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264 ‘ J. BRACONNIER

quelconque. On a toutefois des résultats analogues aux précé-
dents, dans le cas de G = R? lorsqu’on substitue a I'espace
C (R?) l'espace des fonctions entiéres, le plan complexe étant
identifié a R2[29].

Il est naturellement entendu que ce qu'on vient de lire ne
saurait passer pour un exposé de la théorie de la transformation
de LapLack et que le lecteur devra se reporter aux travaux la
concernant pour avoir d’autres renseignements.

§ 8. Représentations des groupes et de leurs algebres

On sait I'intérét considérable que 1'on trouve a faire opérer
les groupes finis et les groupes compacts dans les espaces vec-
toriels de dimensions finies, et les rapports étroits qui lient les
algébres de ces groupes et les représentations ainsi obtenues.
De telles représentations s’aveérent insuffisantes dans le cas des
groupes localement compacts quelconques et 1l est nécessaire
de représenter ceux-ci comme groupes d’opérateurs dans des
espaces tels que les espaces de BaAnacu ou de HiLBERT. Bien que
I'on puisse pratiquement, dans le cas des groupes abéliens, se
borner a I’étude de leurs caracteres, ces représentations sont si
étroitement liées a ’analyse harmonique qu’il a semblé utile
de résumer ici quelques-unes de leurs propriétés. L’exposé qu’on
lira ici est tres succinet et on n’y trouvera pas trace des travaux
importants dont a été I'objet, en ces derniéres années, la théorie
de la représentation des groupes 1.

1. Dans ce paragraphe, on désigne par G un groupe locale-
ment compact, non nécessairement abélien. Soit E un espace
de Banacu complexe et £ (E) I’algebre normée des endomor-
phismes continus de E. Soit 7" une représentation de G dans le
groupe des éléments inveérsibles de £ (E) telle que, si on désigne
par T, I’endomorphisme de E correspondant a x € G et par T,.a

1 On ne peut que citer ici, sans autres précisions, les travaux de F. BRUHAT,
I. GELFAND, R. GODEMENT, HARISH-CHANDRA, G. W. MACKEY, E. MAUTNER, M. NEU-
MARK, I. SEGAL, elc.
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'image de a € E par cet endomorphisme, I'application z—~ 7,.a
de G dans E soit continue pour tout a € E; on dit brievement
que Lobjet (E, 7) est une représentation de G dans E; si la
dimension de E est finie, cette dimension s’appelle encore la
dimension de la représentation (E, 7). Ainsi une représentation
de dimension 1 (c’est-a-dire dans le groupe multiplicatif des
nombres complexes 7% 0) d’un groupe abélien G est ce qu'on a
appelé un caractére généralisé de G dans le § 7, n® 1. Toute repre-
sentation de dimension n du groupe additif R est de la forme
r — exp (Az) ou 4 € £7(C"). Remarquons que toute représenta-
tion du groupe additif Z dans E est de la forme n—+ A™ ou A4
est un endomorphisme inversible de E.

Soit (E, T) une représentation du groupe G; la fonction
z—||T.|| = o (x) est une semi-norme sur G, semi-continue
inférieurement et bornée sur tout compact de G (cf. § 7, n° 2). On
désignera encore par L! (G, o) l’algébre normée obtenue en
munissant ’espace des fonctions intégrables dans G pour la
mesure de densité o de la norme Ny ( = [|f (@) |.|| T, || do
et du produit de composition. Si f E L1 (G ®») on pose

T]_.a:fo~af(x)dx (acE) . (1)

On a alors T, € 7 (E) et || T} |] < N; (f, ) et f— T} est une
représentation continue de l’algebre normée L' (G, w) dans
Ualgébre normée & (E), representatlon qu’on désigne encore par
T. On a limg 7, . a = a pour tout Vecteur acE, ce qui
montre que 'ensemble des vecteurs 7, .a(a € E, f € L1 (G, w))
ou f € K (G) est total; on résume cette propriété en disant que T
n’est pas dégénérée. Il revient au méme d’étudier les représen-
tations dans E du groupe G ou les représentations non dégéné-
rées des algebres L (G, o) dans £ (E). En effet, soit o une semt-
norme sur G, vérifiant les conditions indiquées ci-dessus et soit T
une représentation (continue) et non dégénérée de L (G, w) dans
7 (E), telle que T'on ait || 7 || < Ny (f, @) pour toute f € L1
(G, w); alors T se déduit d’une représentation de G dans E au
moyen de la formule (1).

Car, pour tout vecteur b =X T} . a; (a; € E, f; € L1 (G, w)) et

. J .
tout z € G, limg@) Ty, .« - b = Tx . b existe et, comme 7 n’est
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pas dégénérée, T, se prolonge (par continuité) en un endomor-
phisme continu de E que I'on note encore 7; comme I'application
x — Uy . [ est continue dans G pour toute f € Ll (G, »), on vérifie
qu’il en est de méme de l'application z — T, . b et (E, T) est une
représentation de G dans E; enfin, comme g x f = f(Ux . f) g dx
(la fonction intégrée prenant ses valeurs dans l'espace de Banach

L1 (G, w)), on voit que T se déduit de la représentation (E, T) au
moyen de la formule (1) 1.

Par exemple, si I est un idéal a gauche fermé de L! (G, w),
les translations U, (s € G) définissent par passage aux quotients
des endomorphismes de I'espace de Bawnacu L! (G, w)/I et on
obtient ainsi une représentation de G dans I.! (G, w)/I, représen-
tation a laquelle correspond, a I'aide de la formule (1), la repré-
sentation canonique de L! (G, ) dans ’algébre des endomor-
phismes de L' (G, w)/I.

Soit (E, T) une représentation dans E du groupe G; on dit
qu'un sous-espace vectoriel fermé F de E est invariant par T s’1l
est stable pour tous les endomorphismes 7T, (z € ), ou, ce qui
est équivalent, par tous les T, (f € L' (G, w)). 1l est clair que,
s1 B est une partie de E, il existe un plus petit sous-espace vecto-
riel fermé de E, invariant par 7 et contenant B; ce sous-espace
est dit engendré par B. On dit que la représentation (E, T) est
monogéne s’1l existe un vecteur a € E engendrant E; a s’appelle
alors un générateur de (E, T).

On dit que la représentation (E, T') de G est wrréductible si E
et { 0 } sont les seuls sous-espaces vectoriels fermés de E inva-
riants par 7T'; pour qu’il en soit ainsi, 1l faut et il suffit que tout
vecteur a = 0 de E soit un générateur de (E, T'). Toute repré-
sentation de G, de dimension 1, est évidemment irréductible.
On verra plus loin une réciproque de cette propriété lorsque G
est abélien.

2. On dit que la représentation (E, T') du groupe G est
bornée si o (x) = || T,|| = 1; on a alors L! (G, w) = L (G);
de plus T se prolonge en une représentation continue de ’algebre
normée I (G) dans £ (E) en posant

1 On trouvera des applications de ceci dans R. GobpEMENT, A theory of spherical
functions, I. Trans. Amer. Math. Soc., t. 73, pp. 496-556 (1952).
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Tua:fTVadH(x) (aEE)7 (2)

formule qui généralise évidemment (1).

Par exemple, si 1 < p < + o, (L? (G), U) est une représen-
tation bornée de G, dite réguliére; son prolongement a It (G)
s'obtient naturellement en prenant pour U, I’endomorphisme
f— uxf de LP(G). Toute représentation bornée du groupe
additif R est de la forme x —exp (Ax) ou A est un endomor-
phisme convenable de E.

Supposons maintenant le groupe G abélien. On appelle specire
de la représentation bornée (E,T) de G le cospectre de I'idéal
fermé de L1 (G), noyau de T'; c’est aussi le spectre de la famille
des fonctions (7. . a,a’> ou a est un vecteur de E et a’ un
élément du dual de E. Si le spectre de la représentation (E, T') est
réduit @ un point x € é, le noyau de T est I'idéal Z (z), d’apreés le
théoréme taubérien généralisé (§ 6, n® 3); il en résulte que
T. = {x, x> I, ou I est endomorphisme identique de E, et
que T; = ]?(33) I (pour le voir, il suffit de remarquer que chacune
des fonctions (T, . a,a’> est orthogonale & Z (z), donc pro-

portionnelle & {(x, 7>, ce qui entraine aussitdt le résultat [13]).
Pour qu’une représentation bornée (E, T) du groupe abélien G
soit wrréductible, il faut et il suffit qu’elle soit de dimension 1: pour
voir que cette condition, trivialement suffisante, est nécessaire,
on prouve d’abord que le spectre de (E, T) est réduit a un point

7 € G, ce qui entraine que (E, T) est le caractére z— (xz, 7>,
d’apres ce qui précede, puisque (E, 7) est monogene.

On ignore ce qui subsiste de ce critéere d’irréductibilité lorsque
la représentation (E, T') n’est pas bornée. Toutefois, lorsque G
est un groupe élémentaire (§ 5, n° 3, b)), on peut montrer que si
(E, T') est une représentation de G, irréductible et a croissance
lente (i.e. telle que w soit majorée par un polyndéme), (E, T) est
de dimension 1. Ce résultat est di a L. Scuwartz et généralise

un résultat un peu plus fin di & J. WerMER ! dans le cas ou
G =1Z.

1 Cf. J. WErMER, The existence of invariant subspaces. Duke Math. J., t. 19,
pp. 615-622 (1952) et I’exposé de R. PALLU DE LA BARRIERE au Séminaire Bourbaki
(Paris, déc. 1953).
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On remarque que si (E, T') est une représentation a croissance
lente de G, T' définit une distribution & valeurs dans £’ (E), tempérée
dans G; la transformée de Fourier de cette distribution a comme
support le spectre de la représentation (E, T); cette propriété permet
de construire des sous-espaces fermés de E, invariants par T, de
telle sorte que s1 (E, T') est irréductible, son spectre se réduit a un

point de G et on coneclut comme on I’a fait plus haut.

3. Soit maintenant E un espace hilbertien, dont la structure
est définie par une forme hermitienne positive qu’on désignera
par (a | b). On dit qu’une représentation (E, 7') de G dans E est
unitaire si tous les opérateurs 7, sont unitaires, ou ce qui revient
au méme, si Padjoint 7 de T, est T,-1 pour tout z € G. Une
représentation unitaire (E, 7') de G est bornée et son prolonge-
ment a I (G), défini par (2), est alors une représentation de
I’algébre involutive MU (G) dans I'algébre involutive £ (E), ¢’est-
a-dire que 'on a T = 7. Inversement, si 7 est une représen-
tation continue de I'algébre involutive normée L (G) dans
I’algeébre involutive £ (E), la représentation de G dans E qu’on
en déduit, comme 1l a été dit au n° 1, est unitaire. La représen-
tation réguliere (L2 (G), U) de G est évidemment unitaire.

Pour qu'une représentation unitaire (E, 7) de G soit irré-
ductible, il faut et il suffit que la sous-algébre formée des opérateurs
T; (f € LY (G), ou | € K (G) soit partout dense dans £ (E), muni
de la topologie de convergence simple dans E (c¢’est la topologie
dite forte).

Soit (K, 7) une représentation unitaire du groupe G; on
vérifie facilement que, pour tout a € E, la fonction z— (a| T,.a)
est de type positif dans G; plus généralement, si a et b sont des
vecteurs de E, la fonction x— (a| 7, . b) appartient a < (G).

Cela étant, on appellera encore représentation monogéne de G
dans E l'objet (E, 7, a) formé d’une représentation monogene
(E, T) et d’un générateur a de cette représentation; la fonction
de type positif z— (a| 7, . a) est dite caractéristique de la
représentation (E, 7', a). Cette définition se justifie de la facon
suivante: on dit que deux représentations monogénes (E, 7', a)
et (E', T, a’) de G sont équivalentes §’1l existe un isomorphisme A
de I’espace hilbertien E sur ’espace hilbertien E’ tel que 'on ait
A.a=a et A.T =T.. A pour tout z € G: pour qu’il en
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soit ainsi, il faut et il suffit que les fonctions caractéristiques de
(E, T, a) et (E', 7", a’) soient égales.

En outre, a toute fonction ¢ € € (G) correspond une représen-
tation monogéne de G ayant ¢ comme fonction caractéristique (et
dont, par suite, la classe d’équivalence est bien déterminée)
[12, 14, 23].

Soit, en effet, ¢ € T (G); (f|g) = [ & * [ () ¢ (z) dx est une forme
sesquilinéaire et positive dans L! (G); I'ensemble des f € L (G) telles
que (f|f) = 0 est un idéal a gauche N (¢) et en complétant I'espace
préhilbertien quotient L' (G)/N (¢), on obtient un espace hilbertien
H (0); si x € G, application f — Uy . f (resp [ — f]‘ (x) © () dx) se
laisse prolonger par continuité, apres passage aux quotients, en un
endomorphisme unitaire U (¢), de H (¢) (resp. une forme linéaire
continue dans H (¢), qui s’identifie & un vecteur a € H (¢)); on
obtient ainsi une représentation unitaire monogene (H (¢), U (), a)
de G dont la fonction ¢ est caractéristique. Remarquons encore que
la représentation de L1 (G) dans £ (H (9)), qui corresponda cette
représentation de G, s’obtient en associant a g € L' (G) 'endomor-
phisme U (¢), de H (@) obtenu, aprés passage aux quotients, en
prolongeant par continuité l'application f — g*f; U (p), . a est la
classe de g € L1 (G) modulo I'idéal N (o).

Le procédé de construction qu’on vient de décrire s’étend facile-
ment lorsqu’on substitue a la fonction ¢ € 0 (G) une mesure de type
posittf dans G, mais la représentation unitaire de G qu’on obtient
ainsl n’est pas en général monogeéne. En appliquant ceci & la mesure
définie par la masse 1 au point e € G, on obtient naturellement la
représentation réguliere (L2 (G), U). Tout ceci est susceptible de
généralisations diverses, exposées en particulier dans les travaux de
R. GopeEMENT L.

Soit (E, T, a) une représentation unitaire monogéne de G
telle que || a]| =1 et ¢ €T (G) sa fonction caractéristique:
pour que cette représentation soit irréductible, il faut et il suffit que
@ soit un point extrémal du sous-ensemble convexe Ty (G) de L™ (G)
(cf. § 2, no 3) (c’est-a-dire un caractére de G lorsque ce groupe
est abélien). _

On peut ainsi montrer que le groupe G, ainsi que son algébre
LY (G), est séparé par ses représentations unitaires irréductibles,

1 En dehors de [14], on pourra consulter R. GopEMENT, Mémoire sur la théorie
des caractéres. Journal Math. pures et appl., t. XXX, pp. 1-110 (1951).
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résultat bien connu dans le cas des groupes compacts (et dans
celui des groupes abéliens !).

Diverses généralisations du théoréme de BocHNER et de
PrLaNcHEREL-WEIL permettent de réaliser la décomposition
spectrale d’une représentation unitaire au moyen de représen-
tations irréductibles ou de caractéres. On se bornera ici a indi-
quer le résultat obtenu dans le cas, le plus simple, ou le groupe G
est abélien. Soit (E, T) une représentation unitaire de G; pour
tout couple (a, b) de vecteurs de E, la fonction z — (a, 7, | b)
de V7 (G) est, d’apreés le théoréeme de BocHNER, transformée de

FouriEr d’une mesure p,,p € 9111(6}): les mesures @, p ont leurs
supports contenus dans le spectre de (E, T); on les appelle les
mesures spectrales relatives & la représentation (E, 7). On a
ainsi (T; . a|b) ff ) dpap (z) pour toute f€L!(G). Les
mesures spectrales permettent la décomposition de la représen-
tation (E, 7') suivant les caractéres appartenant & son spectre
(théoreme de StonE) [14, 32].

Soit J((J) 'espace vectoriel formé par les fonctions définies dans
G et intégrables pour toutes les mesures spectrales pa,b; a toute fonc-

tion /' € J (G) oorrespond un opérateur T; € 7 (E), au moyen de la
formule (7} . = [/ (@ ) dyta,b ( z); {* — T, est une représen-
tation del’algébre 1nvolut1ve J (G)dans £ (E), telle que || 7y || < |If']-

En particulier, si A’ est un ensemble borélien de G (que I'on peut
supposer contenu dans le spectre de (E, 7)), la formule (£ (A’) . a | b)
= fhg,b (A’) définit un projecteur E (A’) de E (sur le «sous-espace

spectral » de E, relatif a A’); si z € G, on voit facilement que, pour
tout € > 0, il existe une partition finie (Aj) de G en ensembles boré-
liens, telle que I’on ait | (a| Ty . b) ——Z(x > (E(A) . alb)| <e
si 2 € Aj, dou || Ty — X<z, 5> E (A !l e, formule qu'on écrit
j

encore en vertu des propriétés des 1ntegrales, sous la forme
Ty = [<{x, 2) dE (2); on a de méme Ty = ffA (z) si f € LY (G).

Remarquons enfin que d’apres le théoreme de PLANCHEREL-WEIL,
f—f est un 1s0morphlsme de espace hilbertien L2 (G) sur I'espace
hilbertien 1.2 (G), isomorphisme qui & Uy (resp. Uy) fait correspondre

Iopérateur de multiplication par le caractére x’ de G (resp. f); il est
alors clair que la mesure spectrale relative a la représentation régu-
liere de G, correspondant au couple (f, g) de fonctions de L2 (G), est

définie par dy; 4 (Z) = f( ) & () dz.
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