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L'ANALYSE HARMONIQUE DANS LES GROUPES

ABÉLIENS

Seconde partie

PAR

Jean Braconnier, Lyon

§ 7. La transformation de Fourier-Laplace

1. Il est naturellement intéressant d'étudier d'autres« caractères

» du groupe G, que les éléments de G. Ainsi, on dira qu'une
représentation continue de G dans le groupe multiplicatif des

nombres complexes ^ 0 est un caractère généralisé du groupe G;
il est clair que si un caractère généralisé de G est borné, il
appartient à G. L'ensemble des caractères généralisés de G,
muni de la multiplication usuelle des fonctions et de la topologie
de convergence compacte dans G est un groupe topologique
abélien et complet. Il est facile de construire les caractères
généralisés de G: remarquons d'abord que le groupe des caractères

généralisés de G est le produit direct du groupe G et du

groupe des caractères réels et > 0 de G, de telle sorte qu'il suffit
d'étudier ces derniers caractères. Désignons alors par Horn (G, R)
l'espace vectoriel formé des représentations réelles (i.e. dans R)
et continues de G; dans Horn (G, R), les topologies de convergence

simple et de convergence compacte coïncident et, muni
de l'une de ces topologies, Horn (G, R) est un espace de Banach.
L'application l exp (2izl) est un isomorphisme du groupe
additif de Horn (G, R) sur le groupe des caractères > 0 de G
et, par suite, (£, l) -> x exp (27tZ), est un isomorphisme de

G X Horn (G, R) sur le groupe des caractères généralisés de G.
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Les caractères généralisés ont été introduits par G. Mackey [20]
et J. Riss [28].

Par exemple, l'espace Horn (Rn, R) s'identifie avec Rn, car
toute représentation réelle et continue de Rn est une forme
linéaire continue et, par suite, de la forme x x j1 où y1 G Rn;
chaque caractère généralisé de Rn est donc de la forme x
exp (2îtcx ..y 2tux yx); on identifiera le groupe des caractères
généralisés de Rn avec le groupe Cn, en associant à y + tyi le
caractère décrit ci-dessus.

Soit alors p une mesure sur G; l'ensemble T (g) des

l G Horn (G, R) tels que exp (2tcl) p. G JTt1 (G) est convexe \ on
appelle transformée de Fourier-Laplace de g la transformée
de Fourier de la mesure exp (2tcZ) p (l G V (p)); plus précisément

on appelle transformée de Laplace 1 de p la fonction
continue L^ définie dans G X F (p) par

L^ (x, l) J <#, x> exp (2nl(x)) d p (x) (1)

Par exemple, la transformée de Laplace 2 de la mesure
pG Jtt1(Rn) est la fonction L{X(z) J exp (—2Î7tz x)dp(x),
holomorphe dans l'intérieur du cylindre Rn X T(p) de Cn; si
le support de p est compact, L^ est une fonction entière de type
exponentiel, d'après le théorème de Paley-Wiener. De même,
la transformée de Laplace de / G L1 (Z) s'identifie à la fonction

-f- oo

L/(2) 2 f (n) exP (^nnz)-> définie et de période 1 dans la
n= — co

bande R X F (/) du plan complexe, et holomorphe à l'intérieur
de cette bande, T (/) étant l'intervalle formé des nombres réels l
tels que la famille (/ (n) exp (—2iznl))nçjy soit sommable.

On ne connaît que peu de propriétés de la transformation de

Laplace dans le cas où G est distinct de Rn et de Zn. Signalons
seulement que, si T est un ensemble convexe de Horn (G, R),
l'ensemble des mesures ^p sur G telles que exp (2izl) p G J111 (G)

1 Les propriétés qu'on trouvera ici se rattachent essentiellement à celles de la
transformation de Laplace dans R, dite « bilatère ».

2 On trouvera des généralisations et des propriétés de la transformation de Laplace
dans Rn, par exemple dans L. Schwartz, Meedlanden Lunds Univ. Met. Sem., fasc.
dédié à M. Riesz (1952), pp. 196-206, article où l'on trouvera, d'autre part, des indications

bibliographiques.
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pour tout l G T, devient une algèbre lorsqu'on le munit des

opérations usuelles et du produit de composition, et que la
transformation de Laplace [x est un isomorphisme de cette algèbre

sur une algèbre de fonctions continues dans G X T.

Signalons encore ceci: le groupe Horn (G, R) est canonique-
ment isomorphe au groupe Horn (R, G) des représentations
continues de R dans G, c'est-à-dire des sous-groupes à un paramètre

de G. Si r est un tel sous-groupe à un paramètre, on peut
définir la dérivée au point x G G d'une fonction / définie au

voisinage de x par Drf(x) d^ ^ ^
^

On peut à partir
de là développer des éléments de calcul différentiel dans les

groupes abéliens, susceptibles de s'appliquer en particulier à

l'étude de la transformation de Laplace [20, 28]. J. Riss [28]
a de plus édifié une théorie des distributions dans les groupes
abéliens en utilisant les dérivées définies plus haut et étudié la
transformation de Fourier de ces distributions. Mais, à l'heure
actuelle, le maniement de ces techniques est encore trop malaisé

pour permettre une théorie intéressante de la transformation
de Laplace.

2. On appelle semi-norme sur le groupe G une fonction > 0,
intégrable dans tout compact de G et telle que où(xy) < cù(x) co(y)

quels que soient x G G et y G G. Si co est une semi-norme dans G,
l'espace vectoriel L1 (G, co) formé des fonctions intégrables dans
G pour la mesure positive co (x) dx est aussi formé des fonctions /
telles que /co G L1 (G) (on identifie toujours des fonctions presque
partout égales dans G). Normé par Nx (/, co) J | / (x) | co (x) dx
et muni du produit de composition usuel (formule (2) du § 2),
L1 (G, co) devient une algèbre normée. De plus, si / G L1 (G, co)

et si x G G, on a Ux / G L1 (G, co) et Nx Ux /, co) < co (x) Nx (/,co) ;

on voit ainsi que U est une représentation de G dans le groupe
des endomorphismes continus et inversibles de l'espace de
Banach L1 (G, co) (cf. § 8, n° 1).

Tout caractère continu de l'algèbre L1 (G, co) est de la
forme x (/) J / (x) 9 (x) dx, où 9 est une fonction telle que
9/co G hœ (G); on vérifie alors que 9 est (presque partout) égale
à un caractère généralisé x exp (2tul) de G tel que exp (2ttZ) < co.
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Ainsi le spectre de l'algèbre L1 (G, ta) est en correspondance

biunivoque, et même homéomorphe, avec l'espace G X V où F
est l'ensemble compact de convexe de Hom(G, R) formé des

1
l < 2^ log où. On vient donc de voir que la valeur pour
/GL1 (G, où) du caractère correspondant au point (x, l) G G X F

est J <#, x) exP (27uZ (x)) .f (x) dx, c'est-à-dire égale à la valeur au

point (x, l) de la transformée de Laplace de /; la transformation
de Laplace est ainsi une représentation biunivoque et continue de

Valgèbre L1 (G, co) sur une sous-algèbre de Valgèbre des fonctions
continues dans Vespace localement compact G X T, et nulles à

V infini.
On peut alors déterminer les idéaux réguliers maximaux de

L1 (G, où): chacun d'eux est formé des fonctions de L1 (G, où) dont
la transformée de Laplace s'annule en un point bien déterminé

de G X T. On peut de plus développer pour l'algèbre L1 (G, où)

des considérations analogues à celles du § 5, n° 1. Mais on ignore
en général si le théorème taubérien subsiste pour cette algèbre;
un résultat dans ce sens est le suivant: si la semi-norme où sur R

est telle que ^ soit intégrable dans R, alors tout idéal fermé

de L1 (R, où) distinct de L1 (R, où) est contenu dans un idéal régulier

maximal (c'est-à-dire que, pour qu'un idéal fermé I de

L1 (R, où) soit égal à L1 (R, où), il faut et il suffit que pour tout
point z de la bande R X T de C, il existe une fonction / G I

/-»+ »
telle que / exp (—2inzx) f (x) dx ^ 0). Ce résultat est dû

J —oo

à A. Beurling 1.

3. La transformation de Laplace permet encore d'étudier,
dans une certaine mesure, d'autres algèbres de groupe. On sait

que l'espace vectoriel DTic (G) des mesures à support compact
sur G est le dual de l'espace C (G) des fonctions continues dans

G, muni de la topologie de convergence compacte (cf. §1, n° 1);
dans tout ce qui suit, on supposera Jltc (G) muni de la topologie

i Cf. A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur
application à une transformation fonctionnelle. Congrès int. des Mathématiciens,
Helsinki (1938).
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faible définie par G (G). Muni du produit de composition et de

finvolution usuels (§ 2, n° 2), DTic(G) est une algèbre involutive;
les idéaux de 3Ttc(G) que l'on considérera seront toujours faiblement

fermés: ce sont aussi les sous-espaces vectoriels de JTtc(G),

faiblement fermés et stables pour toutes les translations par les

éléments de G.

Comme xsv est un homéomorphisme de G dans DVic (G),

on vérifie facilement que les caractères (faiblement continus) de

01lc (G) sont de la forme /*^(q) J<x, x) exp (2nl(x)) d\x (x)

où (x, ï) est un point arbitraire de G X Horn (G, R); Xx,i (f2) est

ainsi la valeur au point (x, l) de la transformée de Laplace de

la mesure q; on voit ainsi que la transformation de Laplace
est une représentation biunivoque de l'algèbre involutive JI1C(G)

sur une sous-algèbre de l'algèbre des fonctions continues dans

G X Horn (G, R).
Si H est une partie de G (G), l'ensemble des mesures q

orthogonales aux translatées par les éléments de G des fonctions de H

(i.e. telles que J Us f (x) d\x {x) 0 si s G G et / G H) est un
idéal H' de DTic (G), formé des mesures îjl telles que £ / 0

si / G H. Si l'ensemble des fonctions Us f (s G G, / G H) n'est
pas total, on dit que H est moyenne périodique: pour qu'il en
soit ainsi, il faut et il suffit qu'il existe une mesure [i G 0 à

support compact et telle que jl * / 0 pour toute / G H. On

appelle ensemble spectral de H c; G (G) l'ensemble fermé de

G X Horn (G, R) formé des points (x, l) tels que l'on puisse
approcher uniformément sur tout compact de G la fonction
x exp (27il) par des combinaisons linéaires de translatées de
fonctions de H.

De même, si I est un idéal de dllc(G), on appelle ensemble

cospectral de I l'ensemble fermé de G X Horn (G, R) constitué
par les points où s'annulent les transformées de Laplace de

toutes les mesures appartenant à I. L'ensemble spectral de

H c G (G) est l'ensemble cospectral de l'idéal H'. Dans le cas où G
est quelconque, on voit facilement qu'on ne peut pas, en général,
approcher les fonctions de H c G (G) par des combinaisons
linéaires de caractères généralisés correspondant aux éléments
de l'ensemble spectral de H ou, ce qui revient au même, qu'un
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idéal de Jltc(G) n'est pas complètement déterminé par son
ensemble cospectral.

Mais, dans le cas de G R, L. Schwartz [29] a pu élaborer
une théorie complète, dont nous allons indiquer les résultats
essentiels. Rappelons d'abord que la transformée de Laplace

une fonction entière (de type exponentiel). Soit alors H une
partie de £ (R); on appelle spectre de H l'ensemble des fonctions
exponentielles monômes x xn exp (2iizzx) (n G N, z G C) que
l'on peut approcher uniformément dans tout compact de R par
des combinaisons linéaires de translatées de fonctions de H ; si

la fonction xn exp {2iizzx) appartient au spectre de H, il en est
de même de la fonction xm exp (2inzx) où 0 < m < n:
l'ensemble spectral de H est alors l'ensemble des nombres
complexes z tels que exp (2inzx) appartienne au spectre de H (d'où
une distinction entre spectre et ensemble spectral, le second
n'étant en quelque sorte qu'une partie du premier). Si H est

moyenne périodique, l'ensemble spectral de H est fermé et

discret; en fait, il est beaucoup plus «raréfié», comme on le

verra plus loin. Le résultat fondamental peut alors s'exprimer
de la façon suivante : si H est moyenne périodique, le spectre de H

est une partie topologiquement libre de (3 (R) et toute jonction de H

peut être approchée uniformément sur tout compact de R par des

combinaisons linéaires de fonctions de son spectre. On a même

beaucoup plus: toute fonction / G H possède un développement
formel canonique suivant le spectre de H ; ce développement
détermine la fonction / et permet de la reconstituer par le
procédé de sommation d'ÂBEL; il converge même vers / si / est
suffisamment dérivable.

Soit maintenant I un idéal de 0Tic (R). Si I ^ { 0 }, l'ensemble

cospectral de I est un ensemble fermé et discret; posons (z) 0

si le nombre complexe z n'appartient pas à l'ensemble spectral
de I et, dans le cas contraire, désignons par Çj- (z) le minimum
de l'ordre du zéro qu'ont au point z les transformées de Laplace
des mesures appartenant à I; on appelle cospectre de I l'ensemble
des fonctions x -> xn exp (2inzx) telles que 0 < n < (q (z). On

complète cette définition en appelant cospectre de l'idéal { 0 }

exp (— 2inzx) d[i(x) d'une mesure p. JTlc(R) est
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l'ensemble de toutes les exponentielles monômes. Le cospectre
d'un idéal I est ainsi formé des fonctions xn exp (2inzx) telles que

/+oo xn exp (— 2 i iz zx) d[i(x) — 0
— a?

pour toute p, G I. Réciproquement, si H cz C(R), le spectre de

H est le cospectre de l'idéal H' défini ci-dessus. Si H est moyenne
périodique, l'ensemble spectral de H est de densité finie, en ce

sens que

2 v(*)
\z\~r

quand r tend vers l'infini.
Le théorème indiqué ci-dessus permet alors de faire la

théorie des idéaux de 3TLC (R). Si z G C et si n est un entier > 0,

désignons par Z (z, n) l'idéal de Jîtc (R) formé des mesures dont
la transformée de Laplace a au point z un zéro d'ordre > n;
Z (z, n) est de codimension finie n. Les idéaux maximaux de

J!tc(R) sont les idéaux Z (z, 1); les idéaux primaires (i.e. qui sont
contenus dans un idéal maximal unique) sont les IL (z, n); enfin
tout idéal de Jllc (R) est V intersection des idéaux primaires qui le

contiennent. Autrement dit, tout idéal I ^ { 0 } de Jltc (R) est
formé des mesures p. dont les transformées de Laplace ont, en
chaque point z G C, un zéro d'ordre > Cj (z), ou ce qui revient
au même, telles que

/»+0O
/ xn exp (—2iizzx) d\x (x) 0

J —OC

si 0 < n < Cj (z).
On possède une théorie tout à fait analogue pour l'espace des

fonctions indéfiniment dérivables dans R dont le support est
compact et pour l'espace des distributions dans R (au lieu de
C (R)) h

Par contre, on ignore à peu près complètement ce qui subsiste
de ces résultats pour G Rn (n >1) et, à fortiori, pour G

i En dehors de [29], on trouvera d'importants compléments dans J. P. Kahane,
Sur quelques problèmes d'unicité et de prolongement, relatifs aux fonctions appro-chables par des sommes d'exponentielles. Ann. Inst. Fourier, t. V, pp. 39-130 (1953-
1954).
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quelconque. On a toutefois des résultats analogues aux précédents,

dans le cas de G R2, lorsqu'on substitue à l'espace
£ (R2) l'espace des fonctions entières, le plan complexe étant
identifié à R2 [29].

Il est naturellement entendu que ce qu'on vient de lire ne
saurait passer pour un exposé de la théorie de la transformation
de Laplace et que le lecteur devra se reporter aux travaux la
concernant pour avoir d'autres renseignements.

§ 8. Représentations des groupes et de leurs algèbres

On sait l'intérêt considérable que l'on trouve à faire opérer
les groupes finis et les groupes compacts dans les espaces
vectoriels de dimensions finies, et les rapports étroits qui lient les

algèbres de ces groupes et les représentations ainsi obtenues.
De telles représentations s'avèrent insuffisantes dans le cas des

groupes localement compacts quelconques et il est nécessaire
de représenter ceux-ci comme groupes d'opérateurs dans des

espaces tels que les espaces de Banach ou de Hilbert. Bien que
l'on puisse pratiquement, dans le cas des groupes abéliens, se

borner à l'étude de leurs caractères, ces représentations sont si

étroitement liées à l'analyse harmonique qu'il a semblé utile
de résumer ici quelques-unes de leurs propriétés. L'exposé qu'on
lira ici est très succinct et on n'y trouvera pas trace des travaux
importants dont a été l'objet, en ces dernières années, la théorie
de la représentation des groupes h

1. Dans ce paragraphe, on désigne par G un groupe localement

compact, non nécessairement abélien. Soit E un espace
de Banach complexe et £ (E) l'algèbre normée des endomor-

phismes continus de E. Soit T une représentation de G dans le

groupe des éléments invêrsibles de £ (E) telle que, si on désigne

par Tx l'endomorphisme de E correspondant à x G G et par Tx.sl

i On ne peut que citer ici, sans autres précisions, les travaux de F. Bruhat,
I. Oelfand, R. Oodement, Harish-Chandra, O. W. Mackey, E. Mautner, M. Neu-
mark, I. Segal, etc.
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l'image de a G E par cet endomorphisme, l'application x-> Tx.a
de G dans E soit continue pour tout a G E; on dit brièvement

que l'objet (E, T) est une représentation de G dans E; si la
dimension de E est finie, cette dimension s'appelle encore la
dimension de la représentation (E, T). Ainsi une représentation
de dimension 1 (c'est-à-dire dans le groupe multiplicatif des

nombres complexes ^ 0) d'un groupe abélien G est ce qu'on a

appelé un caractère généralisé de G dans le § 7, n° 1. Toute
représentation de dimension n du groupe additif R est de la forme

x** exp (Ax) où A G £ (Cn). Remarquons que toute représentation

du groupe additif Z dans E est de la forme n -> An où A
est un endomorphisme inversible de E.

Soit (E, T) une représentation du groupe G; la fonction
x | [ Tx 11 tù (x) est une semi-norme sur G, semi-continue
inférieurement et bornée sur tout compact de G (cf. § 7, n° 2). On

désignera encore par L1 (G, co) l'algèbre normée obtenue en
munissant l'espace des fonctions intégrables dans G pour la
mesure de densité co de la norme Nx (/, co) J| / (x) |

• || Tx 11 dx
et du produit de composition. Si / G L1 (G, co) on pose

Tf > a § Tx • af(x) dx (a G E) (1)

On a alors Tf G £ (E) et j| Tf |J < N1 (/, co) et / Tf est une
représentation continue de Valgèbre normée L1 (G, co) dans

Valgèbre normée .C*(E), représentation qu'on désigne encore par
T. On a lim0(G) Tu a a pour tout vecteur a G E, ce qui
montre que l'ensemble des vecteurs a (a G E, / G L1 (G, co))

où / G JC (G) est total; on résume cette propriété en disant que T
n'est pas dégénérée. Il revient au même d'étudier les représentations

dans E du groupe G ou les représentations non dégénérées

des algèbres L1 (G, co) dans £ (E). En effet, soit co une semi-
norme sur G, vérifiant les conditions indiquées ci-dessus et soit T
une représentation (continue) et non dégénérée de L1 (G, co) dans
C(E), telle que l'on ait || Tf || < Nx (/, co) pour toute / GL1
(G, co); alors T se déduit d'une représentation de G dans E au
moyen de la formule (1).

Car, pour tout vecteur b E Tf. aj (aj G E, fa G L1 (G, co)) et
j

tout x G G, limo(G-) T Ux u • b Tx .h existe et, comme T n'est
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pas dégénérée, Tx se prolonge (par continuité) en un endomor-
phisme continu de E que l'on note encore Tx; comme l'application
x -* Ux j est continue dans G pour toute / G L1 (G, co), on vérifie
qu'il en est de même de l'application x -> Tx b et (E, T) est une
représentation de G dans E; enfin, comme g / — J(ê/x /) g dx
(la fonction intégrée prenant ses valeurs dans l'espace de Banach
L1 (G, ça)), on voit que T se déduit de la représentation (E, T) au
moyen de la formule (1) 1.

Par exemple, si I est un idéal à gauche fermé de L1 (G, co),

les translations Us (s G G) définissent par passage aux quotients
des endomorphismes de l'espace de Banach L1 (G, co)/I et on
obtient ainsi une représentation de G dans L1 (G, co)/I, représentation

à laquelle correspond, à l'aide de la formule (1), la
représentation canonique de L1 (G, co) dans l'algèbre des endomorphismes

de L1 (G, co)/I.
Soit (E, T) une représentation dans E du groupe G; on dit

qu'un sous-espace vectoriel fermé F de E est invariant par T s'il
est stable pour tous les endomorphismes Tx (x G G), ou, ce qui
est équivalent, par tous les Tf (/ G L1 (G, co)). Il est clair que,
si B est une partie de E, il existe un plus petit sous-espace vectoriel

fermé de E, invariant par T et contenant B; ce sous-espace
est dit engendré par B. On dit que la représentation (E, T) est

monogène s'il existe un vecteur a G E engendrant E ; a s'appelle
alors un générateur de (E, T).

On dit que la représentation (E, T) de G est irréductible si E
et { 0 } sont les seuls sous-espaces vectoriels fermés de E
invariants par T; pour qu'il en soit ainsi, il faut et il suffit que tout
vecteur a ^ 0 de E soit un générateur de (E, T). Toute
représentation de G, de dimension 1, est évidemment irréductible.
On verra plus loin une réciproque de cette propriété lorsque G

est abélien.

2. On dit que la représentation (E, T) du groupe G est
bornée si co (x) [( T^\\ 1 ; on a alors L1 (G, co) LX(G);
de plus T se prolonge en une représentation continue de l'algèbre
normée JTl1 (G) dans C'(E) en posant

1 On trouvera des applications de ceci dans R. Godement, A theory of spherical
functions, I. Trans. Amer. Math. Soc., t. 73, pp. 496-556 (1952).
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a \TXady.(x)(aëE), (2)

formule qui généralise évidemment (1).
Par exemple, si 1 < p < + oo, (Lp (G), U) est une représentation

bornée de G, dite régulière; son prolongement à JI11(G)
s'obtient naturellement en prenant pour U[X l'endomorphisme

de LP(G). Toute représentation bornée du groupe
additif R est de la forme ^->exp (Ax) où A est un endomor-

phisme convenable de E.

Supposons maintenant le groupe G abélien. On appelle spectre
de la représentation bornée (E, T) de G le cospectre de l'idéal
fermé de L1 (G), noyau de T; c'est aussi le spectre de la famille
des fonctions <Tx a, a'> où a est un vecteur de E et a' un
élément du dual de E. Si le spectre de la représentation (E, T) est

réduit à un point x £ G, le noyau de T est Vidéal Z (x), d'après le

théorème taubérien généralisé (§ 6, n° 3); il en résulte que

Tx (x, /, où / est l'endomorphisme identique de E, et

que Tf / (x) I (pour le voir, il suffit de remarquer que chacune
des fonctions <TX a, a'> est orthogonale à Z (i), donc

proportionnelle à <#, £>, ce qui entraîne aussitôt le résultat [13]).
Pour qu'une représentation bornée (E, T) du groupe abélien G

soit irréductible, il faut et il suffit qu'elle soit de dimension 1 : pour
voir que cette condition, trivialement suffisante, est nécessaire,
on prouve d'abord que le spectre de (E, T) est réduit à un point
x G G, ce qui entraîne que (E, T) est le caractère x^<(x,xy,
d'après ce qui précède, puisque (E, T) est monogène.

On ignore ce qui subsiste de ce critère d'irréductibilité lorsque
la représentation (E, T) n'est pas bornée. Toutefois, lorsque G
est un groupe élémentaire (§ 5, n° 3, b)), on peut montrer que si

(E, T) est une représentation de G, irréductible et à croissance
lente (i.e. telle que w soit majorée par un polynôme), (E, T) est
de dimension 1. Ce résultat est dû à L. Schwartz et généralise
un résultat un peu plus fin dû à J. Wermer 1 dans le cas où
G - Z.

i Cf. J. Wermer, The existence of invariant subspaces. Duke Math. J., t. 19,
pp. 615-622 (1952) et l'exposé de R. Pallu de la Barrière au Séminaire Bourbaki
(Paris, déc. 1953).
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On remarque que si (E, T) est une représentation à croissance
lente de G, T définit une distribution à valeurs dans C(E), tempérée
dans G; la transformée de Fourier de cette distribution a comme
support le spectre de la représentation (E, T) \ cette propriété permet
de construire des sous-espaces fermés de E, invariants par 71, de
telle sorte que si (E, T) est irréductible, son spectre se réduit à un
point de G et on conclut comme on l'a fait plus haut.

3. Soit maintenant E un espace hilbertien, dont la structure
est définie par une forme hermitienne positive qu'on désignera

par (a | b). On dit qu'une représentation (E, T) de G dans E est
unitaire si tous les opérateurs Tx sont unitaires, ou ce qui revient
au même, si l'adjoint T* de Tx est Tx-1 pour tout iGG. Une
représentation unitaire (E, T) de G est bornée et son prolongement

à JTL1 (G), défini par (2), est alors une représentation de

l'algèbre involutive JTt^G) dans l'algèbre involutive C(E), c'est-
à-dire que l'on a T* T~x. Inversement, si T est une représentation

continue de l'algèbre involutive normée L (G) dans

l'algèbre involutive C(E), la représentation de G dans E qu'on
en déduit, comme il a été dit au n° 1, est unitaire. La représentation

régulière (L2 (G), U) de G est évidemment unitaire.
Pour qu'une représentation unitaire (E, T) de G soit

irréductible, il faut et il suffit que la sous-algèbre formée des opérateurs
Tf (/ L1 (G), ou f G JC (G) soit partout dense dans C(E), muni
de la topologie de convergence simple dans E (c'est la topologie
dite forte).

Soit (E, T) une représentation unitaire du groupe G; on
vérifie facilement que, pour tout a 3 E, la fonction x-* (a | Tx. a)
est de type positif dans G; plus généralement, si a et b sont des

vecteurs de E, la fonction x -> (a | Tx b) appartient à V (G).
Cela étant, on appellera encore représentation monogène de G

dans E l'objet (E, 71, a) formé d'une représentation monogène
(E, T) et d'un générateur a de cette représentation; la fonction
de type positif x -* (a | Tx a) est dite caractéristique de la
représentation (E, T, a)\ Cette définition se justifie de la façon
suivante: on dit que deux représentations monogènes (E, T, a)
et (E', T\ a') de G sont équivalentes s'il existe un isomorphisme A
de l'espace hilbertien E sur l'espace hilbertien E' tel que l'on ait
A a a7 et A Tx Tx A pour tout x G G: pour qu'il en
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soit ainsi, il fautet il suffit que les fonctions caractéristiques de

(E, T, a) et (E', T', a') soient égales.

En outre, à toute fonction 9 G (G) correspond une représentation

monogène de G ayant 9 comme fonction caractéristique (et
dont, par suite, la classe d'équivalence est bien déterminée)
[12, 14, 23].

Soit, en effet, 9 G ?P (G) ; (/| g) Jg * f (x) 9 (x) dx est une forme
sesquilinêaire et positive dans L1 (G); l'ensemble des / G L1 (G) telles
que (/1 /) «a* 0 est un idéal à gauche N (9) et en complétant l'espace
préhilbertien quotient L1 (G)/N (9), on obtient un espace hilbertien
H (9); si x G G, l'application / -> Ux • f (resp / -> f f (x) 9 (x) dx) se

laisse prolonger par continuité, après passage aux quotients, en un
endomorphisme unitaire U (9)^ de H (9) (resp. une forme linéaire
continue dans H (9), qui s'identifie à un vecteur a G H (9)); on
obtient ainsi une représentation unitaire monogène (H (9), U (9), a)
de G dont la fonction 9 est caractéristique. Remarquons encore que
la représentation de L1 (G) dans G (H (9)), qui correspondà cette
représentation de G, s'obtient en associant à g G L1 (G) l'endomor-
phisme U (9)^ de H (9) obtenu, après passage aux quotients, en
prolongeant par continuité l'application / -> g * f ; U (9)^ a est la
classe de g G L1 (G) modulo l'idéal N (9).

Le procédé de construction qu'on vient de décrire s'étend facilement

lorsqu'on substitue à la fonction 9 G (G) une mesure de type
positif dans G, mais la représentation unitaire de G qu'on obtient
ainsi n'est pas en général monogène. En appliquant ceci à la mesure
définie par la masse 1 au point e G G, on obtient naturellement la
représentation régulière (L2 (G), U). Tout ceci est susceptible de
généralisations diverses, exposées en particulier dans les travaux de
R. Godement 1.

Soit (E, T, a) une représentation unitaire monogène de G
telle que || a || 1 et 9 G L?0 (G) sa fonction caractéristique;
pour que cette représentation soit irréductible, il faut et il suffit que
9 soit un point extrémal du sous-ensemble convexe lT0 (G) de L00 (G)
(cf. § 2, n° 3) (c'est-à-dire un caractère de G lorsque ce groupe
est abélien).

On peut ainsi montrer que le groupe G, ainsi que son algèbre
L1 (G), est séparé par ses représentations unitaires irréductibles,

1 En dehors de [14], on pourra consulter R. Godement, Mémoire sur la théorie
des caractères. Journal Math, pures et appt., t. XXX, pp. 1-110 (1951).
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résultat bien connu dans le cas des groupes compacts (et dans
celui des groupes abéliens

Diverses généralisations du théorème de Bochner et de

Plancherel-Weil permettent de réaliser la décomposition
spectrale d'une représentation unitaire au moyen de représentations

irréductibles ou de caractères. On se bornera ici à indiquer

le résultat obtenu dans le cas, le plus simple, où le groupe G
est abélien. Soit (E, T) une représentation unitaire de G; pour
tout couple (a, b) de vecteurs de E, la fonction x (a> Tx I b>

de cs?(G) est, d'après le théorème de Bochner, transformée de

Fourier d'une mesure qa?b G ATI1 (G): les mesures ont leurs

supports contenus dans le spectre de (E, T); on les appelle les

mesures spectrales relatives à la représentation (E, T). On a

ainsi (Tf a | b) ~ J/ (x) d\xa^{x) pour toute /GL1 (G). Les

mesures spectrales permettent la décomposition de la représentation

(E, T) suivant les caractères appartenant à son spectre
(théorème de Stone) [14, 32].

Soit J (G) l'espace vectoriel formé par les fonctions définies dans
G et intégrables pour toutes les mesures spectrales (Jia,b; à toute fonction

f G 0 (G) correspond un opérateur G £ (E), au moyen de la
formule (T7// a j b) § f (x) d\JLa,b {x) ; f -> Tf, est une représentation

de l'algèbre involutive J (G) dans C (E), telle que 0 Ti'lf<Il/Il-
En particulier, si A' est un ensemble borélien de G (que l'on peut
supposer contenu dans le spectre de (E, T7)), la formule (E (A') a | b)
sfc (A') définit un projecteur E (A') de E (sur le « sous-espace

spectral » de E, relatif à A7); si x G G, on voit facilement que, pour
tout e > 0, il existe une partition finie (A]) de G en ensembles boré-
liens, telle que l'on ait I (a I Tx b) — 21 <'x, Xj} (E (AG a | b) I < e

_ j
si Xj G Aj', d'où y Tx — S (x, Xj) E (A]) || < g, formule qu'on écrit

encore en vertu des propriétés des intégrales, sous la forme

Tx J iïy dE (x) ; on a de même Tf J / (x) dE (x) si / G L1 (G).

Remarquons enfin que d'après le théorème de Plancherel-Weil,
f ^ f est un isomorphisme de l'espace hilbertien L2 (G) sur l'espace

hilbertien L2 (G), isomorphisme qui à Ux (resp. Uf) fait correspondre

l'opérateur de multiplication par le caractère x' de G (resp. /); il est
alors clair que la mesure spectrale relative à la représentation régulière

de G, correspondant au couple (/, g) de fonctions de L2 (G), est

définie par d[ifj9 (x) — f (x) g (x) dx.
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INDEX DES NOTATIONS

G désigne un groupe localement compact (éventuellement abélien) ; toutes les

fonctions et mesures considérées sont définies dans G et à valeurs
complexes.

H/11 (sup | f (x) I, / fonction bornée).
X

(f (G) (espace vectoriel des fonctions continues).
«7C (G) (espace vectoriel des fonctions continues, à support compact).
JC (G) (espace de Banach des fonctions continues, nulles à l'infini) : § 1,

n° 1.

Pli (G) (espace vectoriel des mesures de Radon): § 1, n° 1.
Pli1 (G) (espace de Banach des mesures bornées): § 1, n° 1.

Il p. H (norme de la mesure bornée p) : § 1, n° 1.

Plic (G) (espace vectoriel des mesures à support compact).
Us / (translatée x -> f (s-1 x) de la fonction / par 5 G G) : § 2, n° 1.

J f (x) dix (intégrale de Haar de la fonction /) : § 2, n° 1.

Lp (G) (espace de Banach des fonctions de p-ième puissance intégrable
pour la mesure de Haar, 1 < p < + oo): § 2, n° 1.

Lœ (G) (espace de Banach des fonctions mesurables et bornées en me¬

sure de Haar): § 2, n° 1.

(/) J | f (x) |p dx^lr, f fonction de L* (G)) : § 2, n° 1.

Nqo (/) (borne supérieure en mesure de Haar de la fonction /) : § 2, n° 1.

p * v, / * g (produit de composition des mesures p et v, des fonctions f et g):
§ 2, n° 2.

p, / (mesure définie par d'\L (x_1) (/ mesure), / (x'1) (/ fonction): § 2,
n° 1.

<D (G) (approximation de l'unité): § 2, n° 1.
LL (G) (ensemble des fonctions de type positif): § 2, n° 3.

G'o (G) (ensemble des fonctions de type positif bornées par 1) : § 2^ n° 3.
V (G) (espace vectoriel des combinaisons linéaires de fonctions de type

positif): § 2, n° 3.
Vv (G) (intersection de V (G) avec L/ (G)).
G (groupe dual de G): § 2, n° 1.

<(.x, x) (valeur de x G G pour x G G) : § 3, n° 1.

/ (transformée de Fourier de la fonction /) : § 4, n° 1.
F;j, (transformée de Fourier de la mesure p) : § 4, n° 1.

cl (G) (algèbre de transformées de Fourier des fonctions de L1 (G)):
§ 4, n° 1.

Cosp (I) (cospectre de l'idéal I de L1 (G)): § 6, n° 1.
Z (A') (idéal des fonctions de L1 (G) dont les transformées de Fourier

s'annulent dans A'cG): § 6, n° 1.
Sp (H) (spectre de la partie H de L°° (G)): § 6, n° 4.
J (H) (sous-espace invariant par translations engendé par H CI L°° (G)) :

§ 6, n° 4.
H"1" (sous-groupe de G (resp. G) orthogonal à H C G (resp. G)): § 5,

n° 1.
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Ljj, (transformée de Laplace de la mesure p.) : § 7, n° 1.
<ù (semi-norme): § 7, n° 2.
L1 (G, <o) (algèbre des fonctions intégrables pour la semi-norme co) : § 7.

n° 2.
J? (E) (algèbre des endomorphismes continus de l'espace de Banach E) :

§ 8, n° 1.

(E, T) (représentation de G dans E) : § 8, n° 1.

On a les injections naturelles (inclusions) suivantes:

V (G) — a (G) V (G) V1 (G)

1 1

L2 (G) — L1 (G) fi L2 (G) — L1 (G) — OK1 (G)

La transformation de Fourier applique biunivoquement ce diagramme
sur le diagramme symétrique dans lequel G est remplacé par G.
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