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L’ANALYSE HARMONIQUE DANS LES GROUPES
ABELIENS

Seconde partie

PAR

Jean BrAacONNIER, Lyon

§ 7. La transformation de Fourier-Laplace

1. Il est naturellement intéressant d’étudier d’autres « carac-

téres » du groupe G, que les éléments de G, Ainsi, on dira qu’une
représentation continue de G dans le groupe multiplicatif des
nombres complexes == 0 est un caractére généralisé du groupe G;
il est clair que si un caractére généralisé de G est borné, il

appartient & G. L’ensemble des caracteres généralisés de G,
muni de la multiplication usuelle des fonctions et de la topologie
de convergence compacte dans G est un groupe topologique
abélien et complet. Il est facile de construire les caracteres
généralisés de G: remarquons d’abord que le groupe des carac-

teres généralisés de G est le produit direct du groupe G et du
groupe des caracteres réels et > 0 de G, de telle sorte qu’il suffit
d’étudier ces derniers caractéres. Désignons alors par Hom (G, R)
I’espace vectoriel formé des représentations réelles (i.e. dans R)
et continues de G; dans Hom (G, R), les topologies de conver-
gence simple et de convergence compacte coincident et, muni
de Pune de ces topologies, Hom (G, R) est un espace de BaAnacH.
L’application [— exp (2nl) est un isomorphisme du groupe
addittf de Hom (G, R) sur le groupe des caractéres > 0 de G
eAt, par suite, (z, 1)~ z exp (2wl), est un 1somorphisme de

G X Hom (G, R) sur le groupe des caractéres généralisés de G.
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Les caractéres généralisés ont été introduits par G. Mackey [20]
et J. Riss [28].

Par exemple, 'espace Hom (R", R) s’identifie avec R™, car
toute représentation réelle et continue de R™ est une forme
linéaire continue et, par suite, de la forme x - x . y; ou y; € R";
chaque caractere généralisé de R™ est donc de la forme x —
exp (2imx ..y 4+ 2nx . y;); on identifiera le groupe des caractéres
généralisés de R"™ avec le groupe C", en associant a y -+ iy, le
caractere décrit ci-dessus.

Soit alors p une mesure sur G; I’ensemble I' (p) des
[ € Hom (G, R) tels que exp (2nl) p. € N (G) est conpexe; on
appelle transformée de FouriEr-LarLacE de yu la transformée
de Fourlier de la mesure exp (2=l) p ([ € I' (p)); plus précisé-
ment on appelle transformée de LaprLace! de u la fonction

A

continue L, définie dans G X I' (u) par

L, (& 1) = [ <z, &> exp @ul@)dp(@) . (1)

Par exemple, la transformée de LaprLaceE? de la mesure
wEIML(R™) est la fonction L, (z) = [ exp (— 2iwz . x) du (x),
holomorphe dans I'intérieur du cylindre R™ x I' (n) de C"; si
le support de w est compact, L, est une fonction entiére de type
exponentiel, d’apres le théoreme de PALEY-WIENER. De méme,

la transformée de LaprLacEk de f € L1 (Z) s’identifie a la fonction
-+ o

L, (z) = ?:_ f(n) exp (2iwnz), définie et de période 1 dans la

bande R X I (f) du plan complexe, et holomorphe a I'intérieur
de cette bande, I' (f) étant I'intervalle formé des nombres réels [
tels que la famille (f (r) exp (— 2nnl)), N so0it sommable.

On ne connait que peu de propriétés de la transformation de
Larracke dans le cas ou G est distinct de R™ et de Z". Signalons
seulement que, si I' est un ensemble convexe de Hom (G, R),
Pensemble des mesures p sur G telles que exp (2xl) p € N (G)

1 Les propriétés qu’on trouvera ici se rattachent essentiellement a celles de la
transformation de LarracE dans R, dite « bilatére ».

2 On trouvera des généralisations et des propriétés de la transformation de LAPLACE
dans R", par exemple dans L. SCHWARTzZ, Meedlanden Lunds Univ. Met. Sem., fasc.
dédié & M. Riesz (1952), pp. 196-206, article ou I'on trouvera, d’autre part, des indica-
tions bibliographiques.
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pour tout [ € I', devient une algébre lorsqu’on le munit des opé-
rations usuelles et du produit de composition, et que la trans-
formation de LAPLACE w — Li, est un isomorphisme de ceite algébre

sur une algébre de fonctions continues dans G X< I'.

Signalons encore ceci: le groupe Hom (G, R) est canonique-
ment isomorphe au groupe Hom (R, G) des représentations
continues de R dans G, c’est-a-dire des sous-groupes a un para-
metre de G. Sir est un tel sous-groupe & un paramétre, on peut

définir la dérivée au point x € G d’une fonction f définie au
__ df (zr (1))

dt {=
de la développer des éléments de calcul différentiel dans les
groupes abéliens, susceptibles de s’appliquer en particulier a
I’étude de la transformation de Laprack [20, 28]. J. Riss [28]
a de plus édifié une théorie des distributions dans les groupes
abéliens en utilisant les dérivées définies plus haut et étudié la
transformation de Fourier de ces distributions. Mais, a ’heure
actuelle, le maniement de ces techniques est encore trop malaisé
pour permettre une théorie intéressante de la transformation
de LAPLACE.

voisinage de x par D, f(x) . On peut a partir

2. On appelle semi-norme sur le groupe G une fonction > 0,
intégrable dans tout compact de G et telle que w(zy) < w(z) w(y)
quels que soient z € G et y € G. Si o est une semi-norme dans G,
Pespace vectoriel L! (G, w) formé des fonctions intégrables dans
G pour la mesure positive w (x) dz est aussi formé des fonctions f
telles que fw € L (G) (on identifie toujours des fonctions presque
partout égales dans G). Normé par N, (f, ) = [| [ (2) | & (z) dx
et mun1 du produit de composition usuel (formule (2) du § 2),
L (G, w) devient une algebre normée. De plus, si f € L! (G, o)
etsiz€G,onal, . fE€ LG, w)et N (U, . [, 0) <o ()N (f,o);
on voit ainsi que U est une représentation de G dans le groupe
des endomorphismes continus et inversibles de l'espace de
Banaca L (G, w) (cf. § 8, n° 1).

Tout caractere continu de I’algébre L! (G, w) est de la

forme y (f) = f]‘(x) ¢ (x) dz, ou ¢ est une fonction telle que
¢/w € L7 (G); on vérifie alors que ¢ est (presque partout) égale
a un caractére généralisé z exp (2rl) de G tel que exp (2nl) < w.
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Ainsi le spectre de l'algébre L' (G, o) est en correspondance

biunivoque, et méme homéomorphe, avec 'espace GxToul
est I’ensemble compact de convexe de Hom(G, R) formé des

1
| <5

f € L1 (G, ©) du caractére correspondant au point (z, 1) € G x T
est [ (x, 2> exp (27l (2)) f (2) dw, c’est-a-dire égale 4 la valeur au

log . On vient donec de voir que la valeur pour

point (z, 1) de la transformée de Larrack de f; la transformation
de LAPLACE est ainst une représentation biunivoque et continue de
Palgebre 1.1 (G, w) sur une sous-algébre de l'algébre des fonctions

continues dans l'espace localement compact G X I', et nulles a
linfint.

On peut alors déterminer les idéaux réguliers maximaux de
LY (G, w): chacun d’eux est formé des fonctions de L (G, o) dont
la transformée de LLAPLACE s’annule en un point bien déterminé

de G x T. On peut de plus développer pour I'algébre L! (G, w)
des considérations analogues a celles du § 5, n° 1. Mais on ignore
en général si le théoréme taubérien subsiste pour cette algebre;

un résultat dans ce sens est le suivant: si la semi-norme o sur R
log o (z)
1 4 22
de L1 (R, o) distinct de L' (R, o) est contenu dans un idéal régu-
lier maximal (c’est-a-dire que, pour qu'un idéal fermé 1 de
L! (R, w) soit égal a L' (R, w), 1l faut et il suftit que pour tout
point z de la bande R X I' de C, il existe une fonction f €I
At

telle que/ exp (— 2inzx) f (x) dx # 0). Ce résultat est di

est telle que soit tntégrable dans R, alors tout idéal fermé

a A. BEurLinGg L.

3. La transformation de LLapLAcCE permet encore d’étudier,
dans une certaine mesure, d’autres algebres de groupe. On sait
que l'espace vectoriel I, (G) des mesures & support compact
sur G est le dual de I'espace C (G) des fonctions continues dans
G, muni de la topologie de convergence compacte (cf. §1, n° 1);
dans tout ce qui suit, on supposera I, (G) muni de la topologie

1 Cf. A. BEURLING, Sur les intégrales de Fourier absolument convergentes et leur
application & une transformation fonctionnelle. Congrés ini. des Mathématiciens, Hel-
sinki (1938).
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faible définie par € (G). Muni du produit de composition et de
I'involution usuels (§ 2, n° 2), N, (G) est une algébre tnvolutive;
les idéaux de I, (G) que 'on considérera seront toujours faible-
ment fermés : ce sont aussi les sous-espaces vectoriels de I (G),
faiblement fermés et stables pour toutes les translations par les
éléments de G.

Comme « — ¢, est un homéomorphisme de G dans I, (G),
on vérifie facilement que les caractéres (faiblement continus) de
I, (G) sont de la forme y3,(u) = [ <z, > exp (2l (z)) dp. ()
ou (z, I) est un point arbitraire de G %X Hom (G, R); %z, (w) est
ainsi la valeur au point (z, /) de la transformée de Laprack de
la mesure w; on voit ainsi que la transformation de LAPLACE
est une représentation biunivoque de I’algébre involutive J1C,(G)
sur une sous-algébre de 'algébre des fonctions continues dans
G % Hom (G, R).

Si H est une partie de € (G), 'ensemble des mesures . ortho-
gonales aux translatées par les éléments de G des fonctions de H
(i.e. telles que [ U, . f(x)du(z) = 0sis€Get fC€H) est un
idéal H' de J1L, (G), formé des mesures p telles que p » f = 0
si f€ H. Si I'ensemble des fonctions U . f (s € G, [ € H) n’est
pas total, on dit que H est moyenne périodique: pour qu’il en
soit ainsi, 1l faut et il suffit qu’il existe une mesure p % 0 a
support compact et telle que p*f = 0 pour toute f< H. On
appelle ensemble spectral de H < C (G) 'ensemble fermé de
G x Hom (G, R) formé des points (z, 1) tels que 'on puisse
approcher uniformément sur tout compact de G la fonction
z exp (2nl) par des combinaisons linéaires de translatées de
fonctions de H.

De méme, si I est un idéal de I, (G), on appelle ensemble

cospectral de I I’ensémble fermé de G X Hom (G, R) constitué
par les points ou s’annulent les transformées de LaprLace de
toutes les mesures appartenant a . L’ensemble spectral de
H < C (G) est Uensemble cospectral de I'tdéal H'. Dans le cas ou G
est quelconque, on voit facilement qu’on ne peut pas, en général,
approcher les fonctions de H c € (G) par des combinaisons
linéaires de caracteres généralisés correspondant aux éléments
de I'ensemble spectral de H ou, ce qui revient au méme, qu’un
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idéal de I, (G) n’est pas complétement déterminé par son
ensemble cospectral.

Mais, dans le cas de G = R, L. Scawartz [29] a pu élaborer
une théorie complete, dont nous allons indiquer les résultats

essentiels. Rappelons d’abord que la transformée de Laprack
/1+oc
L, (z) = / exp (— 2inzx) du () d’'une mesure p € N, (R) est

une fonction entiere (de type exponentiel). Soit alors H une
partie de C (R); on appelle spectre de H I’ensemble des fonctions
exponentielles mondémes x — 2" exp (2iwzz) (n €N, z € C) que
Ion peut approcher uniformément dans tout compact de R par
des combinaisons linéaires de translatées de fonctions de H; si
la fonction a™ exp (2imzx) appartient au spectre de H, il en est
de méme de la fonction 2™ exp (2iwzz) ou 0 < m < n: 'en-
semble spectral de H est alors I'ensemble des nombres com-
plexes z tels que exp (2imzx) appartienne au spectre de H (d’ou
une distinction entre spectre et ensemble spectral, le second
n’étant en quelque sorte qu'une partie du premier). Si H est
moyenne périodique, I'ensemble spectral de H est fermé et
discret; en fait, il est beaucoup plus «raréfié», comme on le
verra plus loin. Le résultat fondamental peut alors s’exprimer
de la facon suivante: st H est moyenne périodique, le spectre de H
est une partie topologiquement libre de C (R) et toute fonction de H
peut étre approchée uniformément sur tout compact de R par des
combinaisons linéaires de fonctions de son spectre. On a méme
beaucoup plus: toute fonction f € H posséde un développement
formel canonique suivant le spectre de H; ce développement
détermine la fonction f et permet de la reconstituer par le pro-
cédé de sommation d’ABEL; i1l converge méme vers f si [ est
suffisamment dérivable.

Soit maintenant I unidéal de N, (R). SiT = {0}, ensemble
cospectral de I est un ensemble fermé et discret; posons ¢; (z) = 0
si le nombre complexe z n’appartient pas a ’ensemble spectral
de I et, dans le cas contraire, désignons par ¢; (z) le minimum
de I'ordre du zéro qu’ont au point z les transformées de LAPLACE
des mesures appartenant a I; on appelle cospectre de I I’ensemble
des fonctions x — 2™ exp (2inzz) telles que 0 << n << ¢;(2). On
compléte cette définition en appelant cospectre de I'idéal { 0 }
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Pensemble de toutes les exponentielles mondmes. Le cospectre
d’un idéal I est ainsi formé des fonctions 2™ exp (2iwzx) telles que

— 00

f+wx” exp (— 2inzx)dp(x) = 0

pour toute p € I. Réciproquement, si H < C (R), le spectre de
H est le cospectre de 'idéal H' défini ci-dessus. Si H est moyenne
périodique, 'ensemble spectral de H est de densiié finie, en ce
sens que |

2> vu(2) = O(r)

|z|<r

quand r tend vers 'infini.

Le théoréeme indiqué ci-dessus permet alors de faire la
théorie des idéaux de I, (R). Siz € C et si n est un entier > 0,
désignons par Z (z, n) I'idéal de I, (R) formé des mesures dont
la transformée de LAPLACE a au point z un zéro d’ordre > n;
Z (z, n) est de codimension finie n. Les itdéauxr maximaux de
N, (R) sont les idéaux Z (z, 1); les idéaux primaires (i.e. qui sont
contenus dans un 1déal maximal unique) sont les 7 (z, n); enfin
tout idéal de N, (R) est D'intersection des idéaux primaires qui le
contiennent. Autrement dit, tout idéal I {0} de I, (R) est
formé des mesures p dont les transformées de LarrLacE ont, en
chaque point z € C, un zéro d’ordre > ¢, (z), ou ce qui revient
au méme, telles que

/+wxn exp (—2imzx)dp(x) = 0
s1 0 < n <o (2).

On posséde une théorie tout a fait analogue pour 'espace des
fonctions indéfiniment dérivables dans R dont le support est
compact et pour I'espace des distributions dans R (au lieu de
C (R)) .

Par contre, on ignore & peu pres complétement ce qui subsiste
de ces résultats pour G = R"(n > 1) et, & fortiori, pour G

1 En dehors de [29], on trouvera d’importants compléments dans J. P. KAHANE,
Sur quelques problémes d’unicité et de prolongement, relatifs aux fonctions appro-
chables par des sommes d’exponentielles. Ann. Inst. Fourier, t. V, pp. 39-130 (1953-
1954).
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quelconque. On a toutefois des résultats analogues aux précé-
dents, dans le cas de G = R? lorsqu’on substitue a I'espace
C (R?) l'espace des fonctions entiéres, le plan complexe étant
identifié a R2[29].

Il est naturellement entendu que ce qu'on vient de lire ne
saurait passer pour un exposé de la théorie de la transformation
de LapLack et que le lecteur devra se reporter aux travaux la
concernant pour avoir d’autres renseignements.

§ 8. Représentations des groupes et de leurs algebres

On sait I'intérét considérable que 1'on trouve a faire opérer
les groupes finis et les groupes compacts dans les espaces vec-
toriels de dimensions finies, et les rapports étroits qui lient les
algébres de ces groupes et les représentations ainsi obtenues.
De telles représentations s’aveérent insuffisantes dans le cas des
groupes localement compacts quelconques et 1l est nécessaire
de représenter ceux-ci comme groupes d’opérateurs dans des
espaces tels que les espaces de BaAnacu ou de HiLBERT. Bien que
I'on puisse pratiquement, dans le cas des groupes abéliens, se
borner a I’étude de leurs caracteres, ces représentations sont si
étroitement liées a ’analyse harmonique qu’il a semblé utile
de résumer ici quelques-unes de leurs propriétés. L’exposé qu’on
lira ici est tres succinet et on n’y trouvera pas trace des travaux
importants dont a été I'objet, en ces derniéres années, la théorie
de la représentation des groupes 1.

1. Dans ce paragraphe, on désigne par G un groupe locale-
ment compact, non nécessairement abélien. Soit E un espace
de Banacu complexe et £ (E) I’algebre normée des endomor-
phismes continus de E. Soit 7" une représentation de G dans le
groupe des éléments inveérsibles de £ (E) telle que, si on désigne
par T, I’endomorphisme de E correspondant a x € G et par T,.a

1 On ne peut que citer ici, sans autres précisions, les travaux de F. BRUHAT,
I. GELFAND, R. GODEMENT, HARISH-CHANDRA, G. W. MACKEY, E. MAUTNER, M. NEU-
MARK, I. SEGAL, elc.
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