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L’ANALYSE HARMONIQUE DANS LES GROUPES
ABELIENS

Seconde partie

PAR

Jean BrAacONNIER, Lyon

§ 7. La transformation de Fourier-Laplace

1. Il est naturellement intéressant d’étudier d’autres « carac-

téres » du groupe G, que les éléments de G, Ainsi, on dira qu’une
représentation continue de G dans le groupe multiplicatif des
nombres complexes == 0 est un caractére généralisé du groupe G;
il est clair que si un caractére généralisé de G est borné, il

appartient & G. L’ensemble des caracteres généralisés de G,
muni de la multiplication usuelle des fonctions et de la topologie
de convergence compacte dans G est un groupe topologique
abélien et complet. Il est facile de construire les caracteres
généralisés de G: remarquons d’abord que le groupe des carac-

teres généralisés de G est le produit direct du groupe G et du
groupe des caracteres réels et > 0 de G, de telle sorte qu’il suffit
d’étudier ces derniers caractéres. Désignons alors par Hom (G, R)
I’espace vectoriel formé des représentations réelles (i.e. dans R)
et continues de G; dans Hom (G, R), les topologies de conver-
gence simple et de convergence compacte coincident et, muni
de Pune de ces topologies, Hom (G, R) est un espace de BaAnacH.
L’application [— exp (2nl) est un isomorphisme du groupe
addittf de Hom (G, R) sur le groupe des caractéres > 0 de G
eAt, par suite, (z, 1)~ z exp (2wl), est un 1somorphisme de

G X Hom (G, R) sur le groupe des caractéres généralisés de G.
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Les caractéres généralisés ont été introduits par G. Mackey [20]
et J. Riss [28].

Par exemple, 'espace Hom (R", R) s’identifie avec R™, car
toute représentation réelle et continue de R™ est une forme
linéaire continue et, par suite, de la forme x - x . y; ou y; € R";
chaque caractere généralisé de R™ est donc de la forme x —
exp (2imx ..y 4+ 2nx . y;); on identifiera le groupe des caractéres
généralisés de R"™ avec le groupe C", en associant a y -+ iy, le
caractere décrit ci-dessus.

Soit alors p une mesure sur G; I’ensemble I' (p) des
[ € Hom (G, R) tels que exp (2nl) p. € N (G) est conpexe; on
appelle transformée de FouriEr-LarLacE de yu la transformée
de Fourlier de la mesure exp (2=l) p ([ € I' (p)); plus précisé-
ment on appelle transformée de LaprLace! de u la fonction

A

continue L, définie dans G X I' (u) par

L, (& 1) = [ <z, &> exp @ul@)dp(@) . (1)

Par exemple, la transformée de LaprLaceE? de la mesure
wEIML(R™) est la fonction L, (z) = [ exp (— 2iwz . x) du (x),
holomorphe dans I'intérieur du cylindre R™ x I' (n) de C"; si
le support de w est compact, L, est une fonction entiére de type
exponentiel, d’apres le théoreme de PALEY-WIENER. De méme,

la transformée de LaprLacEk de f € L1 (Z) s’identifie a la fonction
-+ o

L, (z) = ?:_ f(n) exp (2iwnz), définie et de période 1 dans la

bande R X I (f) du plan complexe, et holomorphe a I'intérieur
de cette bande, I' (f) étant I'intervalle formé des nombres réels [
tels que la famille (f (r) exp (— 2nnl)), N so0it sommable.

On ne connait que peu de propriétés de la transformation de
Larracke dans le cas ou G est distinct de R™ et de Z". Signalons
seulement que, si I' est un ensemble convexe de Hom (G, R),
Pensemble des mesures p sur G telles que exp (2xl) p € N (G)

1 Les propriétés qu’on trouvera ici se rattachent essentiellement a celles de la
transformation de LarracE dans R, dite « bilatére ».

2 On trouvera des généralisations et des propriétés de la transformation de LAPLACE
dans R", par exemple dans L. SCHWARTzZ, Meedlanden Lunds Univ. Met. Sem., fasc.
dédié & M. Riesz (1952), pp. 196-206, article ou I'on trouvera, d’autre part, des indica-
tions bibliographiques.
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pour tout [ € I', devient une algébre lorsqu’on le munit des opé-
rations usuelles et du produit de composition, et que la trans-
formation de LAPLACE w — Li, est un isomorphisme de ceite algébre

sur une algébre de fonctions continues dans G X< I'.

Signalons encore ceci: le groupe Hom (G, R) est canonique-
ment isomorphe au groupe Hom (R, G) des représentations
continues de R dans G, c’est-a-dire des sous-groupes a un para-
metre de G. Sir est un tel sous-groupe & un paramétre, on peut

définir la dérivée au point x € G d’une fonction f définie au
__ df (zr (1))

dt {=
de la développer des éléments de calcul différentiel dans les
groupes abéliens, susceptibles de s’appliquer en particulier a
I’étude de la transformation de Laprack [20, 28]. J. Riss [28]
a de plus édifié une théorie des distributions dans les groupes
abéliens en utilisant les dérivées définies plus haut et étudié la
transformation de Fourier de ces distributions. Mais, a ’heure
actuelle, le maniement de ces techniques est encore trop malaisé
pour permettre une théorie intéressante de la transformation
de LAPLACE.

voisinage de x par D, f(x) . On peut a partir

2. On appelle semi-norme sur le groupe G une fonction > 0,
intégrable dans tout compact de G et telle que w(zy) < w(z) w(y)
quels que soient z € G et y € G. Si o est une semi-norme dans G,
Pespace vectoriel L! (G, w) formé des fonctions intégrables dans
G pour la mesure positive w (x) dz est aussi formé des fonctions f
telles que fw € L (G) (on identifie toujours des fonctions presque
partout égales dans G). Normé par N, (f, ) = [| [ (2) | & (z) dx
et mun1 du produit de composition usuel (formule (2) du § 2),
L (G, w) devient une algebre normée. De plus, si f € L! (G, o)
etsiz€G,onal, . fE€ LG, w)et N (U, . [, 0) <o ()N (f,o);
on voit ainsi que U est une représentation de G dans le groupe
des endomorphismes continus et inversibles de l'espace de
Banaca L (G, w) (cf. § 8, n° 1).

Tout caractere continu de I’algébre L! (G, w) est de la

forme y (f) = f]‘(x) ¢ (x) dz, ou ¢ est une fonction telle que
¢/w € L7 (G); on vérifie alors que ¢ est (presque partout) égale
a un caractére généralisé z exp (2rl) de G tel que exp (2nl) < w.
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Ainsi le spectre de l'algébre L' (G, o) est en correspondance

biunivoque, et méme homéomorphe, avec 'espace GxToul
est I’ensemble compact de convexe de Hom(G, R) formé des

1
| <5

f € L1 (G, ©) du caractére correspondant au point (z, 1) € G x T
est [ (x, 2> exp (27l (2)) f (2) dw, c’est-a-dire égale 4 la valeur au

log . On vient donec de voir que la valeur pour

point (z, 1) de la transformée de Larrack de f; la transformation
de LAPLACE est ainst une représentation biunivoque et continue de
Palgebre 1.1 (G, w) sur une sous-algébre de l'algébre des fonctions

continues dans l'espace localement compact G X I', et nulles a
linfint.

On peut alors déterminer les idéaux réguliers maximaux de
LY (G, w): chacun d’eux est formé des fonctions de L (G, o) dont
la transformée de LLAPLACE s’annule en un point bien déterminé

de G x T. On peut de plus développer pour I'algébre L! (G, w)
des considérations analogues a celles du § 5, n° 1. Mais on ignore
en général si le théoréme taubérien subsiste pour cette algebre;

un résultat dans ce sens est le suivant: si la semi-norme o sur R
log o (z)
1 4 22
de L1 (R, o) distinct de L' (R, o) est contenu dans un idéal régu-
lier maximal (c’est-a-dire que, pour qu'un idéal fermé 1 de
L! (R, w) soit égal a L' (R, w), 1l faut et il suftit que pour tout
point z de la bande R X I' de C, il existe une fonction f €I
At

telle que/ exp (— 2inzx) f (x) dx # 0). Ce résultat est di

est telle que soit tntégrable dans R, alors tout idéal fermé

a A. BEurLinGg L.

3. La transformation de LLapLAcCE permet encore d’étudier,
dans une certaine mesure, d’autres algebres de groupe. On sait
que l'espace vectoriel I, (G) des mesures & support compact
sur G est le dual de I'espace C (G) des fonctions continues dans
G, muni de la topologie de convergence compacte (cf. §1, n° 1);
dans tout ce qui suit, on supposera I, (G) muni de la topologie

1 Cf. A. BEURLING, Sur les intégrales de Fourier absolument convergentes et leur
application & une transformation fonctionnelle. Congrés ini. des Mathématiciens, Hel-
sinki (1938).
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faible définie par € (G). Muni du produit de composition et de
I'involution usuels (§ 2, n° 2), N, (G) est une algébre tnvolutive;
les idéaux de I, (G) que 'on considérera seront toujours faible-
ment fermés : ce sont aussi les sous-espaces vectoriels de I (G),
faiblement fermés et stables pour toutes les translations par les
éléments de G.

Comme « — ¢, est un homéomorphisme de G dans I, (G),
on vérifie facilement que les caractéres (faiblement continus) de
I, (G) sont de la forme y3,(u) = [ <z, > exp (2l (z)) dp. ()
ou (z, I) est un point arbitraire de G %X Hom (G, R); %z, (w) est
ainsi la valeur au point (z, /) de la transformée de Laprack de
la mesure w; on voit ainsi que la transformation de LAPLACE
est une représentation biunivoque de I’algébre involutive J1C,(G)
sur une sous-algébre de 'algébre des fonctions continues dans
G % Hom (G, R).

Si H est une partie de € (G), 'ensemble des mesures . ortho-
gonales aux translatées par les éléments de G des fonctions de H
(i.e. telles que [ U, . f(x)du(z) = 0sis€Get fC€H) est un
idéal H' de J1L, (G), formé des mesures p telles que p » f = 0
si f€ H. Si I'ensemble des fonctions U . f (s € G, [ € H) n’est
pas total, on dit que H est moyenne périodique: pour qu’il en
soit ainsi, 1l faut et il suffit qu’il existe une mesure p % 0 a
support compact et telle que p*f = 0 pour toute f< H. On
appelle ensemble spectral de H < C (G) 'ensemble fermé de
G x Hom (G, R) formé des points (z, 1) tels que 'on puisse
approcher uniformément sur tout compact de G la fonction
z exp (2nl) par des combinaisons linéaires de translatées de
fonctions de H.

De méme, si I est un idéal de I, (G), on appelle ensemble

cospectral de I I’ensémble fermé de G X Hom (G, R) constitué
par les points ou s’annulent les transformées de LaprLace de
toutes les mesures appartenant a . L’ensemble spectral de
H < C (G) est Uensemble cospectral de I'tdéal H'. Dans le cas ou G
est quelconque, on voit facilement qu’on ne peut pas, en général,
approcher les fonctions de H c € (G) par des combinaisons
linéaires de caracteres généralisés correspondant aux éléments
de I'ensemble spectral de H ou, ce qui revient au méme, qu’un
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idéal de I, (G) n’est pas complétement déterminé par son
ensemble cospectral.

Mais, dans le cas de G = R, L. Scawartz [29] a pu élaborer
une théorie complete, dont nous allons indiquer les résultats

essentiels. Rappelons d’abord que la transformée de Laprack
/1+oc
L, (z) = / exp (— 2inzx) du () d’'une mesure p € N, (R) est

une fonction entiere (de type exponentiel). Soit alors H une
partie de C (R); on appelle spectre de H I’ensemble des fonctions
exponentielles mondémes x — 2" exp (2iwzz) (n €N, z € C) que
Ion peut approcher uniformément dans tout compact de R par
des combinaisons linéaires de translatées de fonctions de H; si
la fonction a™ exp (2imzx) appartient au spectre de H, il en est
de méme de la fonction 2™ exp (2iwzz) ou 0 < m < n: 'en-
semble spectral de H est alors I'ensemble des nombres com-
plexes z tels que exp (2imzx) appartienne au spectre de H (d’ou
une distinction entre spectre et ensemble spectral, le second
n’étant en quelque sorte qu'une partie du premier). Si H est
moyenne périodique, I'ensemble spectral de H est fermé et
discret; en fait, il est beaucoup plus «raréfié», comme on le
verra plus loin. Le résultat fondamental peut alors s’exprimer
de la facon suivante: st H est moyenne périodique, le spectre de H
est une partie topologiquement libre de C (R) et toute fonction de H
peut étre approchée uniformément sur tout compact de R par des
combinaisons linéaires de fonctions de son spectre. On a méme
beaucoup plus: toute fonction f € H posséde un développement
formel canonique suivant le spectre de H; ce développement
détermine la fonction f et permet de la reconstituer par le pro-
cédé de sommation d’ABEL; i1l converge méme vers f si [ est
suffisamment dérivable.

Soit maintenant I unidéal de N, (R). SiT = {0}, ensemble
cospectral de I est un ensemble fermé et discret; posons ¢; (z) = 0
si le nombre complexe z n’appartient pas a ’ensemble spectral
de I et, dans le cas contraire, désignons par ¢; (z) le minimum
de I'ordre du zéro qu’ont au point z les transformées de LAPLACE
des mesures appartenant a I; on appelle cospectre de I I’ensemble
des fonctions x — 2™ exp (2inzz) telles que 0 << n << ¢;(2). On
compléte cette définition en appelant cospectre de I'idéal { 0 }
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Pensemble de toutes les exponentielles mondmes. Le cospectre
d’un idéal I est ainsi formé des fonctions 2™ exp (2iwzx) telles que

— 00

f+wx” exp (— 2inzx)dp(x) = 0

pour toute p € I. Réciproquement, si H < C (R), le spectre de
H est le cospectre de 'idéal H' défini ci-dessus. Si H est moyenne
périodique, 'ensemble spectral de H est de densiié finie, en ce
sens que |

2> vu(2) = O(r)

|z|<r

quand r tend vers 'infini.

Le théoréeme indiqué ci-dessus permet alors de faire la
théorie des idéaux de I, (R). Siz € C et si n est un entier > 0,
désignons par Z (z, n) I'idéal de I, (R) formé des mesures dont
la transformée de LAPLACE a au point z un zéro d’ordre > n;
Z (z, n) est de codimension finie n. Les itdéauxr maximaux de
N, (R) sont les idéaux Z (z, 1); les idéaux primaires (i.e. qui sont
contenus dans un 1déal maximal unique) sont les 7 (z, n); enfin
tout idéal de N, (R) est D'intersection des idéaux primaires qui le
contiennent. Autrement dit, tout idéal I {0} de I, (R) est
formé des mesures p dont les transformées de LarrLacE ont, en
chaque point z € C, un zéro d’ordre > ¢, (z), ou ce qui revient
au méme, telles que

/+wxn exp (—2imzx)dp(x) = 0
s1 0 < n <o (2).

On posséde une théorie tout a fait analogue pour 'espace des
fonctions indéfiniment dérivables dans R dont le support est
compact et pour I'espace des distributions dans R (au lieu de
C (R)) .

Par contre, on ignore & peu pres complétement ce qui subsiste
de ces résultats pour G = R"(n > 1) et, & fortiori, pour G

1 En dehors de [29], on trouvera d’importants compléments dans J. P. KAHANE,
Sur quelques problémes d’unicité et de prolongement, relatifs aux fonctions appro-
chables par des sommes d’exponentielles. Ann. Inst. Fourier, t. V, pp. 39-130 (1953-
1954).
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quelconque. On a toutefois des résultats analogues aux précé-
dents, dans le cas de G = R? lorsqu’on substitue a I'espace
C (R?) l'espace des fonctions entiéres, le plan complexe étant
identifié a R2[29].

Il est naturellement entendu que ce qu'on vient de lire ne
saurait passer pour un exposé de la théorie de la transformation
de LapLack et que le lecteur devra se reporter aux travaux la
concernant pour avoir d’autres renseignements.

§ 8. Représentations des groupes et de leurs algebres

On sait I'intérét considérable que 1'on trouve a faire opérer
les groupes finis et les groupes compacts dans les espaces vec-
toriels de dimensions finies, et les rapports étroits qui lient les
algébres de ces groupes et les représentations ainsi obtenues.
De telles représentations s’aveérent insuffisantes dans le cas des
groupes localement compacts quelconques et 1l est nécessaire
de représenter ceux-ci comme groupes d’opérateurs dans des
espaces tels que les espaces de BaAnacu ou de HiLBERT. Bien que
I'on puisse pratiquement, dans le cas des groupes abéliens, se
borner a I’étude de leurs caracteres, ces représentations sont si
étroitement liées a ’analyse harmonique qu’il a semblé utile
de résumer ici quelques-unes de leurs propriétés. L’exposé qu’on
lira ici est tres succinet et on n’y trouvera pas trace des travaux
importants dont a été I'objet, en ces derniéres années, la théorie
de la représentation des groupes 1.

1. Dans ce paragraphe, on désigne par G un groupe locale-
ment compact, non nécessairement abélien. Soit E un espace
de Banacu complexe et £ (E) I’algebre normée des endomor-
phismes continus de E. Soit 7" une représentation de G dans le
groupe des éléments inveérsibles de £ (E) telle que, si on désigne
par T, I’endomorphisme de E correspondant a x € G et par T,.a

1 On ne peut que citer ici, sans autres précisions, les travaux de F. BRUHAT,
I. GELFAND, R. GODEMENT, HARISH-CHANDRA, G. W. MACKEY, E. MAUTNER, M. NEU-
MARK, I. SEGAL, elc.
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'image de a € E par cet endomorphisme, I'application z—~ 7,.a
de G dans E soit continue pour tout a € E; on dit brievement
que Lobjet (E, 7) est une représentation de G dans E; si la
dimension de E est finie, cette dimension s’appelle encore la
dimension de la représentation (E, 7). Ainsi une représentation
de dimension 1 (c’est-a-dire dans le groupe multiplicatif des
nombres complexes 7% 0) d’un groupe abélien G est ce qu'on a
appelé un caractére généralisé de G dans le § 7, n® 1. Toute repre-
sentation de dimension n du groupe additif R est de la forme
r — exp (Az) ou 4 € £7(C"). Remarquons que toute représenta-
tion du groupe additif Z dans E est de la forme n—+ A™ ou A4
est un endomorphisme inversible de E.

Soit (E, T) une représentation du groupe G; la fonction
z—||T.|| = o (x) est une semi-norme sur G, semi-continue
inférieurement et bornée sur tout compact de G (cf. § 7, n° 2). On
désignera encore par L! (G, o) l’algébre normée obtenue en
munissant ’espace des fonctions intégrables dans G pour la
mesure de densité o de la norme Ny ( = [|f (@) |.|| T, || do
et du produit de composition. Si f E L1 (G ®») on pose

T]_.a:fo~af(x)dx (acE) . (1)

On a alors T, € 7 (E) et || T} |] < N; (f, ) et f— T} est une
représentation continue de l’algebre normée L' (G, w) dans
Ualgébre normée & (E), representatlon qu’on désigne encore par
T. On a limg 7, . a = a pour tout Vecteur acE, ce qui
montre que 'ensemble des vecteurs 7, .a(a € E, f € L1 (G, w))
ou f € K (G) est total; on résume cette propriété en disant que T
n’est pas dégénérée. Il revient au méme d’étudier les représen-
tations dans E du groupe G ou les représentations non dégéné-
rées des algebres L (G, o) dans £ (E). En effet, soit o une semt-
norme sur G, vérifiant les conditions indiquées ci-dessus et soit T
une représentation (continue) et non dégénérée de L (G, w) dans
7 (E), telle que T'on ait || 7 || < Ny (f, @) pour toute f € L1
(G, w); alors T se déduit d’une représentation de G dans E au
moyen de la formule (1).

Car, pour tout vecteur b =X T} . a; (a; € E, f; € L1 (G, w)) et

. J .
tout z € G, limg@) Ty, .« - b = Tx . b existe et, comme 7 n’est
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pas dégénérée, T, se prolonge (par continuité) en un endomor-
phisme continu de E que I'on note encore 7; comme I'application
x — Uy . [ est continue dans G pour toute f € Ll (G, »), on vérifie
qu’il en est de méme de l'application z — T, . b et (E, T) est une
représentation de G dans E; enfin, comme g x f = f(Ux . f) g dx
(la fonction intégrée prenant ses valeurs dans l'espace de Banach

L1 (G, w)), on voit que T se déduit de la représentation (E, T) au
moyen de la formule (1) 1.

Par exemple, si I est un idéal a gauche fermé de L! (G, w),
les translations U, (s € G) définissent par passage aux quotients
des endomorphismes de I'espace de Bawnacu L! (G, w)/I et on
obtient ainsi une représentation de G dans I.! (G, w)/I, représen-
tation a laquelle correspond, a I'aide de la formule (1), la repré-
sentation canonique de L! (G, ) dans ’algébre des endomor-
phismes de L' (G, w)/I.

Soit (E, T) une représentation dans E du groupe G; on dit
qu'un sous-espace vectoriel fermé F de E est invariant par T s’1l
est stable pour tous les endomorphismes 7T, (z € ), ou, ce qui
est équivalent, par tous les T, (f € L' (G, w)). 1l est clair que,
s1 B est une partie de E, il existe un plus petit sous-espace vecto-
riel fermé de E, invariant par 7 et contenant B; ce sous-espace
est dit engendré par B. On dit que la représentation (E, T) est
monogéne s’1l existe un vecteur a € E engendrant E; a s’appelle
alors un générateur de (E, T).

On dit que la représentation (E, T') de G est wrréductible si E
et { 0 } sont les seuls sous-espaces vectoriels fermés de E inva-
riants par 7T'; pour qu’il en soit ainsi, 1l faut et il suffit que tout
vecteur a = 0 de E soit un générateur de (E, T'). Toute repré-
sentation de G, de dimension 1, est évidemment irréductible.
On verra plus loin une réciproque de cette propriété lorsque G
est abélien.

2. On dit que la représentation (E, T') du groupe G est
bornée si o (x) = || T,|| = 1; on a alors L! (G, w) = L (G);
de plus T se prolonge en une représentation continue de ’algebre
normée I (G) dans £ (E) en posant

1 On trouvera des applications de ceci dans R. GobpEMENT, A theory of spherical
functions, I. Trans. Amer. Math. Soc., t. 73, pp. 496-556 (1952).
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Tua:fTVadH(x) (aEE)7 (2)

formule qui généralise évidemment (1).

Par exemple, si 1 < p < + o, (L? (G), U) est une représen-
tation bornée de G, dite réguliére; son prolongement a It (G)
s'obtient naturellement en prenant pour U, I’endomorphisme
f— uxf de LP(G). Toute représentation bornée du groupe
additif R est de la forme x —exp (Ax) ou A est un endomor-
phisme convenable de E.

Supposons maintenant le groupe G abélien. On appelle specire
de la représentation bornée (E,T) de G le cospectre de I'idéal
fermé de L1 (G), noyau de T'; c’est aussi le spectre de la famille
des fonctions (7. . a,a’> ou a est un vecteur de E et a’ un
élément du dual de E. Si le spectre de la représentation (E, T') est
réduit @ un point x € é, le noyau de T est I'idéal Z (z), d’apreés le
théoréme taubérien généralisé (§ 6, n® 3); il en résulte que
T. = {x, x> I, ou I est endomorphisme identique de E, et
que T; = ]?(33) I (pour le voir, il suffit de remarquer que chacune
des fonctions (T, . a,a’> est orthogonale & Z (z), donc pro-

portionnelle & {(x, 7>, ce qui entraine aussitdt le résultat [13]).
Pour qu’une représentation bornée (E, T) du groupe abélien G
soit wrréductible, il faut et il suffit qu’elle soit de dimension 1: pour
voir que cette condition, trivialement suffisante, est nécessaire,
on prouve d’abord que le spectre de (E, T) est réduit a un point

7 € G, ce qui entraine que (E, T) est le caractére z— (xz, 7>,
d’apres ce qui précede, puisque (E, 7) est monogene.

On ignore ce qui subsiste de ce critéere d’irréductibilité lorsque
la représentation (E, T') n’est pas bornée. Toutefois, lorsque G
est un groupe élémentaire (§ 5, n° 3, b)), on peut montrer que si
(E, T') est une représentation de G, irréductible et a croissance
lente (i.e. telle que w soit majorée par un polyndéme), (E, T) est
de dimension 1. Ce résultat est di a L. Scuwartz et généralise

un résultat un peu plus fin di & J. WerMER ! dans le cas ou
G =1Z.

1 Cf. J. WErMER, The existence of invariant subspaces. Duke Math. J., t. 19,
pp. 615-622 (1952) et I’exposé de R. PALLU DE LA BARRIERE au Séminaire Bourbaki
(Paris, déc. 1953).
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On remarque que si (E, T') est une représentation a croissance
lente de G, T' définit une distribution & valeurs dans £’ (E), tempérée
dans G; la transformée de Fourier de cette distribution a comme
support le spectre de la représentation (E, T); cette propriété permet
de construire des sous-espaces fermés de E, invariants par T, de
telle sorte que s1 (E, T') est irréductible, son spectre se réduit a un

point de G et on coneclut comme on I’a fait plus haut.

3. Soit maintenant E un espace hilbertien, dont la structure
est définie par une forme hermitienne positive qu’on désignera
par (a | b). On dit qu’une représentation (E, 7') de G dans E est
unitaire si tous les opérateurs 7, sont unitaires, ou ce qui revient
au méme, si Padjoint 7 de T, est T,-1 pour tout z € G. Une
représentation unitaire (E, 7') de G est bornée et son prolonge-
ment a I (G), défini par (2), est alors une représentation de
I’algébre involutive MU (G) dans I'algébre involutive £ (E), ¢’est-
a-dire que 'on a T = 7. Inversement, si 7 est une représen-
tation continue de I'algébre involutive normée L (G) dans
I’algeébre involutive £ (E), la représentation de G dans E qu’on
en déduit, comme 1l a été dit au n° 1, est unitaire. La représen-
tation réguliere (L2 (G), U) de G est évidemment unitaire.

Pour qu'une représentation unitaire (E, 7) de G soit irré-
ductible, il faut et il suffit que la sous-algébre formée des opérateurs
T; (f € LY (G), ou | € K (G) soit partout dense dans £ (E), muni
de la topologie de convergence simple dans E (c¢’est la topologie
dite forte).

Soit (K, 7) une représentation unitaire du groupe G; on
vérifie facilement que, pour tout a € E, la fonction z— (a| T,.a)
est de type positif dans G; plus généralement, si a et b sont des
vecteurs de E, la fonction x— (a| 7, . b) appartient a < (G).

Cela étant, on appellera encore représentation monogéne de G
dans E l'objet (E, 7, a) formé d’une représentation monogene
(E, T) et d’un générateur a de cette représentation; la fonction
de type positif z— (a| 7, . a) est dite caractéristique de la
représentation (E, 7', a). Cette définition se justifie de la facon
suivante: on dit que deux représentations monogénes (E, 7', a)
et (E', T, a’) de G sont équivalentes §’1l existe un isomorphisme A
de I’espace hilbertien E sur ’espace hilbertien E’ tel que 'on ait
A.a=a et A.T =T.. A pour tout z € G: pour qu’il en
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soit ainsi, il faut et il suffit que les fonctions caractéristiques de
(E, T, a) et (E', 7", a’) soient égales.

En outre, a toute fonction ¢ € € (G) correspond une représen-
tation monogéne de G ayant ¢ comme fonction caractéristique (et
dont, par suite, la classe d’équivalence est bien déterminée)
[12, 14, 23].

Soit, en effet, ¢ € T (G); (f|g) = [ & * [ () ¢ (z) dx est une forme
sesquilinéaire et positive dans L! (G); I'ensemble des f € L (G) telles
que (f|f) = 0 est un idéal a gauche N (¢) et en complétant I'espace
préhilbertien quotient L' (G)/N (¢), on obtient un espace hilbertien
H (0); si x € G, application f — Uy . f (resp [ — f]‘ (x) © () dx) se
laisse prolonger par continuité, apres passage aux quotients, en un
endomorphisme unitaire U (¢), de H (¢) (resp. une forme linéaire
continue dans H (¢), qui s’identifie & un vecteur a € H (¢)); on
obtient ainsi une représentation unitaire monogene (H (¢), U (), a)
de G dont la fonction ¢ est caractéristique. Remarquons encore que
la représentation de L1 (G) dans £ (H (9)), qui corresponda cette
représentation de G, s’obtient en associant a g € L' (G) 'endomor-
phisme U (¢), de H (@) obtenu, aprés passage aux quotients, en
prolongeant par continuité l'application f — g*f; U (p), . a est la
classe de g € L1 (G) modulo I'idéal N (o).

Le procédé de construction qu’on vient de décrire s’étend facile-
ment lorsqu’on substitue a la fonction ¢ € 0 (G) une mesure de type
posittf dans G, mais la représentation unitaire de G qu’on obtient
ainsl n’est pas en général monogeéne. En appliquant ceci & la mesure
définie par la masse 1 au point e € G, on obtient naturellement la
représentation réguliere (L2 (G), U). Tout ceci est susceptible de
généralisations diverses, exposées en particulier dans les travaux de
R. GopeEMENT L.

Soit (E, T, a) une représentation unitaire monogéne de G
telle que || a]| =1 et ¢ €T (G) sa fonction caractéristique:
pour que cette représentation soit irréductible, il faut et il suffit que
@ soit un point extrémal du sous-ensemble convexe Ty (G) de L™ (G)
(cf. § 2, no 3) (c’est-a-dire un caractére de G lorsque ce groupe
est abélien). _

On peut ainsi montrer que le groupe G, ainsi que son algébre
LY (G), est séparé par ses représentations unitaires irréductibles,

1 En dehors de [14], on pourra consulter R. GopEMENT, Mémoire sur la théorie
des caractéres. Journal Math. pures et appl., t. XXX, pp. 1-110 (1951).
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résultat bien connu dans le cas des groupes compacts (et dans
celui des groupes abéliens !).

Diverses généralisations du théoréme de BocHNER et de
PrLaNcHEREL-WEIL permettent de réaliser la décomposition
spectrale d’une représentation unitaire au moyen de représen-
tations irréductibles ou de caractéres. On se bornera ici a indi-
quer le résultat obtenu dans le cas, le plus simple, ou le groupe G
est abélien. Soit (E, T) une représentation unitaire de G; pour
tout couple (a, b) de vecteurs de E, la fonction z — (a, 7, | b)
de V7 (G) est, d’apreés le théoréeme de BocHNER, transformée de

FouriEr d’une mesure p,,p € 9111(6}): les mesures @, p ont leurs
supports contenus dans le spectre de (E, T); on les appelle les
mesures spectrales relatives & la représentation (E, 7). On a
ainsi (T; . a|b) ff ) dpap (z) pour toute f€L!(G). Les
mesures spectrales permettent la décomposition de la représen-
tation (E, 7') suivant les caractéres appartenant & son spectre
(théoreme de StonE) [14, 32].

Soit J((J) 'espace vectoriel formé par les fonctions définies dans
G et intégrables pour toutes les mesures spectrales pa,b; a toute fonc-

tion /' € J (G) oorrespond un opérateur T; € 7 (E), au moyen de la
formule (7} . = [/ (@ ) dyta,b ( z); {* — T, est une représen-
tation del’algébre 1nvolut1ve J (G)dans £ (E), telle que || 7y || < |If']-

En particulier, si A’ est un ensemble borélien de G (que I'on peut
supposer contenu dans le spectre de (E, 7)), la formule (£ (A’) . a | b)
= fhg,b (A’) définit un projecteur E (A’) de E (sur le «sous-espace

spectral » de E, relatif a A’); si z € G, on voit facilement que, pour
tout € > 0, il existe une partition finie (Aj) de G en ensembles boré-
liens, telle que I’on ait | (a| Ty . b) ——Z(x > (E(A) . alb)| <e
si 2 € Aj, dou || Ty — X<z, 5> E (A !l e, formule qu'on écrit
j

encore en vertu des propriétés des 1ntegrales, sous la forme
Ty = [<{x, 2) dE (2); on a de méme Ty = ffA (z) si f € LY (G).

Remarquons enfin que d’apres le théoreme de PLANCHEREL-WEIL,
f—f est un 1s0morphlsme de espace hilbertien L2 (G) sur I'espace
hilbertien 1.2 (G), isomorphisme qui & Uy (resp. Uy) fait correspondre

Iopérateur de multiplication par le caractére x’ de G (resp. f); il est
alors clair que la mesure spectrale relative a la représentation régu-
liere de G, correspondant au couple (f, g) de fonctions de L2 (G), est

définie par dy; 4 (Z) = f( ) & () dz.
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INDEX DES NOTATIONS

G désigne un groupe localement compact (éventuellement abélien); toutes les

1Al
¢ (G)
K (G)
K (G)

fonctions et mesures considérées sont définies dans G et a valeurs

complexes.
(sup | f (z) |, f fonction bornée).

X
(espace vectoriel des fonctions continues).
(espace vectoriel des fonctions continues, a support compact).

(espace de Banacu des fonctions continues, nulles a l'infini): § 1,
no 1.

(espace vectoriel des mesures de Radon): § 1, n° 1.
(espace de Banacu des mesures bornées): § 1, n° 1.
(norme de la mesure bornée p): § 1, n° 1.

(espace vectoriel des mesures a support compact).

(

translatée z — f (s_l z) de la fonction f par s € G): § 2, n° 1.

ff () dx (intégrale de Haar de la fonction f): § 2, n° 1.

L7 (G) (espace de BanacH des fonctions de p-iéme puissance intégrable
pour la mesure de Haagr, 1 < p < + w): § 2, n° 1.
L*(G) (espace de BanacH des fonctions mesurables et bornées en me-
sure de HAAR) § 2, no 1.
N, () (f | f (@) |7 dz)», f fonction de L7 (G)): § 2, n° 1.
N, (f) (borne supérieure en mesure de Haar de la fonction f): § 2, n° 1.
v * v, f * g (produit de composition des mesures w et v, des fonctions f et g):
§ 2, n0° 2
o, f (mesure définie par dw («!) (f mesure), f (z™%) (f fonction): § 2,
- no 1.
D (G) (approximation de l'unité): § 2, no 1.
2 (G) (ensemble des fonctions de type positif): § 2, n° 3.
Lo (G) (ensemble des fonctions de type positif bornées par 1): § 2, n° 3.
V(G) (espace vectoriel des combinaisons linéaires de fonctions de type
positif): § 2, n° 3. .
VP (G) (intersection de V (G) avec L" (G)).
G (groupe dual de G): § 2, no 1.
{z, 2 (valeur de 2 € G pour z € &): § 3, n° 1.
f (transformée de Fourier de la fonction f): § &, no 1.
Fu (transformée de Fourier de la mesure p): § &, no 1.
A (G) (algébre de transformées de FOURIER des fonctions de L1 (G)):
§ &4, no 1.
Cosp (I) (cospectre de I'idéal I de L1 (G)): § 6, n° 1.
Z (A) (idéal des fonctions de L (G) dont les transformées de FourIEr
s’annulent dans A’ C G): § 6, n° 1.
Sp (H)  (spectre de la partie H de L™ (G)): § 6, n° 4.
J (H) (sous-espace invariant par translations engendé par H C L™ (G)):
§ 6, n° 4.
H* (sous-groupe de G (resp. G) orthogonal & H C G (resp. f})): § 9,

no 1.
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L, (transformée de LiapLace de la mesure p): § 7, n° 1.

A (semi-norme): § 7, n° 2.

L! (G, ) (algébre des fonctions intégrables pour la semi-norme w): § 7.
ne 2.

£ (E) (algebre des endomorphismes continus de I’espace de Banacu E):
§ 8, n° 1.

(K, T) (représentation de G dans E): § 8, no 1.
On a les injections naturelles (inclusions) suivanies:
V (G) —> A (G) «— V2 (G) «— V1 (G)

L2 (G) — L' (G) N L2 (G) — L' (G) — I (G)
La transformation de Fourier applique biunivoquement ce diagramme
sur le diagramme symétrique dans lequel G est remplacé par G.
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