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L'ANALYSE HARMONIQUE DANS LES GROUPES

ABÉLIENS

Seconde partie

PAR

Jean Braconnier, Lyon

§ 7. La transformation de Fourier-Laplace

1. Il est naturellement intéressant d'étudier d'autres« caractères

» du groupe G, que les éléments de G. Ainsi, on dira qu'une
représentation continue de G dans le groupe multiplicatif des

nombres complexes ^ 0 est un caractère généralisé du groupe G;
il est clair que si un caractère généralisé de G est borné, il
appartient à G. L'ensemble des caractères généralisés de G,
muni de la multiplication usuelle des fonctions et de la topologie
de convergence compacte dans G est un groupe topologique
abélien et complet. Il est facile de construire les caractères
généralisés de G: remarquons d'abord que le groupe des caractères

généralisés de G est le produit direct du groupe G et du

groupe des caractères réels et > 0 de G, de telle sorte qu'il suffit
d'étudier ces derniers caractères. Désignons alors par Horn (G, R)
l'espace vectoriel formé des représentations réelles (i.e. dans R)
et continues de G; dans Horn (G, R), les topologies de convergence

simple et de convergence compacte coïncident et, muni
de l'une de ces topologies, Horn (G, R) est un espace de Banach.
L'application l exp (2izl) est un isomorphisme du groupe
additif de Horn (G, R) sur le groupe des caractères > 0 de G
et, par suite, (£, l) -> x exp (27tZ), est un isomorphisme de

G X Horn (G, R) sur le groupe des caractères généralisés de G.
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Les caractères généralisés ont été introduits par G. Mackey [20]
et J. Riss [28].

Par exemple, l'espace Horn (Rn, R) s'identifie avec Rn, car
toute représentation réelle et continue de Rn est une forme
linéaire continue et, par suite, de la forme x x j1 où y1 G Rn;
chaque caractère généralisé de Rn est donc de la forme x
exp (2îtcx ..y 2tux yx); on identifiera le groupe des caractères
généralisés de Rn avec le groupe Cn, en associant à y + tyi le
caractère décrit ci-dessus.

Soit alors p une mesure sur G; l'ensemble T (g) des

l G Horn (G, R) tels que exp (2tcl) p. G JTt1 (G) est convexe \ on
appelle transformée de Fourier-Laplace de g la transformée
de Fourier de la mesure exp (2tcZ) p (l G V (p)); plus précisément

on appelle transformée de Laplace 1 de p la fonction
continue L^ définie dans G X F (p) par

L^ (x, l) J <#, x> exp (2nl(x)) d p (x) (1)

Par exemple, la transformée de Laplace 2 de la mesure
pG Jtt1(Rn) est la fonction L{X(z) J exp (—2Î7tz x)dp(x),
holomorphe dans l'intérieur du cylindre Rn X T(p) de Cn; si
le support de p est compact, L^ est une fonction entière de type
exponentiel, d'après le théorème de Paley-Wiener. De même,
la transformée de Laplace de / G L1 (Z) s'identifie à la fonction

-f- oo

L/(2) 2 f (n) exP (^nnz)-> définie et de période 1 dans la
n= — co

bande R X F (/) du plan complexe, et holomorphe à l'intérieur
de cette bande, T (/) étant l'intervalle formé des nombres réels l
tels que la famille (/ (n) exp (—2iznl))nçjy soit sommable.

On ne connaît que peu de propriétés de la transformation de

Laplace dans le cas où G est distinct de Rn et de Zn. Signalons
seulement que, si T est un ensemble convexe de Horn (G, R),
l'ensemble des mesures ^p sur G telles que exp (2izl) p G J111 (G)

1 Les propriétés qu'on trouvera ici se rattachent essentiellement à celles de la
transformation de Laplace dans R, dite « bilatère ».

2 On trouvera des généralisations et des propriétés de la transformation de Laplace
dans Rn, par exemple dans L. Schwartz, Meedlanden Lunds Univ. Met. Sem., fasc.
dédié à M. Riesz (1952), pp. 196-206, article où l'on trouvera, d'autre part, des indications

bibliographiques.
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pour tout l G T, devient une algèbre lorsqu'on le munit des

opérations usuelles et du produit de composition, et que la
transformation de Laplace [x est un isomorphisme de cette algèbre

sur une algèbre de fonctions continues dans G X T.

Signalons encore ceci: le groupe Horn (G, R) est canonique-
ment isomorphe au groupe Horn (R, G) des représentations
continues de R dans G, c'est-à-dire des sous-groupes à un paramètre

de G. Si r est un tel sous-groupe à un paramètre, on peut
définir la dérivée au point x G G d'une fonction / définie au

voisinage de x par Drf(x) d^ ^ ^
^

On peut à partir
de là développer des éléments de calcul différentiel dans les

groupes abéliens, susceptibles de s'appliquer en particulier à

l'étude de la transformation de Laplace [20, 28]. J. Riss [28]
a de plus édifié une théorie des distributions dans les groupes
abéliens en utilisant les dérivées définies plus haut et étudié la
transformation de Fourier de ces distributions. Mais, à l'heure
actuelle, le maniement de ces techniques est encore trop malaisé

pour permettre une théorie intéressante de la transformation
de Laplace.

2. On appelle semi-norme sur le groupe G une fonction > 0,
intégrable dans tout compact de G et telle que où(xy) < cù(x) co(y)

quels que soient x G G et y G G. Si co est une semi-norme dans G,
l'espace vectoriel L1 (G, co) formé des fonctions intégrables dans
G pour la mesure positive co (x) dx est aussi formé des fonctions /
telles que /co G L1 (G) (on identifie toujours des fonctions presque
partout égales dans G). Normé par Nx (/, co) J | / (x) | co (x) dx
et muni du produit de composition usuel (formule (2) du § 2),
L1 (G, co) devient une algèbre normée. De plus, si / G L1 (G, co)

et si x G G, on a Ux / G L1 (G, co) et Nx Ux /, co) < co (x) Nx (/,co) ;

on voit ainsi que U est une représentation de G dans le groupe
des endomorphismes continus et inversibles de l'espace de
Banach L1 (G, co) (cf. § 8, n° 1).

Tout caractère continu de l'algèbre L1 (G, co) est de la
forme x (/) J / (x) 9 (x) dx, où 9 est une fonction telle que
9/co G hœ (G); on vérifie alors que 9 est (presque partout) égale
à un caractère généralisé x exp (2tul) de G tel que exp (2ttZ) < co.
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Ainsi le spectre de l'algèbre L1 (G, ta) est en correspondance

biunivoque, et même homéomorphe, avec l'espace G X V où F
est l'ensemble compact de convexe de Hom(G, R) formé des

1
l < 2^ log où. On vient donc de voir que la valeur pour
/GL1 (G, où) du caractère correspondant au point (x, l) G G X F

est J <#, x) exP (27uZ (x)) .f (x) dx, c'est-à-dire égale à la valeur au

point (x, l) de la transformée de Laplace de /; la transformation
de Laplace est ainsi une représentation biunivoque et continue de

Valgèbre L1 (G, co) sur une sous-algèbre de Valgèbre des fonctions
continues dans Vespace localement compact G X T, et nulles à

V infini.
On peut alors déterminer les idéaux réguliers maximaux de

L1 (G, où): chacun d'eux est formé des fonctions de L1 (G, où) dont
la transformée de Laplace s'annule en un point bien déterminé

de G X T. On peut de plus développer pour l'algèbre L1 (G, où)

des considérations analogues à celles du § 5, n° 1. Mais on ignore
en général si le théorème taubérien subsiste pour cette algèbre;
un résultat dans ce sens est le suivant: si la semi-norme où sur R

est telle que ^ soit intégrable dans R, alors tout idéal fermé

de L1 (R, où) distinct de L1 (R, où) est contenu dans un idéal régulier

maximal (c'est-à-dire que, pour qu'un idéal fermé I de

L1 (R, où) soit égal à L1 (R, où), il faut et il suffit que pour tout
point z de la bande R X T de C, il existe une fonction / G I

/-»+ »
telle que / exp (—2inzx) f (x) dx ^ 0). Ce résultat est dû

J —oo

à A. Beurling 1.

3. La transformation de Laplace permet encore d'étudier,
dans une certaine mesure, d'autres algèbres de groupe. On sait

que l'espace vectoriel DTic (G) des mesures à support compact
sur G est le dual de l'espace C (G) des fonctions continues dans

G, muni de la topologie de convergence compacte (cf. §1, n° 1);
dans tout ce qui suit, on supposera Jltc (G) muni de la topologie

i Cf. A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur
application à une transformation fonctionnelle. Congrès int. des Mathématiciens,
Helsinki (1938).
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faible définie par G (G). Muni du produit de composition et de

finvolution usuels (§ 2, n° 2), DTic(G) est une algèbre involutive;
les idéaux de 3Ttc(G) que l'on considérera seront toujours faiblement

fermés: ce sont aussi les sous-espaces vectoriels de JTtc(G),

faiblement fermés et stables pour toutes les translations par les

éléments de G.

Comme xsv est un homéomorphisme de G dans DVic (G),

on vérifie facilement que les caractères (faiblement continus) de

01lc (G) sont de la forme /*^(q) J<x, x) exp (2nl(x)) d\x (x)

où (x, ï) est un point arbitraire de G X Horn (G, R); Xx,i (f2) est

ainsi la valeur au point (x, l) de la transformée de Laplace de

la mesure q; on voit ainsi que la transformation de Laplace
est une représentation biunivoque de l'algèbre involutive JI1C(G)

sur une sous-algèbre de l'algèbre des fonctions continues dans

G X Horn (G, R).
Si H est une partie de G (G), l'ensemble des mesures q

orthogonales aux translatées par les éléments de G des fonctions de H

(i.e. telles que J Us f (x) d\x {x) 0 si s G G et / G H) est un
idéal H' de DTic (G), formé des mesures îjl telles que £ / 0

si / G H. Si l'ensemble des fonctions Us f (s G G, / G H) n'est
pas total, on dit que H est moyenne périodique: pour qu'il en
soit ainsi, il faut et il suffit qu'il existe une mesure [i G 0 à

support compact et telle que jl * / 0 pour toute / G H. On

appelle ensemble spectral de H c; G (G) l'ensemble fermé de

G X Horn (G, R) formé des points (x, l) tels que l'on puisse
approcher uniformément sur tout compact de G la fonction
x exp (27il) par des combinaisons linéaires de translatées de
fonctions de H.

De même, si I est un idéal de dllc(G), on appelle ensemble

cospectral de I l'ensemble fermé de G X Horn (G, R) constitué
par les points où s'annulent les transformées de Laplace de

toutes les mesures appartenant à I. L'ensemble spectral de

H c G (G) est l'ensemble cospectral de l'idéal H'. Dans le cas où G
est quelconque, on voit facilement qu'on ne peut pas, en général,
approcher les fonctions de H c G (G) par des combinaisons
linéaires de caractères généralisés correspondant aux éléments
de l'ensemble spectral de H ou, ce qui revient au même, qu'un
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idéal de Jltc(G) n'est pas complètement déterminé par son
ensemble cospectral.

Mais, dans le cas de G R, L. Schwartz [29] a pu élaborer
une théorie complète, dont nous allons indiquer les résultats
essentiels. Rappelons d'abord que la transformée de Laplace

une fonction entière (de type exponentiel). Soit alors H une
partie de £ (R); on appelle spectre de H l'ensemble des fonctions
exponentielles monômes x xn exp (2iizzx) (n G N, z G C) que
l'on peut approcher uniformément dans tout compact de R par
des combinaisons linéaires de translatées de fonctions de H ; si

la fonction xn exp {2iizzx) appartient au spectre de H, il en est
de même de la fonction xm exp (2inzx) où 0 < m < n:
l'ensemble spectral de H est alors l'ensemble des nombres
complexes z tels que exp (2inzx) appartienne au spectre de H (d'où
une distinction entre spectre et ensemble spectral, le second
n'étant en quelque sorte qu'une partie du premier). Si H est

moyenne périodique, l'ensemble spectral de H est fermé et

discret; en fait, il est beaucoup plus «raréfié», comme on le

verra plus loin. Le résultat fondamental peut alors s'exprimer
de la façon suivante : si H est moyenne périodique, le spectre de H

est une partie topologiquement libre de (3 (R) et toute jonction de H

peut être approchée uniformément sur tout compact de R par des

combinaisons linéaires de fonctions de son spectre. On a même

beaucoup plus: toute fonction / G H possède un développement
formel canonique suivant le spectre de H ; ce développement
détermine la fonction / et permet de la reconstituer par le
procédé de sommation d'ÂBEL; il converge même vers / si / est
suffisamment dérivable.

Soit maintenant I un idéal de 0Tic (R). Si I ^ { 0 }, l'ensemble

cospectral de I est un ensemble fermé et discret; posons (z) 0

si le nombre complexe z n'appartient pas à l'ensemble spectral
de I et, dans le cas contraire, désignons par Çj- (z) le minimum
de l'ordre du zéro qu'ont au point z les transformées de Laplace
des mesures appartenant à I; on appelle cospectre de I l'ensemble
des fonctions x -> xn exp (2inzx) telles que 0 < n < (q (z). On

complète cette définition en appelant cospectre de l'idéal { 0 }

exp (— 2inzx) d[i(x) d'une mesure p. JTlc(R) est
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l'ensemble de toutes les exponentielles monômes. Le cospectre
d'un idéal I est ainsi formé des fonctions xn exp (2inzx) telles que

/+oo xn exp (— 2 i iz zx) d[i(x) — 0
— a?

pour toute p, G I. Réciproquement, si H cz C(R), le spectre de

H est le cospectre de l'idéal H' défini ci-dessus. Si H est moyenne
périodique, l'ensemble spectral de H est de densité finie, en ce

sens que

2 v(*)
\z\~r

quand r tend vers l'infini.
Le théorème indiqué ci-dessus permet alors de faire la

théorie des idéaux de 3TLC (R). Si z G C et si n est un entier > 0,

désignons par Z (z, n) l'idéal de Jîtc (R) formé des mesures dont
la transformée de Laplace a au point z un zéro d'ordre > n;
Z (z, n) est de codimension finie n. Les idéaux maximaux de

J!tc(R) sont les idéaux Z (z, 1); les idéaux primaires (i.e. qui sont
contenus dans un idéal maximal unique) sont les IL (z, n); enfin
tout idéal de Jllc (R) est V intersection des idéaux primaires qui le

contiennent. Autrement dit, tout idéal I ^ { 0 } de Jltc (R) est
formé des mesures p. dont les transformées de Laplace ont, en
chaque point z G C, un zéro d'ordre > Cj (z), ou ce qui revient
au même, telles que

/»+0O
/ xn exp (—2iizzx) d\x (x) 0

J —OC

si 0 < n < Cj (z).
On possède une théorie tout à fait analogue pour l'espace des

fonctions indéfiniment dérivables dans R dont le support est
compact et pour l'espace des distributions dans R (au lieu de
C (R)) h

Par contre, on ignore à peu près complètement ce qui subsiste
de ces résultats pour G Rn (n >1) et, à fortiori, pour G

i En dehors de [29], on trouvera d'importants compléments dans J. P. Kahane,
Sur quelques problèmes d'unicité et de prolongement, relatifs aux fonctions appro-chables par des sommes d'exponentielles. Ann. Inst. Fourier, t. V, pp. 39-130 (1953-
1954).
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quelconque. On a toutefois des résultats analogues aux précédents,

dans le cas de G R2, lorsqu'on substitue à l'espace
£ (R2) l'espace des fonctions entières, le plan complexe étant
identifié à R2 [29].

Il est naturellement entendu que ce qu'on vient de lire ne
saurait passer pour un exposé de la théorie de la transformation
de Laplace et que le lecteur devra se reporter aux travaux la
concernant pour avoir d'autres renseignements.

§ 8. Représentations des groupes et de leurs algèbres

On sait l'intérêt considérable que l'on trouve à faire opérer
les groupes finis et les groupes compacts dans les espaces
vectoriels de dimensions finies, et les rapports étroits qui lient les

algèbres de ces groupes et les représentations ainsi obtenues.
De telles représentations s'avèrent insuffisantes dans le cas des

groupes localement compacts quelconques et il est nécessaire
de représenter ceux-ci comme groupes d'opérateurs dans des

espaces tels que les espaces de Banach ou de Hilbert. Bien que
l'on puisse pratiquement, dans le cas des groupes abéliens, se

borner à l'étude de leurs caractères, ces représentations sont si

étroitement liées à l'analyse harmonique qu'il a semblé utile
de résumer ici quelques-unes de leurs propriétés. L'exposé qu'on
lira ici est très succinct et on n'y trouvera pas trace des travaux
importants dont a été l'objet, en ces dernières années, la théorie
de la représentation des groupes h

1. Dans ce paragraphe, on désigne par G un groupe localement

compact, non nécessairement abélien. Soit E un espace
de Banach complexe et £ (E) l'algèbre normée des endomor-

phismes continus de E. Soit T une représentation de G dans le

groupe des éléments invêrsibles de £ (E) telle que, si on désigne

par Tx l'endomorphisme de E correspondant à x G G et par Tx.sl

i On ne peut que citer ici, sans autres précisions, les travaux de F. Bruhat,
I. Oelfand, R. Oodement, Harish-Chandra, O. W. Mackey, E. Mautner, M. Neu-
mark, I. Segal, etc.
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