f G JC (G) soit partout dense dans C(E), muni
de la topologie de convergence simple dans E (c'est la topologie
dite forte).

Soit (E, T) une représentation unitaire du groupe G; on
vérifie facilement que, pour tout a 3 E, la fonction x-* (a | Tx. a)
est de type positif dans G; plus généralement, si a et b sont des

vecteurs de E, la fonction x -> (a | Tx b) appartient à V (G).
Cela étant, on appellera encore représentation monogène de G

dans E l'objet (E, 71, a) formé d'une représentation monogène
(E, T) et d'un générateur a de cette représentation; la fonction
de type positif x -* (a | Tx a) est dite caractéristique de la
représentation (E, T, a)\ Cette définition se justifie de la façon
suivante: on dit que deux représentations monogènes (E, T, a)
et (E', T\ a') de G sont équivalentes s'il existe un isomorphisme A
de l'espace hilbertien E sur l'espace hilbertien E' tel que l'on ait
A a a7 et A Tx Tx A pour tout x G G: pour qu'il en
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soit ainsi, il fautet il suffit que les fonctions caractéristiques de

(E, T, a) et (E', T', a') soient égales.

En outre, à toute fonction 9 G (G) correspond une représentation

monogène de G ayant 9 comme fonction caractéristique (et
dont, par suite, la classe d'équivalence est bien déterminée)
[12, 14, 23].

Soit, en effet, 9 G ?P (G) ; (/| g) Jg * f (x) 9 (x) dx est une forme
sesquilinêaire et positive dans L1 (G); l'ensemble des / G L1 (G) telles
que (/1 /) «a* 0 est un idéal à gauche N (9) et en complétant l'espace
préhilbertien quotient L1 (G)/N (9), on obtient un espace hilbertien
H (9); si x G G, l'application / -> Ux • f (resp / -> f f (x) 9 (x) dx) se

laisse prolonger par continuité, après passage aux quotients, en un
endomorphisme unitaire U (9)^ de H (9) (resp. une forme linéaire
continue dans H (9), qui s'identifie à un vecteur a G H (9)); on
obtient ainsi une représentation unitaire monogène (H (9), U (9), a)
de G dont la fonction 9 est caractéristique. Remarquons encore que
la représentation de L1 (G) dans G (H (9)), qui correspondà cette
représentation de G, s'obtient en associant à g G L1 (G) l'endomor-
phisme U (9)^ de H (9) obtenu, après passage aux quotients, en
prolongeant par continuité l'application / -> g * f ; U (9)^ a est la
classe de g G L1 (G) modulo l'idéal N (9).

Le procédé de construction qu'on vient de décrire s'étend facilement

lorsqu'on substitue à la fonction 9 G (G) une mesure de type
positif dans G, mais la représentation unitaire de G qu'on obtient
ainsi n'est pas en général monogène. En appliquant ceci à la mesure
définie par la masse 1 au point e G G, on obtient naturellement la
représentation régulière (L2 (G), U). Tout ceci est susceptible de
généralisations diverses, exposées en particulier dans les travaux de
R. Godement 1.

Soit (E, T, a) une représentation unitaire monogène de G
telle que || a || 1 et 9 G L?0 (G) sa fonction caractéristique;
pour que cette représentation soit irréductible, il faut et il suffit que
9 soit un point extrémal du sous-ensemble convexe lT0 (G) de L00 (G)
(cf. § 2, n° 3) (c'est-à-dire un caractère de G lorsque ce groupe
est abélien).

On peut ainsi montrer que le groupe G, ainsi que son algèbre
L1 (G), est séparé par ses représentations unitaires irréductibles,

1 En dehors de [14], on pourra consulter R. Godement, Mémoire sur la théorie
des caractères. Journal Math, pures et appt., t. XXX, pp. 1-110 (1951).
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résultat bien connu dans le cas des groupes compacts (et dans
celui des groupes abéliens

Diverses généralisations du théorème de Bochner et de

Plancherel-Weil permettent de réaliser la décomposition
spectrale d'une représentation unitaire au moyen de représentations

irréductibles ou de caractères. On se bornera ici à indiquer

le résultat obtenu dans le cas, le plus simple, où le groupe G
est abélien. Soit (E, T) une représentation unitaire de G; pour
tout couple (a, b) de vecteurs de E, la fonction x (a> Tx I b>

de cs?(G) est, d'après le théorème de Bochner, transformée de

Fourier d'une mesure qa?b G ATI1 (G): les mesures ont leurs

supports contenus dans le spectre de (E, T); on les appelle les

mesures spectrales relatives à la représentation (E, T). On a

ainsi (Tf a | b) ~ J/ (x) d\xa^{x) pour toute /GL1 (G). Les

mesures spectrales permettent la décomposition de la représentation

(E, T) suivant les caractères appartenant à son spectre
(théorème de Stone) [14, 32].

Soit J (G) l'espace vectoriel formé par les fonctions définies dans
G et intégrables pour toutes les mesures spectrales (Jia,b; à toute fonction

f G 0 (G) correspond un opérateur G £ (E), au moyen de la
formule (T7// a j b) § f (x) d\JLa,b {x) ; f -> Tf, est une représentation

de l'algèbre involutive J (G) dans C (E), telle que 0 Ti'lf<Il/Il-
En particulier, si A' est un ensemble borélien de G (que l'on peut
supposer contenu dans le spectre de (E, T7)), la formule (E (A') a | b)
sfc (A') définit un projecteur E (A') de E (sur le « sous-espace

spectral » de E, relatif à A7); si x G G, on voit facilement que, pour
tout e > 0, il existe une partition finie (A]) de G en ensembles boré-
liens, telle que l'on ait I (a I Tx b) — 21 <'x, Xj} (E (AG a | b) I < e

_ j
si Xj G Aj', d'où y Tx — S (x, Xj) E (A]) || < g, formule qu'on écrit

encore en vertu des propriétés des intégrales, sous la forme

Tx J iïy dE (x) ; on a de même Tf J / (x) dE (x) si / G L1 (G).

Remarquons enfin que d'après le théorème de Plancherel-Weil,
f ^ f est un isomorphisme de l'espace hilbertien L2 (G) sur l'espace

hilbertien L2 (G), isomorphisme qui à Ux (resp. Uf) fait correspondre

l'opérateur de multiplication par le caractère x' de G (resp. /); il est
alors clair que la mesure spectrale relative à la représentation régulière

de G, correspondant au couple (/, g) de fonctions de L2 (G), est

définie par d[ifj9 (x) — f (x) g (x) dx.
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