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ÜBER JAKOB BERNOULLIS
BEITRÄGE ZUR INFINITESIMALMATHEMATIK

Herrn 0. Spiess zur Vollendung seines 78. Lebensjahres gewidmet

von

Jos. E. Hofmann in Ichenhausen *

Opposita juxta, se posita
magis elucescunt.

Jon. Bernoulli — Leibniz, 9.Y.1694

1. Jakob Bernoulli ist einer der wenigen Mathematiker
von Genie, die sich erst in reiferem Alter und als Autodidakten
den Zugang zu den Kernfragen ihrer Wissenschaft gebahnt
haben. Den Zeitgenossen machte er sich durch 16 selbständige
Publikationen und 87 z.T. recht umfangreiche Zeitschriften-
Aufsätze bekannt, die zusammen mit 32 z.T. überarbeiteten
Stücken aus dem Nachlass in die von G. Cramer besorgte Ausgabe

der Opera 1 übergingen. Das grosse Werk Jakobs über die

Wahrscheinlichkeitsrechnung, die unvollendet nachgelassene
Ars conjectandi, wurde unter Mitwirkung von Niklaus
Bernoulli, einem der Neffen Jakobs, herausgegeben2. Der
ziemlich reichhaltige Briefwechsel Jakobs ist grösstenteils zu
Verlust gegangen. Im Druck zugänglich ist die Korrespondenz
mit Leibniz 3 und neuerdings die nur lückenhaft erhaltene
Korrespondenz mit dem jüngeren Bruder Johann 4. Über das
weitere noch erhaltene Material an Briefen, Dokumenten, Reden
und Aufzeichnungen unterrichtet uns das ausgezeichnete Vorwort
von Herrn 0. Spiess zum ersten Band der neuen Gesamtausgabe

* Nähere Ausführung eines am 8. Mai 1955 in Basel zum G-edenken an die 300.
Wiederkehr des G-eburtstages von Jakob Bernoulli gehaltenen Vortrages.
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der Bernoullis 5. Der ausserordentlichen Liebenswürdigkeit
von Herrn 0. Spiess und dem Entgegenkommen der Basler
Universitätsbibliothek verdanke ich Einblick in die für die

Ausgabe vorbereiteten und grösstenteils bereits sorgfältig
kollationierten Abschriften aus den Medi[tationes et annotationes]6,
dem wissenschaftlichen Notizbuch Jakobs, und der mit
O. Mencke und N. Fatio de Duillier gewechselten Briefe.
Aus diesen Materialien lassen sich wertvolle Einblicke in den
wissenschaftlichen Werdegang von Jakob gewinnen. Einiges
davon soll im folgenden kurz angedeutet werden. Grosse Dienste
haben mir auch die biographischen Studien über Jakob
Bernoulli geleistet, soweit sie auf gesicherter Unterlage
stehen 7.

2. Jakob Bernoulli war der älteste Sohn des als Spezierer
erfolgreichen und als Basler Ratsherr hochangesehenen Niklaus
Bernoulli und seiner Ehefrau Margaretha, der Tochter des

Kaufmanns und Ratsherrn Emanuel Schönauer. Der Vater
sah es nicht ungern, dass der begabte Junge Basels Hohe Schule

bezog. Jakob bildete sich weniger in Vorlesungen als in der
damals so häufig üblichen Privatunterweisung — sein Mentor
war der vielseitige Gräzist (1667/83) und nachmalige Historiker
der Universität J. J. Hofmann — zu einem genauen Kenner
der evangelisch-scholastischen Philosophie heran und wurde
mit 16 Jahren zum magister artium promoviert. Wohl fühlte er
sich schon damals zu den mathematischen Fächern hingezogen,
mit deren Grundzügen er innerhalb des philosophischen Kurses
bekannt geworden war, musste sich jedoch dem entschiedenen
Nein des Vaters fügen, der dem Sohn nur das Studium der

Theologie gestatten wollte. Jakob hat das aufgezwungene
Brotstudium ohne besondere innere Neigung auf sich genommen und
1676 mit der üblichen Lizeotiatenprüfung abgeschlossen. Gleichzeitig

wurde er unter die Kandidaten des Basler
Kirchenministeriums eingereiht. Seine Liebe gehörte trotz des väterlichen

Verbotes der (angewandten) Mathematik und Astronomie,
über die er sich als Autodidakt aus nur wenigen und ausschliesslich

elementaren Werken zu orientieren wusste, und den Sprachen.

Damals erwählte sich Jakob als Sinnbild Phaëton auf
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dem nach oben strebenden Sonnenwagen und fügte das

kennzeichnende Motto bei: Invito pâtre sidera verso.

Schon der 18-jährige hat im Anschluss an prop. 2 des 1. Teils
der ScHWENTERSchen Erquickstunden8 mit der Bestimmung
des Jahres in der Julianischen Periode aus Indiktion, Sonnen-

und Mondzyklus eine wenn auch geringfügige, so doch

selbständige Entdeckung gemacht9.

3. Nach bestandenem Examen ging Jakob als Hauslehrer
nach Genf, wo er u.a. die talentvolle, jedoch schon kurz nach
der Geburt erblindete E. E. v. Waldkirch, die damals 16-jährige
Tochter eines vermögenden Handelsherrn, erfolgreich
unterrichtete und sie sogar schreiben und an erhabenen (hinreichend
grossen) Drucktypen lesen lehrte10. Seit 1677 trug Jakob seine

wichtigsten wissenschaftlichen Entwürfe in das schon oben

erwähnte Notizbuch 6 ein. Linter den ersten 25 Artikeln finden
sich viele, die den Einfluss des Basler Syllabus controversiarum

von 1662 erkennen lassen — einer Sammlung von theologischen
Streitfragen, bei deren Behandlung in den wöchentlichen
Disputationen die zukünftigen Kandidaten genaue Kenntnis der
Hl. Schrift und volle Vertrautheit mit den Ausdrucksmitteln der
formalen Logik an den Tag legen konnten und sollten11. Andere
zeugen von dem grossen Interesse an Fragestellungen, die
damals zur angewandten Mathematik gerechnet wurden 12.

Im Frühjahr 1678 ging Jakob als Hauslehrer zum Marquis
de Lostanges nach Nède 13, dann in Sommer 1679 wiederum
als Hauslehrer nach Bordeaux, wo er 4 Monate lang Beobachtungen

über das Eintreten von Ebbe und Flut eintrug14. Die
weitere Reise führte die Gironde hinab zur Insel Ré, dann über
die den Hugenotten garantierten Städte La Rochelle, Nantes
und Saumur (die protestantische Universität Frankreichs) nach
Orléans und Paris (2 Monate Aufenthalt), hierauf durch die
Champagne und Lothringen an den Rhein. Am Himmelfahrtstag
1680 (30.V.Greg.St.) war Jakob wieder in Basel. Er hatte viel
gesehen, war nunmehr der französichen Sprache vollauf mächtig
und interessierte sich insbesondere für die methodischen und
naturwissenschaftlichen Ansichten von Descartes und Mali»
Branche. Mit den Lehrmeinungen von P. Megerlin, der die
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mathematische Professur an der Universität seit 1674 innehatte,
setzte sich Jakob sehr kritisch auseinander15. Vor allem die

wundergläubigen Kometen-Prognostica waren dem durchaus
rationalistisch eingestellten jungen Gelehrten ein Greuel. Deshalb

versuchte er sich unter Bezugnahme auf die beste
zeitgenössische Literatur16 an einer rein naturwissenschaftlichen
Erklärung der Kometen-Erscheinungen, fehlte jedoch beim
Versuch der Bahnberechnung 17.

4. Im Frühjahr 1681 verliess Jakob die Vaterstadt
abermals. Die Reise führte zunächst nach den Niederlanden. Längere

Zeit hielt sich Jakob in Amsterdam auf, wo er mit J. Hudde
und B. Fullenius bekannt wurde, denen die lateinische Fassung
der Kometentheorie1 gewidmet ist. Bei A. de Bie hörte er eine
holländisch vorgetragene Vorlesung über mathematische
Seefahrtkunde und arbeitete über praktische Aufgaben aus der
Mathematik 18. Von da ging Jakob nach Leiden. Dort besuchte

er ausser theologischen19 und juristischen20 Kollegs auch

physikalische Vorlesungen bei dem weltberühmten B. de Vol-
der, der zu den Korrespondenten von Huygens und Leibniz
zählte. Jetzt fing er an, sich genauer mit der Philosophie und
Mathematik von Descartes zu befassen und auseinanderzusetzen

21. Noch in Leiden ist die inhaltsreiche Dissertatio de

gravitate aetheris22 entstanden, veranlasst durch eine Schrift
de Volders mit ähnlichem Titel23. Es handelt sich um eine

Art Ätherstoss-Theorie auf Grund mechanischer Vergleiche21
unter Berücksichtigung dessen, was man damals über die
Kohäsion und die elastischen Eigenschaften von festen, flüssigen
und gasförmigen Körpern wusste. Überall bewahrt Jakob
seinen selbständigen Standpunkt und weiss ihn recht wohl zu

begründen. Nach Überwindung eines schweren skorbutähnlichen
Anfalls reiste Jakob im Sommer 1682 über Calais nach London,
wo er mit vielen massgeblichen Persönlichkeiten der Royal
Society bekannt wurde,-so mit R. Boyle, I. Vossius, R. Hooke,
H. Justel und D. Cluver 25. Von jetzt ab häufen sich in den

Med. die Hinweise auf Schriften von J. Wallis 26 und L
Barrow27. Das eingehende Studium dieser Werke, das wohl erst
nach der Heimkehr im Herbst 1682 einsetzt und mit der Durch-
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arbeit der einfacheren Teile aus der lateinischen Ausgabe der
DESCARTESSchen Géométrie28 verknüpft wurde, hat Jakob den

Zugang zu den ihm bis dahin völlig unbekannten infinitesimalen
Methoden ermöglicht.

5. Seit 1683 hielt Jakob an der Basler Universität private
Experimentalvorlesungen über die Mechanik fester und flüssiger
Körper29 und nahm in Beiträgen für das Journal des Sçavans

[= JS]30 und die Acta eruditorum[ — AE]31 zu Neuerscheinungen
Stellung oder machte kleinere Mitteilungen. Einen breiten Raum
nahmen die Diskussionen um den Schwingungsmittelpunkt ein32,
die zu heftigen Auseinandersetzungen zwischen Huygens,
Leibniz und dem Pariser Abbé Catelan geführt hatten. In
etwas ruhigerer Form vollzog sich die Widerlegung des Papin-
schen Konstruktionsversuches für ein perpetuum mobile33.

Am 25.1.1684 hielt Jakob an der Universität eine öffentliche
Disputation ab 34, in der er 100 Thesen verteidigte: 34 logische,
18 dialektische und 48 vermischte, darunter manche
ausgesprochen spitzfindige. Ich füge zu den bereits erwähnten folgende
weitere Proben hinzu:

Art. 76: Wenn die übrigen Bedingungen gleich sind, ist grösser
kleiner und kleiner grösser 35.

Art. 77 : Zu einer geraden Linie gibt es eine noch geradere.
Art. 78: Manchmal gibt es mehrere kürzeste Wege von Punkt zu

Punkt 36.

Art. 79: Es gibt zu einer Linie unendlich viele Lote, die zu einem
und dem nämlichen Punkt der Linie hingehen.

Art. 80: Ein Kreis hat genau einen Mittelpunkt, obwohl es mehrere
Punkte gibt, deren Verbindungsstrecken mit den Um-
fangspunkten gleich lang sind 37.

Art. 81: Der Kreis fasst unendlich viele Maxima, aber nur ein Mi¬
nimum 38.

Art. 82: Der Kontingenzwinkel ist entweder Null oder mit unter
unendlich vielen geradlinigen Winkeln enthalten39.

Art. 83: Unter isoperimetrischen Figuren kann eine unendlichmal
grösser sein als eine andere 38.

Art. 84: Das Umfassende ist immer grösser, immer kleiner; manch¬
mal grösser, manchmal kleiner; also niemals grösser oder
kleiner als das Umfasste 40.

Art. 85: Nicht in jedem Dreieck sind 3 Winkel zusammen gleich
2 Rechten.

L'Enseignement mathéin., t. II, fasc. 1-2. 5
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Art. 89: Die Quadratur des Kreises ist noch nicht gefunden, aber
nicht etwa deshalb, weil zwischen krummen und geraden
[Grössen] kein Verhältnis bestehen kann; denn in
Wirklichkeit lässt sich auch eine Kurve ausstrecken und eine
krummlinige Figur quadrieren 41.

Kurze Zeit darauf verheiratete sich Jakob mit Judith
Stupanus, der Tochter eines angesehenen und vermöglichen
Basler Apothekers. Eine ihm angetragene Predigerstelle in
Strassburg lehnte er ab ; gar zu gern hätte er eine mathematische
Professur in Heidelberg übernommen, musste aber auf diesen
Plan angesichts des erregten Einspruchs der Familie verzichten.

6. Inzwischen war auch der jüngere Bruder Johann der
höheren Schule entwachsen, vom Vater in die Handelslehre nach
Neuenburg gegeben worden, jedoch schon nach einem Jahr
zurückgekehrt und vom Studium nicht mehr abzuhalten gewesen.

Johann verteidigte am 19.IX. 1685 eine logische Dissertation
des Bruders 42, wurde im Dezember zum rnagister artium
promoviert, entschloss sich — widerwillig dem Wunsch des Vaters
folgend — zum Studium der Medizin und warf sich unter
Anleitung des älteren Bruders auf die Mathematik. Jakob war
etwas bedächtig, ein gründlicher und origineller Denker, jedoch
sehr empfindlich und beinahe melancholisch zu nennen.
Johann fasste sehr rasch auf und vermochte sich algorithmischer
Methoden beinahe blitzartig zu bemächtigen. Er war nicht
weniger reizbar, rechthaberisch, ehrsüchtig, nachträglerisch und
streitbar als der ältere Bruder, verstand sich jedoch trotz vieler
nicht gerade einnehmender Eigenschaften mit seinem

übersprudelnden Temperamënt sehr geschickt durchzusetzen und
scheute in den nicht abreissenden wissenschaftlichen
Auseinandersetzungen mit Rivalen und Gegnern keineswegs vor der

Anwendung zweifelhafter Mittel zurück. Johann erwarb am
29.IX.1690 mit einer umfangreichen Dissertation 43 das medizinische

Lizentiat (d.h. die Lehrberechtigung), am 26.III.1694
durch eine iatrophysikalische Studie über die Muskelbewegung44
die Doktorwürde. Jakob hat später bekundet45, wie sehr er eine

weitere und tiefergehende Betätigung des Bruders auf diesem

vermutlich aussichtsreichen Gebiet gewünscht hätte. Leider
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habe sich Johann durch die vorauszusehenden Schwierigkeiten
abschrecken lassen 46.

7. Die seit Herbst 1682 in Basel entstandenen Teile der

Med. sind für uns von grösstem Interesse, weil sie Einblick in
das Ringen Jakobs um die Methoden der DESCARTESschen

Mathematik gewähren. Ich erwähne zunächst Art. 50. Er
bezieht sich auf die Konstruktion einer Geraden durch einen

gegebenen Punkt, deren Abschnitt zwischen zwei gegebenen
Geraden vorgegebene Länge erhält47. Art. 51 handelt von der

punktweisen Konstruktion einer logarithmischen Spirale, wenn
der Pol und zwei Punkte gegeben sind48. In Art. 53 wird die
kürzeste Strecke durch den gegebenen Punkt eines

rechtwinkligen Feldes bestimmt, die zwischen dessen Grenzgeraden
möglich ist49. Art. 56 fordert die Konstruktion einer Kurve
innerhalb eines mit zwei rechten Winkeln ausgestatteten
Trapezes, wenn der laufende Kurvenpunkt einer verwickelten
Flächenbedingung genügt50. Nach mühevoller Rechnung findet
Jakob, dass es sich um eine Parabel handelt. Das eingeschlagene

Verfahren verrät, dass Jakob gerade beim Studium der
WALLisschen Arithmetiea infinitorum26 angelangt ist. Art. 57

bezieht sich auf eine Flächengleichheit, die wir so schreiben
X

würden: f ydx a (b — y). Unter Anwendung der Wallis-
o

sehen Methoden findet Jakob das Ergebnis: die logarithmische
Kurve51. Art. 58 enthält eine elementare arithmetische
Aufgabe52, die von Th. Zwinger am 28.1.1684 in einer Disputation

52a vorgelegt worden war. In Art. 59 wird die Gleichung
für die Seite s des regelmässigen 14-Ecks im Kreis des
Halbmessers a durch Anwenden einer hübschen Ähnlichkeitsbetrachtung

gewonnen. Die Anregung könnte aus Viète 53

stammen. Bei der Durchrechnung bedient sich Jakob der
CARDANischen Formel54, wendet sie jedoch unrichtig an und
kommt nur durch Zufall zu einem brauchbaren Zahlenwert55.
Nun folgen in Art. 61 einfache Extremwertaufgaben56, die nach
Herstellung der kennzeichnenden Gleichung durch Anwenden
der bekannten HuDDESchen Regel57 gelöst werden. Art. 62
fordert die rationale Bestimmung der Seiten und Diagonalen
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eines Sehnenvierecks, dessen Grundlinie der Kreisdurchmesser
ist58. Mit Art. 63 setzen die ausserordentlich interessanten'
Studien Jakobs zur Wahrscheinlichkeitsrechnung ein59. Sie

werden ergänzt durch zwei einschlägige Aufgaben, die Jakob
öffentlich zur Diskussion gestellt hat60. Dazwischen schieben
sich elementare geometrische Fragen61, die jedoch
grundsätzlich niemals mit Winkelfunktionen, sondern stets durch
Streckenrechnung behandelt werden. Dass diese Untersuchungen
noch vor das Frühjahr 1686 fallen, lehrt uns Art. 91 von der
Schwerpunktsbewegung einer Flüssigkeit in einem U-Rohr, der
in Th. 18 der logischen Dissertation vom 22.11.1686 erwähnt
wird62. Das dort in Th. 30 angeführte Problem der kürzesten
Dämmerung bestätigt die Richtigkeit einer Bemerkung Johanns
vom Januar 1693, wonach sich die Brüder schon sehr lange mit
dieser Frage beschäftigt hätten63.

In allen diesen Studien sind interessante Ansätze für später
enthalten. Die Angehörigen der Basler Alma mater konnten
sich freilich nur aus den kurzen Erwähnungen in den Thesen
der logischen Disputationen vom 19.IX.168542 und vom
22.11.168664 und aus der öffentlichen Vorlesung vom 19.IV.168665

von der Tüchtigkeit des jungen Dozenten überzeugen. Sie

wussten auch schwerlich davon, dass Jakob bei der kritischen
Durcharbeit der WALLisschen Arithmetica infinitorum26 einen

wichtigen methodischen Fortschritt erzielt hatte: das Verfahren
der unvollständigen Induktion wurde als unzutreffend erkannt
und durch den einwandfreien Schluss von n auf n N i ersetzt66.

In Basel war man nach dem Tode Megerlins der einhelligen
Meinung, als Nachfolger auf dem mathematischen Lehrstuhl
komme nur Jakob in Frage. Die der Auffassungskraft der
Zuhörer ausserordentlich geschickt angepasste Probevorlesung
vom 14.11.1687 67 muss vortrefflichen Eindruck gemacht
haben.

8. Mit der Übernahme der mathematischen Professur und
der tiefergehenden Unterweisung des Bruders steigen Zahl und

Umfang der Aufzeichnungen in den Med. erheblich an. Neben
zahlreiche elementargeometrische Fragen68 und Extremwertprobleme

69 tritt die Behandlung von Kegelschnittsätzen70 und



Art 8

An m. 71/89 INFINITESIMALMA THEMA TIK 69

von geometrischen Örtern, die auf Kegelschnitte71 bezw. auf
höhere algebraische Kurven führen72. Auch die literarischen
Hinweise mehren sich73. Die eingeschlagenen Methoden sind

rein algebraischer Natur; die Rechnungen werden nicht gerade

elegant, jedoch mit erheblicher Energie durchgeführt. Besondere

Erwähnung verdient das Problem, die Fläche eines allgemeinen
Dreiecks durch zwei zu einander senkrechte Gerade zu vierteln 47.

Jakob hatte (vielleicht durch N. Fatio75) erfahren, dass sich

Chr. Huygens mit dieser Aufgabe beschäftigt habe und auf
eine Gleichung von mehr als dem 40. Grad gestossen sei76. Ihm
gelang es, das Problem auf eine Gleichung 8. Grades zurückzuführen.

Seine Lösungsmethode ist mit der aus dem Nachlass

von Huygens bekannten77 sehr verwandt; der Bericht Fatios
war unrichtig78.

Die nächstfolgenden Artikel der Med. setzen sich sehr gründlich

mit Einzelheiten aus der ScHOOTENSchen Ausgabe der Geo-

metria von 1659 auseinander. Art. 112 handelt vom Krümmungskreis

der Parabel79, Art. 116 von der Bestimmung der
Parabelnormalen durch einen gegebenen Punkt80, Art. 117/18 von der
graphischen Auflösung algebraischer Gleichungen81, Art. 119

vom Krümmungskreis der Hyperbel82. Bei dieser Gelegenheit
bemerkte Jakob, dass sich die graphischen Methoden von
Descartes durch geschicktere Wahl der Hilfskurven wesentlich
vereinfachen lassen. Das wurde Gegenstand eines Aufsatzes in
den AE vom Juni 168883. Jakob behauptete insbesondere, dass
es hinreicht, zur Auflösung einer Gleichung ft2-ten Grades die
Schnittpunkte von zwei Cn heranzuziehen84.

Am 15.X. 1688 hielt Jakob eine Disputation mit Thesen über
die Verhältnislehre ab85, unter denen Th. 15 und 16 für die
Auffassung Jakobs vom Wesen infinitesimaler Grössen
kennzeichnend sind86. Im Winter 1688/89 entstand die
Materialsammlung für eine Dissertation über Reihen, die am 17.VI.1689
in öffentlicher Disputation von J. J. Fritz verteidigt wurde87.
Die Vorstudien in den Med.88 geben Auskunft über jene Teile
der Dissertation, die Jakob — übrigens in Unkenntnis wesentlicher

Vorarbeiten von P. Mengoli89 — selbständig gefunden
hat. Was er aus der ihm verfügbaren Literatur entnommen hat,
findet sich nicht in den Med. und war wohl in die Handexemplare
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der fraglichen Werke eingetragen. Diese sind unglücklicherweise
bei der Versteigerung des Nachlasses in alle Winde verstreut und
bisher noch nicht wieder aufgefunden worden.

Die Abhandlung enthält — abgesehen von der Bernoulli-
schen Ungleichung90 und den verschiedenen Divergenzbeweisen
für die harmonische Reihe, deren erster gemäss dem Zeugnis
Jakobs von Johann stammt91 — vor allem die Summen der
reziproken figurierten Zahlen92, ausserdem die Reihenent-

1
i i

Wicklungen für
__

mit \x < 1, n 2, 3, 4. Der Zusam-
1 X)n

menhang mit der binomischen Reihe, die bereits in Wallis'
Algebra93 gedruckt zugänglich war, ist noch nicht erfasst.
Unter den angefügten Thesen ist die 7. interessant. In ihr wird
auf eine unrichtige Rektifikation der ARCHiMEDischen Spirale
in J. Chr. Sturms Mathesis enucleata verwiesen91. Diese Studien
werden in den folgenden Aufzeichnungen der Med. noch weiter
fortgesetzt95. Dann folgt im Anschluss an eine (nicht erwähnte)
Abhandlung von Leibniz über den Zinseszins 96 das Problem der
Augenblicksverzinsung97, hierauf die Entdeckung einer hübschen

Kegelschnitt-Eigenschaft98. Diese in erster Linie algebraischen
Gegenständen gewidmeten Studien werden abgeschlossen durch
iterierte Näherungskonstruktionen für höhere geometrische
Mittel und Gleichungen 3. Grades mit Zirkel und Lineal, die
erstmals in AE IX 168999 gedruckt und von hier in die 2.

Reihendissertation vom 28.XI.1692 übergegangen 100 sind.

9. Die Hoffnung, aus den Med. Einblick in das Ringen
Jakobs um die LEiBNizsche Differentialrechnung zu gewinnen,
erfüllt sich leider nicht. Wir sehen nur, dass der scharfsinnige
Denker plötzlich den ihm wohlvertrauten Bereich der Descartes-
schen Mathematik verlässt und sich unter Verwendung der
LEiBNizschen Bezeichnungsweise mit transzendenten Fragen
beschäftigt. Nicht einmal über die Lösung, die Jakob in den

AE V 1690101 von LEiBNizens Problem der Linie konstanten
Abstiegs im Schwerefeld 102 gibt, findet sich eine Aufzeichnung,
und ebensowenig über das Problem der Kettenlinie (catenaria),
das am Ende dieser Mitteilung gestellt wird. Johann will
Jakob zur öffentlichen Stellung dieser Aufgabe veranlasst
haben103.
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Leibniz teilte alsbald mit, dass er die Gleichung der Ketten -

linie gefunden habe104, und schlug vor, eine Einreichungsfrist
für die Lösung bis zum Ende des Jahres 1690 festzusetzen. Noch

vor diesem Termin fand Johann die Lösung, die in den AE VI
1691 veröffentlicht wurde105. Daran schloss sich der Druck der

vom modernen Standpunkt aus besonders interessanten Lösungen
von Huygens106 und Leibniz107. Dieser liess später noch
mehrere Veröffentlichungen mit Vergleichen über die

eingegangenen Lösungen einrücken108.
Jakob hatte inzwischen in den AE I 1691 eine Abhandlung

über die parabolische Spirale x a cp, y a — r, cx y2 mit
zusätzlichen Beiträgen über Krümmung und Evoluten
veröffentlicht109, die er als nähere Erläuterung der ersten Leibniz-
schen Abhandlung über die Differentialrechnung110 angesehen
wissen wollte. Hier fiel die Bemerkung, die LEiBNizsche Methode
sei nichts anderes als die kalkülmässige Weiterführung des

BARROWschen Vorgehens in den Lectiones geometricae90 — sie

ist zu einem der entscheidenden Ausgangspunkte des Prioritätstreites

geworden111. Jakob bestimmt durch Rechnungen, die
im Grunde auf die Verwendung von Polarkoordinaten hinauslaufen,

die Subtangente, die Fläche, die Bogenlänge112 und den

Wendepunkt. Die Formel für den Krümmungshalbmesser ist
noch recht ungefüg. Die Evolute der Parabel wird auf Grund
einer direkten geometrischen Betrachtung bestimmt.

In den AE VI 1691 setzt Jakob seine Untersuchung an der
logarithmischen Spirale (Rektifikation, Sektorfläche), der
nautischen Kurve (Schnittwinkel mit den Fahrstrahlen gleich 45°)
und der Kugel-Loxodrome113 fort. Die Kurvengleichungen muss
er in Integralform darstellen, da ihm der Begriff der logarithmischen

Funktion noch fehlt114. Anschliessend bestimmt Jakob
die Fläche eines sphärischen Dreiecks aus dessen senkrechter
Projektion auf die Äquator-Ebene durch Integration115. Dann
folgt eine der feinsten Entdeckungen: der Ansatz für die Form
einer unausdehnbaren Kette bei veränderlicher Seildicke und
für eine dehnbare Kette bei fester Seildicke116. Am Ende der
Abhandlung stellt Jakob die Untersuchung jener Linie in
Aussicht, die ein ursprünglich gerades, am einen Ende fest
eingespanntes elastisches Band unter dem Einfluss einer am andern
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Ende senkrecht zum Band wirkenden Kraft annimmt. Er
verbirgt das Ergebnis für den Fall, dass die elastische Gegenkraft
proportional zur Verlängerung ist, unter einem Logogryph, das

besagt, dass x2 — a2 sin t wird117. Anschliessend verweist er auf
das Problem der Segelkurve (velaria), das mit jenem der Kettenlinie

verwandt sei118, und auf die Form einer mit Flüssigkeit
beschwerten Membran119 (lintearia). Dann wird erneut auf
Barrow als den eigentlichen Urheber der neuen Methoden
hingewiesen, wenngleich durch diese Erwähnung LEiBNizens
Verdienste keineswegs herabgesetzt werden sollten " 12°.

Art. 168 aus dieser Zeit bringt eine Überraschung. Hier greift
Jakob das Problem der Traktrix an, mindestens iy2 Jahre vor
Huygens121. Aus ^ ~ folgert er fydx f dy a2 — y2

und J y2dx [—] g Ü (a2—y2)3 und deutet diese Integrale
als Flächen- bezw. Körpereigenschaften. Art. 169 handelt von
der Rektifikation der Parabel in Reihenform. Er verdankt seine

Entstehung einer Anregung Johanns122.

10. Schrittweise bemächtigt sich Jakob nun auch der

Reihenentwicklungen für transzendente Integrale, freilich noch
nicht auf Grund eines allgemeinen und strengen Prinzips,
sondern durch kühne Analogieschlüsse im Sinne der WALLisschen
unvollständigen Induktion. Er beginnt mit der Hyperbelquadratur323.

Dann folgt die binomische Entwicklung von ^nach
Potenzen von ~ wenn 2n eine ganze positive Zahl ist124. Daran

schliesst sich die Entwicklung der Elastica-Integrale y
x x2 dx x a2 dx
/' und s f -, wobei durch erneute

•0; fft4 — X* 5 \/a4 — ;r4

4 4 xJ

Interpolation von bezw. zu )/<* — <*
übergegangen

wird 125. Nun wird der Bogen s f dy YL a + 4 y der
'

• o a

Parabel y2 — ax in eine Reihe entwickelt, die allerdings nicht
recht günstig ist126.

Jetzt folgt die gedanklich hochinteressante, leider formal
unzureichende Herleitung der Exponentialreihe aus der bino-
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mischen127. Jakob will die zur Ordinate y — b gehörende
Abszisse x der logarithmischen Kurve y — a • In x finden, die

er jedoch noch nicht gleichungsmässig, sondern nur in Worten
u 00

definiert. Er bildet zunächst — In \/~ setzt dann
00 fl V ^ 1

a (y~^ — l) d und erhebt Ç/~ — 1 + ^ zur n-ten fsic

Potenz. Ergebnis:
nd n2d2 n3d3

a; 1 4" — + x—i Q—s A eic'
a 2 a2 2 • 3 a3

b b2 b3
mit nd b folgt hieraus x l + — + x—- + 7—:—« + etc.0 a 2 a2 2 • 3 a3

Noch kühner ist die Herleitung der Sinus- und Cosinus-Reihe
aus der binomischen128. Jakob setzt am Einheitskreis a < tt

und 2 sin -j x. Dann ist (in einer der Kürze halber etwas

modernisierten Schreibweise) 2 cos ^ yA — x2, also

2 ^1 cos 2 -—- i/4 — ^ ^2 sin •

Folglich:

2 sin ~ \/2 — V/4ZT^2T

2 «'«
3 J/ 2 — V/Vf yT

2 sin ~ - d - y/ 2 _ p 2 + y/2 e(c y'4 ^ "

Hieraus durch fortgesetztes Quadrieren unter Beifügen der
Exponenten:

Exponent
Potenz

2 d2= =|//2 + V//2 etc. V4

2 — 4 d2 + d4 Ü2 + \/2 etc. V 4 — ;

2 — 16 d2 + 20 d4 — 8 d6 + d8 V2 + V 2 etc. VW7« ;

2 J2 i
d4 n6 d6

4 - n + T4 - + etc- 4 - *2
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Wie das im einzelnen durch eine Näherungsrechnung
herauskommt, wird an Hand einer eingehenden Tabelle plausibel
gemacht. Nun folgt mit nd — a:

also die Cosinus-Reihe. Jetzt bildet Jakob schrittweise die
Reihen für x4, und geht von ihnen durch Interpolation,
d.h. durch unvollständige Induktion, zu x zurück. So erhält er

die Reihe für 2 sin-|. Deren Bildungsgesetz wird ihm nur deshalb

nicht so klar, weil er es versäumt, an Stelle von ~ eine neue

Grösse einzuführen. Voller Freude über das (sicherlich als

unbekannt angesehene) Ergebnis schliesst er diesen Abschnitt
mit den Worten: Quantum autem hoc subsidium in practica
constructione canonis.

Leider war das Schicksal gegen Jakob. Fast unmittelbar
nach Abschluss dieser Untersuchung muss ihm der LEiBNizsche
Aufsatz über die arithmetische Quadratur der Kegelschnitte
(AE für IV 1691) zugegangen sein129, worin er die eben noch
für neu gehaltenen Ergebnisse wiederfinden sollte, die Exponen-
tialreihe, die Cosinus- und die Sinus-Reihe. Als er dann in dem
verschollenen Brief vom 22. V.1691 an den Bruder130 das AE-Heft
beilegte und sich über seine neuen Ergebnisse äusserte, da
antwortete dieser am 1.VI.1691131, er habe die LEiBNizschen Reihen

ganz leicht durch rationalisierende Transformation bestätigen
können. Er glaube nicht, dass Leibniz im Besitz dieser sehr

weittragenden Methode sei. Darin hatte sich Johann freilich
getäuscht; denn Leibniz bediente sich eben dieses Verfahrens
im Brief an Oldenburg für Newton vom 27.VIII.1676, als es

ihm darauf ankam, die Transmutationsmethode zu verbergen
und nur die speziellere rationalisierende preiszugehen 132.

Freilich hat Jakob die ihm damals zur Verfügung stehenden
Infmitesimalmethoden noch nicht immer richtig angewendet.
Z.B. hat er die rationalisierende Transformation für das Integral

/tdt i / a ^71.—— verfehlt, von dem er die Quadratur des Des-
V ay/z + 6t

cartes'sehen Blattes x3 + y3 axy abhängig macht133. Auch
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der nur wenig früher liegende Versuch, in der Schar der

Wurfparabeln gleicher Anfangsgeschwindigkeit aus einem gegebenen
Punkt die Punkte grössten Abstandes von der Ausgangsstelle zu

bestimmen, ist gescheitert. Hingegen hat Jakob den Scheitelort

richtig angegeben und die Einhüllende auf Grund einer im
Parameter durchgeführten Extremwertbetrachtung ermittelt134.
Den nämlichen Gedanken verwandte Johann im Aufsatz über
die Catacaustica des Kreises bei parallel einfallendem Licht135.
Beide versäumten es jedoch, das angewendete Prinzip in voller
Allgemeinheit darzulegen. Das ist erst das Verdienst von
IjEIBNIZ 136.

11. Inzwischen war Johann nach achtmonatigem Aufenthalt

in Genf nach Paris weitergereist, wo er Male branche
aufsuchte und freundlich aufgenommen wurde 137. Er wurde mit
l'Hospital bekannt, verstand es geschickt, seine mathematischen

Kenntnisse und Fähigkeiten in bestes Licht zu setzen
und fand sich bereit, den nach wissenschaftlichem Ruhm
strebenden und mathematisch ausgezeichnet veranlagten Marquis
in wohlhonorierter Privatunterweisung über das zu unterrichten,
was sich die beiden Brüder bisher in wetteiferndem Streben auf
dem Gebiete der höheren Analysis erarbeitet hatten. Aus
Abschriften, die von diesen Unterweisungen genommen und
sowohl von Johann wie von Jakob entsprechend dem damals
üblichen Verfahren an Schüler und zuverlässige Freunde gegeben
wurden, sind wir über den Inhalt genau unterrichtet138. Johann
hatte diesen grossen Erfolg der Formel p i^) '- den

Krümmungsradius zuzuschreiben, durch deren Anwendung er
dem Marquis beim ersten Zusammentreffen so gewaltig hatte
imponieren können 139.

Für Jakob tritt jetzt die Geometrie der Krümmungseigenschaften

stärker in den Vordergrund. Durch Schaffung neuer
Begriffe wie der Anti-Evoluten und Anti-Gatacausticen140
vermag er des Bruders spezielle Studie über die Catacaustica
des Kreises 135 wesentlich zu erweitern, stellt den Anschluss an
die allgemeinen LEiBNizschen Sätze in den AE I 1689141 her
und entdeckt zahlreiche weitere Eigenschaften spezieller Cata-
causticen 142, vor allem aber an der logarithmischen Spirale 143.
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Er begeistert sich derart für diese curva mirabilis, die er als
simillima filia matris bezeichnet, weil sie eadem mutata resurgit

144, dass er sie als Emblem auf seinem Grabstein wünscht145.
Auch Johann hatte seine Studien fortgesetzt und neue

spezielle Sätze über verschiedene Catacausticen, vor allem jene
der gemeinen Zykloide, gefunden, über die er im Brief vom
25.III.1692 an Jakob berichtete146. Dieser hat Johanns
Ergebnisse sogleich bewiesen und einen Auszug aus seinen
Aufzeichnungen 147 als Zusatz zur Abhandlung AE V 1692 nach
Leipzig gesandt, der schon in den AE VI 1692 gedruckt
wurde148. Jakob hat diese Untersuchungen kurze Zeit darauf
durch Anwendung auf diacaustische Kurven noch wesentlich
erweitert149. Höhepunkt dieser Studien sind jedoch nicht

spezielle Ergebnisse, sondern die Formel p ^ Jakobs

theorema aureum; es ist zwar erst in den AE VI 1694 150

veröffentlicht, jedoch schon in der Aufzeichnung Med., Art. 192

vom April oder Mai 1692 als solches genannt15oa.

12. In das Frühjahr 1692 fällt auch eine andere Aufzeichnung
von Interesse. Sie bezieht sich auf die alte Streitfrage, wann ein
Flächenstück einer algebraischen Kurve „analytisch" quadriert
werden kann, oder modern gesagt, unter welchen Umständen

z — fydx eine algebraische Funktion von x ist, wenn y vermöge
a

eines gleich Null gesetzten Polynoms / (x, y) n-ten Grades als

algebraische Funktion von x erklärt ist. Tschirnhaus hatte in
den AE X 1683151 unter missverstandener Wiedergabe von
Ansätzen, die er während seines Pariser Aufenthaltes bei
Leibniz gesehen hatte, zwei unrichtige Behauptungen aufgestellt.

Die eine lautete so: Wenn die fragliche Quadratur
„analytisch" geleistet werden kann, dann genügt das Integral z einer

algebraischen Beziehung, die durch Nullsetzen eines

Polynoms F (x, z) ebenfalls n-ten Grades entsteht und daher durch
Koeffizientenvergleich hergestellt werden kann. Die andere

besagte folgendes: Wenn eine algebraische Kurve „in ihren
X

Teilen" nicht analytisch ist (d.h. wenn z — fydx nicht analy-
a

tisch ist), dann kann sie auch nicht als Ganzes analytisch sein
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b

(d.h. fydx ist niemals algebraisch). Leibniz sah sich zu einer
a

Entgegnung gezwungen152. Um die zweite Behauptung von
Tschirnhaus zu widerlegen, bediente er sich der Kurve mit
der Gleichung y4 — 6a2 y2 + ix2 y2 + a4 0, von der er
leicht nachweisen konnte, dass sie nicht analytisch im Sinne

von Tschirnhaus quadriert werden kann. Sie hat aber ein

algebraisches Teilintegral; denn die Fläche des entstehenden

trilineums im ersten Quadranten innerhalb des Quadrats

0 < x < a, 0 < y < a ist angebbar und gleich — a2. Tschirnhaus

hat LEiBNizens Gegenbehauptung zunächst als unrichtig
angesehen. Später hat er erkannt, dass LEiBNizens Beispiel durch
Umbildung aus dem bekannten HippOKRATischen Möndchen
zwischen einem Viertelkreis und dem Halbkreis über dessen

abschliessendem Durchmesser entstanden ist. Er wollte sich

jedoch noch nicht geschlagen geben und bezweifelte die
Verbindlichkeit der LEiBNizschen Schlussweise, weil es ihm in
diesem besonderen Fall gelang, das Möndchen durch Gerade

aus dem Mittelpunkt des Viertelkreises rational zu teilen 153.

Diese Auseinandersetzung sollte ein merkwürdiges Nachspiel
haben. Als Newton seine berühmten Philosophiae naturalis
principia mathematical veröffentlichte, da fanden die Leser in
Buch 1, Lemma 28 die folgende Behauptung vor : Es gibt kein Oval
mit algebraisch quadrierbarer Segment fläche. Und Jakob stellte
— wohl in Unkenntnis dieses Satzes von Newton— in seinem
ersten Beitrag zur Differentialrechnung155 die folgende
Behauptung auf: Es gibt keine in sich zurücklaufende algebraische
Kurve, die [algebraisch] rektifiziert werden könnte156. Leibniz
erkannte natürlich sogleich die Verwandschaft dieser beiden
Sätze mit der seinerzeitigen Behauptung TscHiRNHAusens und
erhob in den AE IX 1691 Einspruch157. Das veranlasste wohl
Jakob zur Durchsicht der älteren Hefte der AE. Er fand sehr
rasch heraus, wie es mit dem Beispiel LEiBNizens in den AE V
1684 bestellt war, und hielt diese Angelegenheit für wichtig
genug, um sie später als weiteren Beitrag zu LEiBNizens Scientia
infiniti zu schicken 158.

Den Einwand LEiBNizens gegen den Rektifikationssatz
durchschaute Jakob zunächst nicht. Deshalb forderte er in den
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AE XII 1695 159 von Leibniz einen bündigen Gegenbeweis.
Diesen Gegenbeweis trat Leibniz in den AE III 1696 160 durch
den Hinweis auf die gemeine Epizykloide eines Kreises an, der
auf einem Kreis des nämlichen Halbmessers rollt161. Daraufhin
zog Jakob den Rektifikationssatz in den AE VII 1696 als

unrichtig zurück 162. In der 3. Reihendissertation vom 24.XI.1696
gab er in prop. 43 163 ein interessantes Reispiel, das mit diesem

Gedankenkomplex zusammenhängt: Die transzendente Kurve

y In
1 x

lässt sich vermöge des Ansatzes Çydx — ~ +
o

XX X
i 2 3 + -f quadrieren. Diese Quadratur ist zwar „in

Teilen" (d.h. für unbestimte x) transzendent, aber „im ganzen"
l

rational ausführbar, da f ydx 1.
o

13. Weiterhin wären ziemlich umfangreiche Aufzeichnungen
des Frühjahrs 1692 über den Lichtweg in homogen geschichteten
Medien verschiedener optischer Dichte 164 zu erwähnen, ferner
Studien über das Problem der Schiffsführung165, über den
Widerstand eines im flüssigen Medium bewegten Körpers166
und über die Elastica. Sehr schön können wir verfolgen, wie
sich Jakob tastend mit dem Problem beschäftigt167, bis ihm
in Art. 205 die allgemeine Lösung gelingt: Er nimmt an, dass
eine als Funktion von x bekannte Spannung t proportional zur
Krümmung der Elastica wird: t a2: p. Nun erhält er unter
Anwendung des theorema aureum16S:

^y.ds a2 —
ds2 ds

fr — j* t dx — a2 I
Ö 0

also

dy fr dx : a4 — fr2 •

Die geometrische Deutung in den AE VI 1694 169 stammt erst
aus späterer Zeit, ebenso die Abschätzung der Reihen

o

l
f dx =11 1 13 1*3'5

J -y/l —
~ 2-5 2-4-9 2-4-6-13

'
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und

J a/ 1 — x4
o v

x2 dx 1 1 1-3
"3 + 2^7 + 2-411

4-3-5
+ 2 • 4 • 6 • 15 + " '

unter Verwendung der summierbaren Vergleichsreihe 170

r x3dx 1 1 1-3 1-3-5 _
1

J y/\ "iL ^ ~~ 4 2-8 2-4-12 2-4*6-16' 2

und die Behandlung der Kurve, die durch ein Gewicht gerade

gestreckt wird 171.

Zwischen diese Untersuchungen schiebt sich die Behandlung
der sog. Florentiner Aufgabe172: Aus der krummen Oberfläche
einer Halbkugel vier kongruente Fenster so auszubrechen, dass die

Restoberfläche quadrierbar wird. Jakob gibt mehrere Lösungen,
von denen zwei besonders interessant sind. Die erste kommt
(modern gesagt) darauf hinaus, dass aus der Halbkugel
2 \/a2 — x2 — y2 die beiden Halbzylinder 2 (/± ay — y2

herausgebohrt werden173; dann ist die verbleibende Oberfläche
der Halbkugel gleich 4a2. Die vierte Lösung ist allgemein.
Jakob nimmt in der die Halbkugel abschliessenden Kreisscheibe
eine quadrierbare Fläche an, deren Rand wir uns etwa in
Polarkoordinaten als r r (cp) gegeben denken. Dann bestimmt er
auf dem durch 2cp gekennzeichneten Fahrstrahl jenen Punkt
der Halbkugel, der von der Kreisscheibe den Abstand
z (a2 — r2):a hat. Die Gesamtheit aller dieser Punkte
umschliesst auf der Halbkugel eine Oberfläche, die gleich der
quadrierbaren Ausgangsfläche ist. Einige Jahre später wird die
Untersuchung fortgesetzt und führt zur Oberflächenbestimmung
auf Drehkörpern174.

Die Arbeiten des Jahres 1692 werden abgeschlossen durch
die zweite Dissertation über die Reihenlehre, die am 28.XI. von
dem Basler H. Beck verteidigt wurde175. Die Dissertation
zerfällt in zwei Teile. Im ersten werden die Summen der
reziproken figurierten Zahlen ermittelt176, ferner erscheinen
beachtliche Umformungen wie {prop. 21)

1

(A + 1)
/£= 1 k={
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oder

2* + 1
4 ^ [

fk (k + 1)12 *^3 [.

fc=l 2

I __
1

L k2 (k + l)s

(aus prop! 22). Jakob rechnet grossenteils mit unbedingt
konvergenten Zahlenreihen, die er sehr geschickt durch additive
bezw. subtraktive Zusammenfassung passender Glieder umformt.
Die bei solchen Transformationen gewonnenen Ergebnisse
werden unbedenklich und rein formal auf bedingt konvergente
Zahlenreihen angewendet, was bald zu richtigen, bald zu
unrichtigen Ergebnissen führt. So wird z.B. (prop. 24) aus der
für ganze p > 2 richtigen Beziehung

oo

2_L_ (2P — l) : 1
t1k\Ptrtw

auch auf

2 2T=1 '2 i 1 : 1 geschlossen,
1

k^i " 3H[

was nur für den Fall

n n
lim 1 J_
n-> « 2 k — 1 2 k

k=i k=l

zutrifft, ja sogar auf

: (V2 — 1) : 1

hTi^2k

was auch Jakob selbst als paradox empfindet177.
Der zweite Teil der Dissertation (prop. 27/35) bezieht sich

auf iterierte algebraische Prozesse zur Annäherung der Lösungen
von Gleichungen 2. bis 4. Grades. Hier werden Ergebnisse aus
den AE XI 1689 99 in verbesserter und verkürzter Form
wiedergegeben; auf die geometrische Deutung wird nur
hingewiesen. Auch jetzt weiss Jakob noch nichts von den
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Ansätzen Gregorys100. Interessant sind die ersten sechs

Thesen aus den der Dissertation beigegebenen Epimetra:

(1) Es gibt Spiralen, die den Pol unendlich oft umkreisen, jedoch
endliche Länge besitzen 178.

(2) Es gibt Kurven, die ellipsenartig in sich zurücklaufen und

parabelartig ins Unendliche gehen; z.B. ay2 x2 (b + x)-

(3) Es gibt Kurven, die aus zwei getrennten Ästen bestehen;
z.B.179 ay2 x{a2 — x2).

(4) Es gibt unbegrenzte Flächen mit endlichem Flächeninhalt.
(5) Es gibt unbegrenzte Flächen mit unendlichem Flächen¬

inhalt, deren Drehkörper um eine passende Achse endlichen
Flächeninhalt haben180.

(6) Dass die gewöhnliche Kurvenoskulation zwei Berührun¬

gen entspricht, habe ich durch wiederholte Untersuchung
widerlegt181.

14. Inzwischen war Johann im November 1692 wieder
nach Basel zurückgekehrt —, ein genialischer junger Mann von
nunmehr 25 Jahren, dem die Anfangserfolge auf dem Gebiet
der Wissenschaften etwas zu Kopf gestiegen waren, und der
in allzu hochgeschwelltem Selbstbewusstsein glaubte, den
älteren Bruder weit überholt zu haben. Schon in Paris war er
mit der berühmten DEBEAUNEschen Aufgabe182 fertiggeworden :

Jene Kurve dureh den Ursprung zu bestimmen, die durch
'y~~Jc

gekennzeichnet istlsz. Jetzt wirft er sich neben der Fortsetzung
seiner logischen 184 und medizinischen Studien 44 vor allem auf
die inversen Tangentenprobleme. Das Verhältnis zwischen den
Brüdern hat sich wieder entspannt, zumal Jakob schwer
erkrankt war185 und dem Bruder selbstlos Einblick in seine
neuesten Studien gewährte186. Die versöhnliche Stimmung
lässt sich recht gut aus den im allgemeinen freundlichen
Äusserungen über den Bruder ablesen, die in der inhaltsreichen
Abhandlung Jakobs über diakaustische Kurven vom Juni 1693
stehen187. Auch Johann lenkt ein und bemüht sich,
Liebenswürdiges über Jakob zu sagen188.

Auf welch fruchtbaren Boden die Anregungen gefallen
waren, die Johann in den Vorlesungen für l'Hospital gegeben

L'Enseignement mathém., t. II, fasc. 1-2. 6
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hatte, sollte sich alsbald zeigen. Dem Marquis gelang —
anscheinend selbständig189 — die Erledigung eines damals für
ungelöst gehaltenen Problems 19°, nämlich die Rektifikation
der logarithmischen Kurve 191.

Der Anzeige der UHospiTALSchen Entdeckung in der
Histoire des ouvrages des sçavans [— HOS] vom Februar 1693 191

liess Huygens eine Studie über die Traktrix folgen192, bei
deren gemeinsamer Durcharbeit die Brüder zur Untersuchung
jener Kurven durch den Ursprung 0 angeregt wurden, deren

Tangentenstück PT vom Kurvenpunkt P bis zur Abszissenachse

zum Abschnitt OT auf dieser in konstantem Verhältnis stehen.
Johann kam rasch zum Ziel und stellte das Problem als Aufgabe,
die er der Note über das DEBEAUNESche Problem in den AEW
1693 193 beigab. Auch Jakob wurde mit der interessanten
Problemstellung fertig und liess seine Lösung in den AE VI
1693 194 drucken. Er beschäftigte sich nebenher mit der homogenen

Differentialgleichung 195

ax2 by2 -f- cx2
dx u

und mit einer Fragestellung aus der logischen Disputation
Johanns vom 7.XII.1693 196, die von der astronomischen
Zeitbestimmung an Sonnenuhren handelte.

Von den nächstfolgenden Aufzeichnungen Jakobs bezieht
sich Art. 212 auf die Bestimmung der Laufzeit beim
Amortisationsproblem 197, Art. 213/14 auf das Einfliessen von Wasser in
ein ursprünglich mit Wein gefülltes Gefäss, während gleichzeitig

nach voller Durchmischung der Flüssigkeiten
Mischflüssigkeit durch eine Röhre abfliesst.

15. Nach ersichtlich längerer Pause lesen wir in Art. 218

Jakobs Stellungnahme zu der Entdeckung l'Hospitals, dass

der Krümmungsradius einer Kurve in einem Wendepunkt
gegebenenfalles auch Null sein könne 198. Jakob war von Johann
auf die Angelegenheit hingewiesen worden199 und sogleich
bereit seinen Irrtum zuzugestehen. Da er aber von dem Grundsatz

: Natura non facit saltuin, sed etiam in minimis agit gradatim
nicht abgehen wollte, machte er sich die interessanten gestalt-
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lichen Verhältnisse im Fall der Wendespitzparabel a2 x3 y5

durch Grenzübergang mit b—^0 aus der Kurve a2 x3 y5— b2 y3

klar 200.

Ins Frühjahr 1694 wird wohl die endgültige Redaktion des

grossen Aufsatzes über die elastische Kurve fallen, der in den

AE VI 1694 zum Abdruck kam 201. Nach einigen Bemerkungen
über den Zusammenhang des Problems mit dem der Kettenlinie
folgt der Hinweis auf das theorema aureum150 a mit einem
Zusatz über den Krümmungsradius bei Bestimmung einer
Kurve aus einer Art von Polarkoordinaten 202. Voraus geht die

von Johann sehr übel vermerkte 203 Äusserung, selbst dem
Bruder sei diese Darstellung des Krümmungshalbmessers noch
unbekannt 204. Nun folgt die rein geometrische Behandlung des

allgemeinen Falles der Elastica 168/69 mit zahlreichen Zusätzen
und Ergänzungen, dann ein spezieller Fall 205, schliesslich die
Annahme einer zur wirkenden Spannung proportionalen
Dehnung, von der Jakob ursprünglich ausgegangen war 167' 17°. Bei
dieser Gelegenheit spricht Jakob von der Möglichkeit, alle
vermittels Logarithmen konstruierbaren transzendenten Kurven zu

X

tennzeichnen 206. Er vermute stark, die Elastica y | —x
» yV _

.asse sich weder durch die Quadratur noch durch die
Rektifikation von Kegelschnitten darstellen 207. Einige der
nachfolgenden Bemerkungen über die Lintearia hat Jakob später
wieder zurückgenommen 167.

An diesen Aufsatz schliesst sich im nämlichen Heft der
ein weiterer, die Bestimmung der LEiBNizschen isochrona
paracentrica enthaltend 208. Einleitend berichtet Jakob, Johann
habe die leicht herstellbare Differentialgleichung (xdx + ydy) (/y

(xdy — ydx)ya des Problems 209 schon während des
Pariser Aufenthaltes gefunden, sei jedoch trotz Aufwendung
all seiner Integrationskünste nicht zum Ziel gekommen. Er
selbst (Jakob) habe die Veränderlichen vermittels eines
neuartigen Ansatzes 210 getrennt und bemerkt, dass die isochrona
paracentrica von der Rektifikation der Elastica abhängt211.
Allerdings hat er die möglichen Formen der lösenden Kurve
noch nicht ganz richtig erkannt212.
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Wir wissen nicht genau, was der unmittelbare Anlass für
das plötzlich wieder hochquellende Misstrauen Jakobs gegen
Johann war213. Jedenfalls steht fest, dass Johann von den
beiden Aufsätzen Jakobs erst aus der Veröffentlichung in den
AE erfuhr und die dort gegen ihn in spitzen Worten
vorgebrachten Unterstellungen niemals vergessen hat. Seit dieser
Zeit schwelt der Streit zwischen den beiden Brüdern unter der
Decke; mit Johanns Weggang nach Groningen (Herbst 1695)
sollte er zu voller Stärke aufflammen. Auf diese bittere
Auseinandersetzung soll in Zukunft nur so weit eingegangen werden,
als dies zum Verständnis der wissenschaftlichen Zusammenhänge

unbedingt nötig ist.
Ganz zufrieden war Jakob mit der Behandlung der isochrona

paracentrica nicht ; ihn störte die Abhängigkeit von der
Rektifikation der transzendenten Elastica. Nun hatte er sich

überlegt, wie man wohl die Bogenlänge einer wie folgt durch
einen Parameter dargestellten Kurve bestimmen könne214 :

x2 btp + ctq, y2 btp — ctq, also
2t2 x2 y2 ds2 btv [b2 p2 t2P -f c2 q(q — 2p) t2q] dt2.

Vermittels q — 2p vereinfacht er den Ausdruck rechts
entscheidend und bemerkt, dass sich die Bogenlänge der

entstandenen Kurve x2 + y2 a y x2 — y2, die von ihm als

Lemniskate bezeichnet wird215, auf dreifache Weise einfach
ausdrücken lässt:

(1) Mit x2 + y2 t2 in der Form fa2 dt : j/a4 — tA,

(2) mit x2 + y2 a*:t2 in der Form fa2 dt: \/A — a4 und

(3) mit x2 + y2 2at in der Form fa2 dt: \/2at(a2 — 412).

Die Lemniskate ist eine Kurve 4. Ordnung. Das durch ihre

Bogenlänge gekennzeichnete elliptische Integral wird von
Jakob dem durch die Quadratur einer Kurve 6. Ordnung
wie (a4 — x4) y2 — a4 b2 oder einer Kurve 5. Ordnung wie

2xy2 (a2 — 4x2) a5 dargestellten vorgezogen. Das Ergebnis
wird in den AE IX 1694 216 mitgeteilt. Dort erscheinen wichtige
zusätzliche Bemerkungen über die Klassifikation von Integralen.
Die einfachsten Transzendenten seien die von der Quadratur
der Ellipse und der Hyperbel abhängenden: aufgezählt werden

die Differentiale a2 dt: \/a2 ± t2 und t2 dt: (/± (a2 — t2). Als
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nächste Form folge das Differential t2 dt: \/A — a4 der

Hyperbelrektifikation 217, das Differential a2 dt: (/± (aé— A) der

Lemniskatenrektifikation und das Differential t2 dt: \/cA — A

einer kombinierten Ellipsen- und Lemniskatenrektifikation 218.

Das Echo, das diese drei interessanten Abhandlungen
Jakobs fanden, war vielfältig, jedoch nicht immer freundlich.
Huygens 219 findet die Abhandlung über die elastische Linie
bedeutend, bemängelt jedoch die unvollständige Form der
Elastica und hält die Annahme einer durch eine Quadratur
gegebenen Spannungsfunktion für eine sehr weitgehende
Voraussetzung; ferner verweist er auf die Möglichkeit einer den

Pol in unendlich vielen Windungen umkreisenden isochrona

paracentrica212. Im übrigen nimmt er an Jakobs allzu
selbstgefälliger Ausdrucksweise Anstoss. Leibniz äussert sich in den

AEVIII 1694 220 zunächst über das theorema aureum181, dann
über die Unwahrscheinlichkeit eines vom HooKESchen Gesetz
abweichenden Dehnungsgesetzes, hierauf über transzendente
Probleme 206. Schliesslich gibt er seine eigene Behandlung der
isochrona paracentrica preis. Er verwendet von Anfang an die
Strecken r und z — a sin cp als Unbekannte und erhält daher
sogleich 210

dr adz

\/.ar -\/az (a2 — z2)

Unvermittelt behauptet er, der rechte Ausdruck sei aus dem
Bogendifferential der im Parameter z vermöge

E, (3 a2 — z2) \/az : 2 a2, 7] z \/az (a2 — z2) : 2 a2

dargestellten algebraischen Kurve zu ermitteln; denn

da a2 dz : 3 Vaz (a2 — z2) + 5 (a3 — 3 az2) dz : 12 a ^2 — azz

Er nimmt an der bei Jakob fehlenden Integrationskonstanten
Anstoss und spricht von der Möglichkeit, die Integralkurven
mit gegebener Tangenteneigenschaft durch einen endlichen
Vieleckszug anzunähern 221.

Johann nimmt in den AE X 1694 222 noch ohne Kenntnis
des Aufsatzes aus Jakobs Feder in den AE IX 1694 Stellung.
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Er äussert sich über das theorema aureum 203 und gibt eine der
LEiBNizschen Herleitung sehr verwandte für die charakteristische

Differentialgleichung der isochrona paracentrica mit
getrennten Veränderlichen. Dann bedient er sich einer Zerlegung,
die ihn ebenfalls zur Konstruktion aus der Rektifikation der
Lemniskate führt 223.

Jakobs zusammenfassende Stellungnahme zu den
vorgebrachten Einwänden, Vorschlägen und Ergänzungen steht in
den AE XII 1695 224. An Neuem enthält die umfängliche
Abhandlung einen Satz über den Winkel zwischen zwei
Kurventangenten 225. Dazu treten Hinweise auf Studien über die
Form eines Fadens unter dem Einfluss mehrerer spannender
Kräfte 226, die mit der Entdeckung der Kurve mittlerer Richtungen

ihren vorläufigen Abschluss finden 227. Diese Kurve wird
umhüllt von den Halbierenden der Winkel, die zwischen einer
festen Ausgangstangente und der laufenden Kurventangente
entstehen.

Nach dieser Abweichung von der zeitlichen Abfolge, die
wir unterbrochen haben, um die Elastica-Probleme einheitlich

skizzieren zu können, kehren wir zu den noch nicht
berührten Studien der Jahre 1694/95 zurück. An den Anfang
stellen wir den Aufsatz in den AE X 1694228, worin sich Jakob
mit der LEiBNizschen Enveloppenbestimmung136 auseinandersetzt.

Hier wird die Einhüllende einer aus der Hilfskurve (£, */})

bestimmten Kreisschar (Ç — x)2 -j- y2 rf durch eine einfache
Konstruktion ermittelt 229. Ferner finden wir einen Hinweis
auf die Einhüllende der Wurfparabeln fester Anfangsgeschwindigkeit

durch einen festen Punkt 230 und auf gerade Linien,
die von einer Schar höherer Parabeln berührt werden231.

Weiterhin deutet Jakob an, man könne eine Kurve aus
gegebenem p (x) bestimmen 232. Schliesslich stellt er eine nicht allzu
schwierige Tangentenaufgabe 233.

Im Spätherbst 1692 hatte l'Hospital das originelle
Zugbrücken-Problem Sauveurs 234 gelöst, mit dem der Autor der

Aufgabe nicht fertiggeworden war. Er übersandte an Johann
ein Manuskript, das in dessen lateinischer Übersetzung in den

AE erscheinen sollte und nach einigem Hin und Her 235 in der
Februar-Nummer 1695 236 abgedruckt wurde, gefolgt von einer
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Ergänzung Johanns 237. Auch Jakob gibt eine Lösung 238.

Leibniz weist ergänzend auf das Lösungsprinzip hin 239.

Erstaunlich unsachlich ist Jakobs Reaktion 240 auf zwei

bedeutende Entdeckungen des Bruders vom Herbst 1694,

nämlich auf die Interpretation einer Differentialgleichung
1. Ordnung als Richtungsfeld, worin Johann den Wendeort der
lösenden Kurven bestimmt241, und auf die sog. BERNOULLische

Reihe 242

X/,X2 X3

y (x) dx xy — — y' + ^ y" T
0

Die Angelegenheit mit dem Richtungsfeld sei bis auf Unwesentliches

die Wiedergabe LEiBNizscher Gedanken 243 und die Reihe
zweifellos wertvoll, aber doch nicht immer brauchbar, wie z.B.
im Fall der Differentialgleichung a2 y' x2 + y2. Johann solle
doch die Kraft seiner Methoden, wenn sie wirklich etwas

taugen sollten, an diesem Beispiel erproben und die Veränderlichen

trennen 244. Anschliessend fordert Jakob die Auflösung
der nach ihm benannten Differentialgleichung y' p(x).y +
+ q (x) .yn durch Trennung der Veränderlichen und nachfolgende
Quadratur 245.

Mehrere Wochen des Jahres 1695 dürfte die Redaktion der
Ergänzungen erfordert haben, die Jakob der 4. lateinischen
Ausgabe der DESCARTESschen Géométrie beigab. Auf die
wichtigsten der darin enthaltenen Beiträge wurde schon früher
hingewiesen 246. Es ist übrigens nicht ausgeschlossen, dass zwei
von Jakob selbst als unrichtig bezeichnete Notizen über
algebraische Konstruierbarkeit 247, die auf der unzulässigen
Verwendung der Kurve mittlerer Richtung 227 beruhen, aus dieser
Zeit stammen.

16. In den AE XI 1695 248 veröffentlichte Tschirnhaus in
seiner voreiligen Art Sätze über Bogen- und Flächeninhalte, die
teils selbstverständlich, teils unrichtig waren. Insbesondere
behauptete er, er besitze ein allgemeines Verfahren, mittels
dessen er dem gegebenen Bogen AB einer Kurve einen zu AB
in rationalem Verhältnis stehenden Bogen CD der nämlichen
Kurve zuordnen könne; bei der Parabel gebe es hierfür sogar
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eine mit Zirkel und Lineal ausführbare Konstruktion, und
entsprechend liege die Sache bei Betrachtung von Flächenstücken

einer gleichseitigen Hyperbel. Mit wenigen kritischen
Worten stellt Jakob den Sachverhalt richtig 249. In ähnlichem
Sinne äussert sich Johann 25°, dem es später gelingen sollte,
durch scharfsinnige Überlegungen eine richtige Lösung des

Bogenproblems an der Parabel vermittels algebraischer
Hilfskonstruktionen zu geben 251.

Die AE VI 1696 252 enthalten noch einen weiteren Beitrag
Jakobs. Er bezieht sich auf eine bewegungsgeometrische
Fadenkonstruktion zur Auflösung der Differentialgleichung t(x) : a.

In der nächsten Nummer der AE für VII 1696 253 handelt Jakob
von der Differentialgleichung yf py -f- qyn, auf die er durch
Verallgemeinerung der DEBEAUNEsehen Aufgabe 183 gekommen
war. Er nimmt bereits Bezug auf die von Leibniz angedeutete
Lösung 254 und führt eine geometrische Konstruktion vor, die
auf die Lösung der Gleichung ay' y + q vermöge ay —

— e dx hinauskommt. Wenige Wochen später teilt

Johann eine in analytischer Form gegebene Lösung der

allgemeinen Gleichung mit 255.

Im Herbst 1696 dürfte die dritte Reihendissertation256
Jakobs vom 24.XI.1696 entstanden sein, verteidigt von dem

tüchtigen Jk. Hermann, dem treuen Schüler Jakobs. Sie ist
der Anwendung der Potenzreihen auf Quadraturen und
Rektifikationen gewidmet. Im Vorwort 257 werden Mercator,
Gregory, Newton und Leibniz als die Erfinder der Reihenlehre

genannt; man wisse jedoch bisher noch nicht, wieviel
Bemerkenswertes die drei ersten hierüber herausgebracht hätten 258.

Auch Leibniz teile nur Ergebnisse mit, habe sich jedoch ebenso

wie Jakob der Differentialrechnung bedient, und deshalb dürfte
sich beider Vorgehen kaum unterscheiden. Bei dieser Gelegenheit
werden die mathematisch interessierten Leser auf l'Hospitals
Analyse 138 hingewiesen.

Zunächst erscheinen die Entwicklungen für a: (b ± x)n
(prop. 36/40); in prop. 41 wird die gliedweise Integration einer
Potenzreihe gelehrt. Nun folgt in prop. 42 die Hyperbelquadratur
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nach Mercator/Wallis 123. Hier steht ein Verweis, aus dem

hervorgeht, dass Jakob schon damals im Besitz der allgemeinen
Potenzsummenformel war, die erst in der Ars conjectandi259

gedruckt erscheint. Bei Behandlung der Hyperbelquadratur
X

„nach Leibniz" [d.h. aus f bdx:( 1 ± x)] erscheinen auch die
o

Reihen für f V f jedoch ohne Beziehung zu den
I 1 X J 1 ~p oc

o 5

Logarithmen. Dies gilt auch für die Berechnung des durch
.X

f ^711
1

x
darstellbaren Flächenstreifens der logarithmischen

o

Kurve und des an dieser entstehenden unendlich ausgedehnten
1

Flächenraumes163 f... 1. Durch eine etwas modifizierte
o

Flächenbetrachtung ergeben sich in prop. 44 die Reihen für
X X

f In z—~— — und f In (1 + x) • — und daraus mit x 1 geome-
J L XX J X
0 0

trische Deutungen260 für4 bzw. (— Schliesslich wird

in prop. 45 die Kreisquadratur, in prop. 46 die Sektorquadratur
des Mittelpunktkegelschnittes vermittels einer rationalisierenden
Transformation geleistet261. Unter den Thesen der zugesetzten
Epimetra bezieht sich die 10. auf das Versagen des EuKLiDischen
Axioms, dass Gleiches zu Gleichem Gleiches ergibt, für Reste,
die gegen 0 gehen. Die 12. These handelt von der Unzulänglichkeit

der RENALDiNischen Regel zur näherungsweisen Bestimmung

der regelmässigen Vielecke im Kreise 61, die 14. von der
bereits erwähnten Amortisierungsaufgabe 197.

17. In den AE VI 1696 262 hatte Johann die Ermittlung
der Kurve kürzester Fallzeit zwischen zwei gegebenen Punkten
(Brachystochrone) gefordert. Das neue Problem war nur genauen
Kennern der Infinitesimalmethoden zugänglich. Leibniz gab
eine auf Extremwertbetrachtungen gestützte Auflösung 263,

Johann selbst eine im Zusammenhang mit dem optischen
Brechungsgesetz 264 und eine zweite direkte 265, die er jedoch auf
LEiBNizens Rat hin 266 zurückhielt. Auch Newton beteiligte
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sich, liess jedoch nur die Lösung drucken 267, und zwar in einer
Fassung, aus der sich nichts über die Art seiner Herleitung
entnehmen lässt. Die Lösungsversuche von Sauveur 268, Dier-
ckens 269 und Lahire 270 führten nicht zum Ziel, wohl aber der
(unrichtige) Ansatz von l'Hospital 271. Jakob hatte sich schon
seit Herbst 1696 mit dem Problem der Brachystochrone
befasst 272. Das Erscheinen einer öffentlichen Aufforderung
Johanns, des sog. Programms vom 1.1.1697, dessen spöttische
Anspielungen er nicht zu Unrecht auf sich selbst bezog, veranlasste

ihn zu beschleunigter Redaktion seiner Lösung. Er
gedachte ihr ein neues und sehr verfängliches Problem
beizufügen, durch das er den Bruder auf eine schwierige Probe stellen
wollte. Seine Lösung sandte er anfangs Februar 1697 an
Mencke 273. Sie stimmt der Idee nach fast völlig mit jener
LEiBNizens überein 274; besonders deutlich ist der Gedanke

herausgearbeitet, dass die Extremaleneigenschaft der Kurve
auch für jedes ihrer Teilstücke erhalten bleiben soll — eine zwar
hinreichende, jedoch keineswegs notwendige Lösungsbedingung.
Übrigens ist alles vermieden, was als Kränkung des Bruders
angesehen werden könnte 275. Im Mai-Heft der AE erschienen
die eingegangenen Lösungen des Brachystochronen-Problems 276.

Am bedeutendsten ist Jakobs Beitrag. Er enthält unter anderm
zwei neue Probleme, nämlich die isoperimetrische Aufgabe 277

und die Frage, auf welcher der brachystochronischen Zykloiden
aus einem gegebenen Punkt der fallende Körper in kürzester
Zeit zu einer gegebenen Senkrechten gelangen kann 278.

Die Studien Jakobs über das isoperimetrische Problem
lassen sich aus den Med. verfolgen. In Art. 239 279 werden auf
einem wendepunktfreien Stück der Extremalen zwei feste

Punkte A, B und zwischen diesen zwei bewegliche Punkte P

und Q angenommen. Nun bezeichnet Jakob die zugehörigen
aufeinanderfolgenden Abszissen-Differenzen mit dx', dx", dx'",
entsprechend die Ordinaten-Differenzen mit dy', dy", dy'" und
die Sehnenstücke mit dz', dz", dz". Er verwendet jedoch in der

nachfolgenden Rechnung anstelle dieser 9 Grössen andere

Buchstaben, um die noch ungewohnte Akzentuierung zu
vermeiden. Weiterhin setzt er dx" dx' — ddx', dx'" dx" —
— ddx" dx' — 2ddx' + dddx' usw. Dann denkt er sich — ohne
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das auszusprechen — zwischen A, B zwei andere Punkte II
und K auf einer Vergleichskurve zur Extremalen so eingeschoben,
dass AP + PQ + QB All + IIK + KB ist. Nennen wir
deren zugehörige Abszissendifferenzen dZJ" usw., dann

ergeben sich neun Grundformeln, nämlich

dx' + dx" -f dx'" dl' + dl" + dl'" usw.,

(dx'Y + (dy')2 (dz)2 usw.,

(dl')2 + (dr{)2 (dl')2 usw.

Jakob verwendet statt dieses Systems sechs Differentialformeln,
die wir unter Verwendung des Variationssymbols S so schreiben

würden:
$dx' + Sdx" + S dx'" — 0 usw.,

dx/ • S dx' + dy' • Sdy' dz' • S dz' usw.

Jetzt macht Jakob zwei getrennte Annahmen.

Fall A:
dy' di]', dy" di\", dy'" dr{"

Das bedeutet, dass die Punkte P, II bezw. Q, K nur auf den
nämlichen Parallelen zur X-Achse variieren dürfen. Nach einiger
Umrechnung erhält er hieraus

(A) dz'" (dx' dz" —- dz' dx") 8dx' 4-

+ dz' (dx" dz'" — dz" dx'") (Sdx' + S dx") 0

Fall B:
dz' d U, dz" d l", dz'" d l'"

Das bedeutet, dass die Punkte P, II auf dem nämlichen Kreisbogen

um A und die Punkte Q, K auf dem nämlichen Kreisbogen

um B liegen und dass PQ IIK ist. Nach Umrechnung
ergibt sich

(B) dy'" (dx' dy" — dy' dx") S dx' +
+ dy' (dx" dy'" — dy" dx'") (Sdx' + S dx") 0

Nun geht Jakob von den bisher als Differenzen anzusehenden
Symbolen d und S zu Differentialien über, wobei er dann x'
durch x, y' durch y und z' durch z ersetzt. W i r verwenden
dem heutigen Brauch entsprechend anstelle von z den
Buchstaben s.
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Im Fall A ist nunmehr y die unabhängige Veränderliche.
Unter Beschränkung auf die Glieder niedrigster und
nächstniedriger Ordnung und nach Entfernen von d2 s und d3 s

vermöge dxd2x — dsd2 s bezw. dxd3 x + (d2x)2 dsd3 s + (d2s)2
entsteht

(A*) d2x [ds2 + 2dx d2x] 8 dx' +
-f [ds2 d2x + ds2 d3x — dx (d2x)2] (8dx' + 8dx") 0

Im Fall B ist s die unabhängige Veränderliche. Unter Beschränkung

auf die Glieder niedrigster und nächstniedriger Ordnung
und nach Entfernen von d2 y und d3 y ergibt sich entsprechend

(B*) d2x [dy2 — 2 dx d2x] 8dx' -f
-f [dy2 d2x + dy2 dJx + dx (d2x)2] (8dx/ + 8 dx") — 0

Diese Formeln verwendet Jakob sehr geschickt zur Ermittlung
der Kettenlinie als der Kurve zwischen zwei gegebenen Punkten

A und B, deren Bogenschwerpunkt möglichst tief liegt 280.

Er wählt ^ als unabhängige Veränderliche und berechnet die

Entfernung dÇ des Schwerpunktes der gleichlangen und als

gleichschwer angesehenen Kettenglieder AP, PQ, QB, von der
Ordinate durch A ab gerechnet, aus dx', dx", dx'" wie folgt:

5 dx' + 3 dx" + dx'"di j
Nun kombiniert er die Extremwertbedingung

6 8dl 5 8dx' + 3 8dx" + 8dx,f/ 0

mit der Bedingung

3 dx' + 3 dx" + 3 dx'" 0

und erhält
8dx' + (8dx' + 8 dx") — 0

Unter Beschränkung auf die Glieder niedrigster Ordnung in (B*)
folgt also: 3dx(d2x)2 + dy2 d3 x — 0. Durch Nachrechnen, sagt
Jakob, könne man die Richtigkeit dieser Differentialgleichung
bestätigen 281.

Zur Behandlung des isoperimetrischen Problems im engeren
Sinn (Gestalt des Bogens gegebener Länge über gegebener Sehne,
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der zusammen mit dieser grösste Fläche umfasst) sieht Jakob

y als die unabhängige Veränderliche an. Er bestimmt die

Näherungsfläche des Sehnen-Fünfecks zwischen der Ordinate
durch A, der Abszisse durch B und dem Streckenzug APQB als

(5dx +3 dx^ + dx )dy findet wie vorhin 8dx' + (8dxr +
Mx") 0. Unter Beschränkung auf die niedrigsten Glieder aus

(A*) erhält er 3dx (d2 x)2 ds2 d3 x und formt mit dxd2 x dsd2 s

um. Damit bricht er wiederum ab 282. — Der Versuch, die Kurve
gegebener Bogenlänge durch zwei Punkte zu bestimmen, die

zusammen mit den Loten auf eine Achse und deren Zwischenstück

einen möglichst tiefliegenden Schwerpunkt erzeugt,
scheitert; auch die Elastica trotzt Jakobs Anstrengungen.
Hingegen finden wir die Lösung des schönen Problems, das dann
in den AE V 1697 277 als Preisaufgabe gestellt wurde: fxmdy
soll durch Wahl eines passenden Kurvenstücks y y (x) mit
vorgegebener Bogenlänge zu einem Maximum gemacht werden.
Fünfzig Imperialen (Goldstücke mit dem Bildnis des Kaisers)
sollten dem Bruder „von einem Gönner der Wissenschaften"
zukommen, falls sich dieser innerhalb der nächsten drei Monate
zur Behandlung der Aufgabe bereitfinde und die durch Quadraturen

zu erledigenden Lösungen bis zum Jahresende mitteile.
Dieses Problem wird in Jakobs Aufzeichnungen abhängig

gemacht von der Differentialgleichung xds2 dz x + bdxds2 d2 x
3xdx(d2 x)2, bei deren Herleitung Jakob anfangs ein Rechenfehler

unterlaufen ist, den er etwas später berichtigt hat 283.

Jetzt macht Jakob den intuitiven Ansatz ~ds

jedoch nicht diesen Ausdruck, sondern sogleich

~ Vi — x2m : xm
dy

an und fordert m1 — b. Nun erhält er y durch Integration
aus dy xm dx:j/1— x2m. In einer Randnote fügt Jakob
bei, nunmehr werde fxm dy zum Maximum und fds: xm zum
Minimum. Entsprechend erhalte fdy xm ein Maximum und
fxmds ein Minimum, wenn dy dx: [/x2rn — 1. Wenn aber
dy sm ds :|/l + s2m, dann erhalte fsmdy ein Maximum,
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und wenn dy ds:\/1 + s2m, dann erhalte fdy:sm ein
Maximum.

18. Johann erhielt den jAKOßschen Aufsatz in den AE V
1697 am 14.VI.1697 284. Schon am 17.VI.1697285 teilte er Leib —
Niz seine Lösung des Problems mit. Es mag wohl richtig sein,
dass er sie — wie in der HOS VI 1697 286 behauptet wird —,
innerhalb von 3 Minuten gefunden hat. Selbstsicher und sieges-

gewiss, wie er war, hatte er sich über die Schwierigkeit der
Fragestellung hinweggetäuscht. In dem erwähnten Aufsatz
nimmt Johann zu den einzelnen Lösungen des Brachysto-
chronen-Problems in den AE V 1697 kritisch Stellung. Er
äussert sich konventionell bewundernd über die Lösungen von
Newton und Leibniz, die unmittelbar nach Erhalt des
Problems zum Ziel gekommen seien, und selbst anerkennend über
l'Hospital. Dann fügt er bei, die Aufgaben des Bruders habe

er mit Leichtigkeit gelöst und das Ergebnis bereits an Leibniz
gesandt. Im Brief an Leibniz vom 6.VII.1697 287 deutet er an,
er sei durch einen hydrostatischen Vergleich zum Ziel gekommen.

Im Brief an Varignon vom 15.X.1697 288 wird das am
17.VI.1697 an Leibniz Gesandte wiederholt; die Analysis der

Lösung findet sich als Beilage zum Brief an Leibniz vom
15.VII.1698 289. Sie ist unrichtig 290.

Leibniz, der das Manuskript Johanns niemals genau
durchgearbeitet hat291, durchschaute den Fehlschluss nicht. Er
schloss sich vielmehr auf Grund oberflächlicher Durchsicht der

Meinung Johanns an, es sei nicht nötig, bis zu Gliedern 3.

Ordnung fortzuschreiten 292, und wollte zwischen den feindlichen
Brüdern vermitteln, hatte jedoch keinen Erfolg.

Nach der ersten öffentlichen Mitteilung Johanns über seine

Lösung in Nummer 39 des JS vom 2.XII.1697 293 war Jakob
davon überzeugt, dass sich Johann getäuscht hatte. Er behauptete

daher in Nr. 7 des JS vom 17.11.1698 294, des Bruders

Analysis sei unrichtig. Er erbot sich, diese Analysis zu erraten,
den begangenen Fehler bei Veröffentlichung festzustellen und
die vollständige Lösung bekannt zu machen. Johann antwortete
in Nr. 15 des JS vom 21.IV.1698 295, er sei einem Ansatz zur
Behandlung der Lintearia gefolgt, berichtigte einen belanglosen
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Schreibfehler und liess sich törichterweise dazu verleiten, die

unrichtige Kennzeichnung der Extremalen im Falle j q (s) dy

aus der an Leibniz gegangenen Analysis 290 preizugeben. Nun

fragte Jakob in Nr. 20 des JS vom 26.V.1698 296 nochmals an,
ob sich wirklich kein weiterer Fehler in der Veröffentlichung
finde; später werde er keine Art von Ausrede mehr gelten lassen.

In Nr. 24 des JS vom 23.VI.1698 297 versicherte Johann erneut,
alles habe seine Richtigkeit.

Jetzt unterzog Jakob das, was Johann hatte verlauten
lassen, im Brief vom 6.VII.1698 an Varignon, der in Nr. 30
des JS vom 4.VIII.1698 298 zum Abdruck kam, einer vernichtenden

Kritik. In einer Ergänzung, abgedruckt in Nr. 31 des JS
vom 11.VIII.1698 2", fügte Jakob hinzu, er habe niemals

angenommen, dass Johann das isoperimetrische Problem
richtig zu behandeln wisse; die Bemerkung über die „Lösung"
für fq (s) dy habe ihm Gewissheit verschafft. Als Preisrichter
(die jedoch niemals in Aktion getreten sind) schlug er Leibniz,
l'Hospital und Newton vor. Johann hatte nichts Sachliches
zu entgegnen. In den Briefen an Varignon vom 22.VIII. und
4.X.1698, die in Nr. 40 des JS vom 8.XII.1698 300 abgedruckt
wurden, wehrt er sich im Grunde nur dagegen, dass Jakob vor
Kenntnis der eigentlichen Begründung ein Urteil zu fällen wagt.

Inzwischen war die Académie des sciences reorganisiert
worden301 und hatte ihr neues Reglement am 26.1.1699
erhalten. L'Hospital wurde am 28.1. zum Vizepräsidenten
ernannt, die Brüder Bernoulli wurden in der Sitzung vom
14.11. zu auswärtigen Mitgliedern gewählt. Nun bemühte man
sich auch in Kreisen der Académie um einen Ausgleich, und
tatsächlich schien der peinliche Bruderzwist im Sand zu
verlaufen; da fand es Jakob bei anderer Gelegenheit für nötig, in
den AE IX 1699 302 erneut zu sticheln, er warte noch immer auf
die Veröffentlichung der Analysis des Bruders. Im Frühsommer
1700 liess Jakob einen offenen Brief an Johann folgen 303,

worin er seine eigene Lösung mitteilte.

19. Die Vorarbeiten zum ersten Teil dieser Abhandlung 304

finden sich in Art. 246 305 der Med. Es handelt sich um 10
(Aufzeichnungen) bezw. 11 (Druck) Quadraturen zur Bestimmung
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von Extremalen, die durch Integration aus zugehörigen
Differentialgleichungen 3. Ordnung hergeleitet werden. Die Abhandlung

enthält nur die Ergebnisse. Klarheit über das

eingeschlagene Verfahren gewinnen wir erst aus den

Aufzeichnungen.
Der wesentliche Gedanke lässt sich bereits aus dem einfachsten

Fall recht gut erkennen: fp {x) dy soll durch Wahl eines Bogens
von vorgeschriebener Länge zu einem Extrem gemacht werden.
Jakob setzt die allgemeinen Ausführungen des Art. 239 306 fort
wie folgt: Er geht aus von der Voraussetzung des Falles A (y als

unabhängige Veränderliche) und fügt zum Extremalenbogen
APQB und zum zugehörigen Vergleichsbogen All KB die Bögen
A*P*Q*B* und A*II*K*B* hinzu, gekennzeichnet durch die

Koordinatenpaare (/?, y) bezw. (n, y). Die Fläche zwischen dem

Bogen A*P*Q*B*, den Parallelen zur x-Achse durch A* und B*
B*

und dem zwischen diesen liegenden Stück der ^/-Achse ist fpdy
A*

und wird angenähert durch eine Treppenfigur mit der Fläche
[p (x') + p (x") + p (x"')]dy. Dabei ist p (x") ~ p (x') + dp(x')
und p (x'") p (;x") + dp (x") — p (xr) + dp (x') + dp {x").
Hier ist der Anfangswert p (x') konstant, ebenso dy. Die
Extremwertbedingung für die Rechteckfigur heisst also § dp (xr) +
-f [8 dp (x') + 8 dp (x")] 0.

Nun ist aber 307 dp (xr) ungefähr proportional zu dx' ; es sei

etwa dp (x') h {x') dx'. Eine entsprechende Proportionalität
besteht auch zwischen dp (x") und dx". Sie lautet: dp (x")
— h(x") dx". Ergebnis:

dp (x') + dp (x") mm [h(x') + dh(x/)](dx/ + dx")

Die Faktoren h und h + dh nehmen am Übergang zur Vergleichskurve

A* n* K* B* nicht teil; also ergibt sich

Sdp(x') h • $dx' Sdp(x') + Sdp(x") (h + dh) (8dx' + 8dx")

Durch Einsetzen in die Extremwertbedingung folgt

hSdx' -p (h + dh) (§dxr + S dx") — 0

Hieraus wird im Zusammenwirken mit Gleichung (A*)

(h + dh)d2x(ds2 + 2 dxd^x) h[ds2d2x + ds2d3x — dx(d2x)2]
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Die Glieder 4. Ordnung heben sich weg. Unter Beschränkung
auf die Glieder 5. Ordnung folgt h [d2 sdxs — 3dx (d2 x)2] —

dhds2 tfe2. Aus dem intuitiven Ansatz 308 (d2 x)m : Am cfe2 const,
erhält Jakob unter Mitverwendung der schon oben benutzten
Beziehung dsd2 s dxd2x durch Koeffizientenvergleich m — 2:3,
also

d2 x (ds\z

Jetzt setzt Jakob weiterhin

dx t -, d2x dt ds \/a2 + t2t — also ± —
dy a 1 dy a dy a

So erhält er

und

a3 dt _ _ ahdx
T — 0 h dy

t3'Va2 + *a3

X. J -r-
* dt a2

hdx =F — — d
Va2 + ^ V«2 +

Da aber (wegen x'x)dieweitere Beziehung gilt:
h (x) dx, ergibt sich durch Integration

a
p — d= / — + b

V a2 + t2

Hieraus folgt schliesslich

dy a

dx t \/a2 — (p — b)2

Wird das positive Vorzeichen der Wurzel gewählt und b 0
gesetzt, so entsteht die Extremale

r p dx
y 1 -—^

Va2 — p2

Sie macht fpdy zu einem Maximum. Wird das negative
Vorzeichen der Wurzel gewählt und b a gesetzt, so entsteht
die Extremale

T (a — p) dxy=j -—V2 ap
L'Enseignement mathém., t. II, fasc. 1-2.
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Sie macht fpdy zu einem Minimum. Der Entscheid über
die Art des Extrems fällt durch eine sehr hübsche
kurvengeometrische Überlegung.

Auf dem nämlichen Weg behandelt Jakob die Extreme der
isoperimetrischen Integrale fp (x) ds, fq (s) dy, fxdq (s) und
J"ydq(s); ja, im zweiten Teil seiner Ausführungen 309, für den wir
keine Vorlage aus den Med. haben, lässt er sogar zu, dass p eine
Funktion von x u n d y bezw. q eine Funktion von s u n d y
wird. Im ersten Falle — um uns auf das schon vorgeführte

Beispiel zu beschränken —, setzt er h ^, bildet r — dx

und erhält dy rdx: j/a2 — x2. Da hier r als Funktion von x
und y erscheint, kann es sein, dass sich die Veränderlichen
nicht trennen lassen. In Sonderfällen, wie etwa für p
— (^2 + y2) ' ö, ist r — x2: a überhaupt nicht von y abhängig. Im
vorliegenden Beispiel ergibt sich dy x2 dx : (/aJ — x4. Hier
fügt Jakob an, er hätte überhaupt nicht erkennen können, dass

Johann das isoperimetrische Problem unrichtig behandelt
hatte, wenn sich dieser auf das allein geforderte Maximum für
fxm dy beschränkt hätte, dessen Extremalen ja richtig bestimmt
sind. Erst an Hand der von Johann unrichtig angegebenen
Verallgemeinerung sei der Fehlschluss offenbar geworden310.

In der Dissertation vom 1.III.170 1 279, die von Joh. Jk.
Bischoff verteidigt wurde, ist das von Jakob eingeschlagene
Verfahren mit vielen neu hinzutretenden methodischen
Feinheiten sehr eingehend erläutert.

Johann muss wohl ziemlich bald nach Erhalt der Dissertation
311 gemerkt haben, wie es um seine eigene Methode stand 312.

Es erwies sich als sehr günstig für ihn, dass er das an die Académie

gesandte MS seiner Analysis wieder zurückerhalten hatte 289.

Der Tod des Bruders befreite ihn von dem einzigen Kritiker, der
seine Methode wirklich hätte beurteilen können. Deshalb liess

er sich nunmehr zur erneuten Vorlage des MS herbei, das er ohne

gefährliche Schädigung seines Ansehens nicht länger zurückhalten

konnte. Als aber Br. Taylor in der Methodus incremen-

torum directa et inversa313 eine Lösung des isoperimetrischen
Problems gab, die sich nicht wesentlich von der Jakobs
unterschied 314, sah sich Johann zu einer Stellungnahme gezwungen.
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Er sandte an die Académie eine längere Abhandlung, die in der
Histoire de V Académie Royale des Sciences... avec les Mémoires de

mathématique et de physique für 1718 315 zum Druck kam. Hier
eignet sich Johann unbedenklich die Methode Jakobs an; er

gibt eine sehr anschauliche Begründung für die Gleichungen
(A) und (B) (Text nach Anm. 279) und verbessert kleinere und
im Grunde belanglose Irrtümer in des Bruders Abhandlung, auf
die er nicht ohne etwas abschätzige Bemerkungen hinweist.
Seine eigenen weit grösseren Irrtümer deckt er bescheidentlich

zu; in der Einleitung bekundet er jedoch, ein Freund 316 habe
ihn darauf aufmerksam gemacht, dass er wegen der Behauptungen

des Bruders und wegen der verspäteten und erst nach dem
Tod des Bruders erfolgten Veröffentlichung seiner Analysis in
schiefes Licht geraten könne. Bei sorgfältiger Durchsicht seiner
Darstellung habe er einen Fehler gefunden, den er nunmehr
berichtigen wolle.

20. Zurückkehrend zum Jahr 1697, müssen wir auf den
Druck der bereits erwähnten Studie über die Krümmungsverhältnisse

in Wendepunkten in den AE IX 1697 200 hinweisen,
ferner auf eine angefügte Untersuchung über lineare Differentialgleichungen

1. Ordnung317. Jakob bemerkt hier aufgrund von
n

Andeutungen über Beispiele, die Gleichung ay' y + ^ akxh
k=0

habe sowohl ein algebraisches wie ein transzendentes Integral.
Aus den zugehörigen Aufzeichnungen in Art. 232 318

der Med. geht hervor, dass Jakob das partikuläre algebraische
Integral durch schrittweisen Ansatz und ausserdem durch
Ansatz in unbestimmten Koeffizienten ermittelt. In der A b -

h a n d 1 u n g wird zusätzlich bemerkt319, das nämliche
Verfahren helfe auch bei Differentialgleichungen der Form av yip)

n

y + 2 xk, die ebenfalls sowohl algebraische wie transzen-
s=o

dente Integrale besitze. Bei dieser Gelegenheit findet sich in den

Aufzeichnungen 320 eine Formel, die gleichwertig ist mit
X

fxnexdx xnex — nxn~[ ex -f n (n — i)xn~2ex =F

0
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Schon in den AE V 1697 321 hatte Johann gefordert, man
solle eine Orthogonaltrajektorie der asymptotengleichen
logarithmischen Kurven durch einen festen Punkt bestimmen 322.

Jakob fand die Lösung im November 1697 323 und erwähnte bei
der Veröffentlichung in den AE V 1698 324 einige einleitende
Beispiele (nur in Worten und ohne die dazu gehörige Rechnung):

(a) y2 2p (x -f u) gibt x - p-In ~ 0 und umgekehrt; ent¬

sprechend :

(b) yn an~{ (x + u) gibt n (n — 2) (x + e) yn~2 an~l ;

(c) (x — u)n an~{y gibt {^n^ an~{ (x — c)n -f 2/2n-i 0 ;

(d) xn — un~{y gibt x2 + ny2 — ç2 •

Er denkt sich jedesmal die Kurvenschar mit dem Parameter u
oder e gegeben, betrachtet jedoch jeweils nur eine Kurve aus
der Orthogonalenschar. Das gilt auch für die beiden nachfolgenden

komplizierteren Beispiele: Das eine bezieht sich auf die
Konstruktion einer Orthogonaltrajektorie kongruenter logarithmischer

Kurven durch den Ursprung mit parallelen Asymptoten
325, das andere auf die Behandlung der von Johann gestellten

Aufgabe 326. Abschliessend verweist Jakob auf zwei weitere
Beispiele, nämlich auf die Orthogonaltrajektorien der Parabelschar

y2 u(x—u) und auf die Isogonaltrajektorien aller
Parabeln oder auch anderer Kurven, die aus einer gegebenen
Kurve durch Drehung um den Ursprung entstehen.

In seinen kritischen Bemerkungen zu des Bruders Lösungen

327, an denen er die allgemeinen Gesichtspunkte vermisst,
nimmt Johann unter Berufung auf die mit Leibniz gewechselten
Briefe 322 das Trajektorienproblem für sich in Anspruch (woran
übrigens niemand gezweifelt hat). Er weist auf eine bei dieser

Gelegenheit von Leibniz gemachte Entdeckung hin, die bisher
noch unveröffentlicht und bei Aufgaben über Kurvenscharen
dienlich sei, falls die ^Veränderlichen in der zugehörigen
Differentialgleichung nicht getrennt werden könnten 328. Das sei ein
aussichtsreiches Betätigungsfeld für Jakob. Alsdann löst
Johann die Differentialgleichungen der beiden von Jakob nur
konstruktiv erledigten Fälle und behandelt dessen neue
Aufgaben in Kürze 329.
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Weiterhin hatte Johann in Nummer 33 des JS vom
26.VIII.1697 330 sechs Aufgaben gestellt, mit denen sich Jakob
ebenfalls in den AE V 1698 331 auseinandersetzt. Das 2. und

3. Problem bezieht sich auf die Ellipsen y2 Xx(2 — x). Sie

sollen so mit Geraden y — kx durch den Ursprung geschnitten
werden, dass für die Abszisse des Schnittpunktes P gilt:

fydx — const. Gefragt wird nach der Tangentenkonstruktion
o

für den Ort der Punkte P und nach der kürzestmöglichen Länge

von OP, ausserdem nach der aus dieser Bedingung bestimmten

Ellipse der Schar. L'Hospital hatte in den AE I 1698 332 eine

Lösung veröffentlicht. Jakob verallgemeinert die Frage, indem

er die Ellipsen durch irgendwelche affine Kurven
ersetzt 333.

Das 4. und 5. Problem bezieht sich auf eine Kurvenschar
durch 0, die diesen Punkt zum Ähnlichkeitspunkt hat. Auf jeder
Kurve werden aus 0 gleichlange Bögen OP abgeschnitten.
Gefragt wird wiederum nach der Tangentenkonstruktion für
den Ort der Punkte P und nach der kürzestmöglichen Länge der
Strecke OP. Als Beispiel sind die aus 0 ähnlichen Parabeln
angeführt. Nur diesen speziellen Fall hatte l'Hospital in den

AE I 1698 332 behandelt; Jakob gibt die allgemeine Lösung 334.

Das 6. Problem fordert, in einer aus 0 ähnlichen Kurvenschar
diejenige Kurve zu bestimmen, deren Bogen von 0 ab bis zu
einer gegebenen Geraden (nicht durch 0) hin möglichst klein
wird. Jakob erweitert das Problem, das mit seiner Studie 278

über die Kurve einer aus 0 ähnlich gelegenen Schar zusammenhängt,

auf der ein von 0 aus fallender Punkt auf eine gegebene
Gerade mit grösster Geschwindigkeit auftrifft. Er lässt nämlich
die Bögen nicht mehr in 0, sondern auf einer gegebenen Geraden
durch 0 beginnen. Er findet eine interessante Konstruktion auf
differentialgeometrischer Grundlage 335.

Das bedeutendste der von Johann gestellten Probleme ist
das erste. Es fordert die Bestimmung der geodätischen Linien
auf einer konvexen Fläche, und zwar — da die Aufgabe auf der
Kugel, dem Kegel und dem Zylinder ganz einfach zu lösen sei,
nicht aber auf anderen Drehkörpern —, zunächst einmal für
das Drehparaboloid. L'Hospital war einer so tiefgehenden
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Frage nicht gewachsen 336. Leibniz erklärte, das Problem sei mit
dem der Brachystochrone verwandt. Er habe es im Sommer 1696

behandelt, jedoch sei er mit seinem Ansatz nicht zufrieden 337.

Jakob hat sich in mehreren Aufzeichnungen mit dem
Problem beschäftigt und ein Teilergebnis in den AE V 1698 338

drucken lassen. In Art. 252 339 der Med. leitet er die Differentialgleichung

für die geodätischen Linien auf einer Drehfläche mit
der Meridiankurve z f (r) auf doppelte Weise ab. Die erste

Herleitung führt zwar zum richtigen Ergebnis, enthält jedoch
einen Schlussfehler. Die zweite Herleitung ist völlig unanfechtbar.

Jakob nimmt auf einer Flächenkurve drei Punkte A, P, Q
an und schneidet den Meridian durch P mit dem Breitenkreis
durch A in M, ferner den Meridian durch Q mit dem Breitenkreis
durch P in N. Nun fordert er, dass die Meridianbögen PM und
QN gleich werden, und kennzeichnet die geodätische Linie
als die kürzestmögliche zwischen AQ. Die Projektion der
geodätischen Linien auf eine Äquatorebene bestimmt er nicht
durch r, 9, wie wir, sondern durch r, <29 u. So findet er
r2 du: a2 ds const., unter ds das Bogendifferential der
geodätischen Linie verstanden. Daraus erhellt, dass Jakob bereits das

Wesentliche des CLAiRAUTSchen Satzes340 vorweggenommen hat.
Nunmehr ist es für ihn ein Leichtes, die geodätischen Linien

r2 \/r2 — c2

wobei t die Länge der Tangente an den Meridian im laufenden
Punkt P der geodätischen Linie bis zur Drehachse bedeutet.
Schliesslich behandelt Jakob in den Artikeln 256 341 und 257 342

die geodätischen Linien auf einem beliebigen Kegel auf zwei
verschiedene Weisen. In den AE teilt Jakob nur die Formel für
u und die daraus sofort herleitbare für die Bogenlänge s mit:
s ftdriyr2 — c2. Etwas näher geht er auf die geodätischen
Linien des Kreiskegels ein; vor allem erwähnt er, dass hier die

Frage der allgemeinen Winkelteilung mit hereinspielt. Bei den

geodätischen Linien auf dem Zylinder (den Schraubenlinien)
könne man aus zwei Kurvenpunkten durch fortgesetztes Bogen-
halbieren beliebig viele weitere Kurvenpunkte finden.

Johann ist mit den Ausführungen des Bruders keineswegs
zufrieden 343. Er muss zwar zugeben, dass dieser die geodätischen

auf der Drehfläche durch
actdr

zu kennzeichnen,
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Linien auf Drehflächen richtig bestimmt hat, tadelt jedoch, dass

Jakob nicht zur Kennzeichnung der geodätischen Linien auf

einer beliebigen konvexen Fläche vorgedrungen sei 344.

21. In den sonstigen Aufzeichnungen der Med. aus dem Jahr

1697/98 werden insbesondere Fragen der theoretischen Mechanik
behandelt. Breiten Raum nimmt die Bestimmung der Form eines

unelastischen, jedoch völlig biegsamen Fadens ein, der unter
der Einwirkung mehrerer — schliesslich unendlich vieler —
spannender Kräfte steht 345. Dann folgen Studien über Schwin-

gungs- und Stosszentren 346 und über die Biegung eines

elastischen Bandes 347. Der Herbst des Jahres 1698 dürfte wohl den

Vorbereitungen für die vierte Reihendissertation gegolten
haben, die am 26.XII.1698 348 von N. Harscher verteidigt
wurde.

Hier werden die Untersuchungen über die Quadratur und
Rektifikation durch Reihen fortgesetzt. Zunächst entwickelt
Jakob im Anschluss an LEiBNizsche Ergebnisse 349 ln( 1 + x)

und ln\/1 — x2 unter Verwendung der logarithmischen Kurve,
dann fdx:\/x2— 1 vermittels der rationalisierenden Substitution

\/x2 — 1 t — x unter Verwendung der Kettenlinie.
Die eingehendere Untersuchung über die nautische Kurve
(prop, 50), mit der Jakob an eine frühere Studie anschliesst 35°,

führt zur Konstruktion der sog. loxodromischen Skala 351. Nun
folgt unter Wiedergabe von Überlegungen des Jahres 1691 die
Rektifikation der Parabel122, dann die der logarithmischen
Kurve191, jedoch ohne Nennung l'Hospitals. These 6 der
Epimetra handelt von zwei einfachen Differentialgleichungen 352,

Th. 7 von der unrichtigen Behandlung des Problems der Kettenlinie

durch D. Gregory 353. Johann hatte in einer Akademie-
Abhandlung des Jahres 1699 354, die ausserdem in den AE VII
1699 abgedruckt ist, einige rational bestimmbare Flächenstücke
an der gemeinen Zykloide angegeben 355, die er schon einige
Jahre früher gefunden hatte 356. Jakob scheint einen Hinweis
auf die Abhandlung Johanns durch l'Hospital oder Varignon
erhalten zu haben 357. Auch er beschäftigte sich mit dem Gegenstand.

In den AE IX 1699358 kam er zu den nämlichen
Hauptergebnissen; sie sind sehr elegant hergeleitet. Des Bruders Name
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wird allerdings nicht genannt. In den AE VI 1700 359 bestätigt
Johann die Richtigkeit des von Jakob verwendeten Ansatzes,
rügt jedoch, dass dieser das allgemeine Bildungsgesetz zur
Konstruktion algebraisch quadrierbarer Zykloidenzonen unterdrückt
und sich auf die einfachsten Beispiele beschränkt habe; er
erwarte vom Bruder das hier hereinspielende allgemeine Bildungsgesetz

von sin nt aus sin t. Dann zeigt er, dass unter allen Zykloi-
densegmenten nur die ganze Zykloidenfläche einen algebraisch
bestimmbaren Schwerpunkt hat, und fordert vom Bruder die

Bestimmung des einzigen Drehkörpers eines Zykloidensegments,
dessen Schwerpunkt algebraisch bestimmt werden kann. Jakob
teilt das nicht ganz richtige Ergebnis seiner „langwierigen,
jedoch nicht allzu schwierigen Rechnung" in den AE XII 1700360

mit.
In den AE IV 1701 361 gibt Johann die Formeln für die

Winkelteilung 362 in der folgenden, bereits etwas modernisierten
Fassung:

(A) Ist a 2 sin a b « 2 cos a \/4 — a2 1

} dann ist
x 2 sin n a y 2 cos na \/k — y2 J

r « a'J bnA — ^ ~ 2

j bn~+ 3) èn"5 | •

(B) Ist a — sin a b cos a a/ 1 — a2 J

J> dann ist
x sin na, y cos n a \/1 — y2 J

X ("J ab"-1 — (g) a36"'3 + (5) «5è"_5 T

2/ bn—a26"~2 + (4) a4in"'' T '

Johann denkt nicht nur an ganze, sondern auch an
gebrochene, ja sogar an irrationale n und weiss, dass alsdann die

Reihen nicht abbrechen. Die Bestimmung des Zykloidenkörpers
mit algebraisch bestimmbarem Schwerpunkt sei freilich nicht
mehr schwierig gewesen, fügt Johann bei 363, nachdem die

Grundgedanken bereits angegeben waren; jedoch sei Jakobs Lösung
nicht richtig. Jakob äussert sich nicht mehr zu dieser Frage,
wohl aber zur Winkelteilung. In einer Akademie-Abhandlung
von 1702 364 beginnt er mit der rühmenden Vorhebung einer
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Studie seines Schülers Hermann 365 zur Winkelteilung. Er setzt

2 sin öl — x und findet (2 sin 2a)2 4x2 — x4. Durch
fortwährendes Winkelverdoppeln kann er also (2 sin 2n a)2

ausdrücken. Durch geniale Intuition findet er das allgemeine

Bildungsgesetz dieser Entwicklung. Unter Bezugnahme auf das

WALLissche Verfahren der unvollständigen Induktion erhält er

n2 (n2 — 1) n2 (n2 -— 1) (n2 — 4) fi
(2 sin na)2 — n2x2 ^

x4 + 3.4.5-6
X

und hieraus

n (n2 • - 1 n(n2 — 1) (n2 — 9)
2 Sin na nx— r* + 4.6.8.10 x T - '

n2 „ n2(n% — k)- n2 (n2 — 4) (n2 — 16)
2 cos na 2 — x H

4.6.8 x 4-6-8-10-12
X

Wie er die Radizierung ausgeführt hat, verrät er nicht,
gelangt jedoch durch einen Grenzübergang von diesen Reihen

zu den Potenzreihen für sin 9 und COS9. In unserer Schreibweise

kommt sein Grenzübergang darauf hinaus, dass a —•> 0

und n —>00 geht, wobei ausserdem gilt: na.—> 9 und nx
c\ ' c\ sin a Q

— In sin a Anoi > 2 9.a T

Bei dieser Gelegenheit lesen wir erstmals einen Hinweis auf
die Erwähnung NEWTONScher Ergebnisse im lateinischen
Wiederdruck der WALLisschen Algebra 366. Die Bemerkung,
Newton habe als erster derartige Probleme gelöst 367, ist von
N. Fatio inspiriert und gegen Leibniz gerichtet.

22. J akob wusste recht gut, dass sein theorema aureum zur
Bestimmung des Krümmungsradius für allgemeine Überlegungen
geeignet, aber bei Anwendung auf algebraische Kurven kompliziert

ist. Deshalb erdachte er eine speziell für diese Kurven
geeignete Methode. Im Grunde kommt sein Verfahren darauf
hinaus, dass die Ausgangsgleichung F (x, y) 0 zweimal
difierentiiert und dann in die Formel p (/(l + y'2)3. y"
eingesetzt wird, es ist aber alles ganz anders ausgedrückt als wir
erwarten. Das rührt davon her, dass Jakob die Kurvengleichung
in der für uns ungewöhnlichen Form

e + / (x) • xm + g (y) yn + h (xy) • xrys 0
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schreibt. Auf die Einzelheiten und die zahlreichen Beispiele in
den zugehörigen Aufzeichnungen 368 können wir ebenso wenig
näher eingehen wie auf die sehr knappen Andeutungen in den
AE XI 1700 369; auch die Ergänzungen Johanns in den AE III
1701 370 mögen nur gestreift werden.

Im Briefwechsel mit Leibniz werden nunmehr alle für
Jakob interessanten mathematischen Einzelfragen berührt: die
Quadratur rationaler Funktionen371 und irrationaler
Funktionen 372 und der Grundgedanke der Wahrscheinlichkeitsrechnung

373.

Das Frühjahr 1704 gehört der Redaktion einer weiteren
Dissertation über die Reihenlehre, die am 8.IV.1704 374 von dem
klugen Neffen Niklaus, dem späteren Herausgeber der Ars
conjectandi4, verteidigt wird. Auch diese Arbeit handelt von
der Quadratur und Rektifikation von Reihen. Hier sind vor
allem ältere Aufzeichnungen verwendet 375. Prop. 53 enthält
die binomischen Entwicklungen für gebrochene Exponenten
vermittels der WALLisschen Interpolation, prop. 54 die Erhebung
eines Binoms zu einer unbestimmten Potenz 376, prop. 55 den
Ansatz in unbestimmten Koeffizienten 377 mit Anwendungen in
prop. 56/58 und 60. Prop. 59 bezieht sich auf die Bestimmung
des Numerus bei gegebenem Logarithmus 378. Dabei wird
ausdrücklich gesagt, dass die Reihe für In (a + x) (0 < x < a)

vermöge y — ax: (a -f- x) in die viel besser konvergierende
für In a2 : (a — y) übergeht. Als Beispiel erscheint In 2 —

ln(l + 1) In
1 __ 1 2

Anschliessend folgt die Behandlung
des Problems der Augenblicksverzinsung wie in den AE V 169097.

Beachtlich sind die in der methodischen Ausgestaltung der
behandelten Fragen erzielten Fortschritte 379. Von den
beigefügten Thesen sind vier mathematisch interessant. Die erste

besagt, dass log sin t oder log tg t für t 0 nicht gleich Null
gesetzt werden darf, wie häufig zu lesen 38°, sondern gleich
— go ist. In der 5. Th. wird die Ausdrucksweise getadelt, dass

unendlich kleine Grössen als unvergleichlich kleiner oder als

unvergleichbar zu endlichen Grössen bezeichnet werden; „In
Wirklichkeit werden sie sogar sehr häufig mit endlichen Grössen

verglichen." Th. 6 bezieht sich darauf, dass in „Extrempunkten"
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einer Kurve nicht immer dy — 0 oder dy — go sein muss; es

könnte nämlich sein, dass in diesem Falle ^ jeden beliebigen

Wert annimmt 381. In Th. 7 wird gesagt, man müsse

bei Vernachlässigung infinitesimaler Glieder höherer Ordnung
sehr vorsichtig sein; es gebe nämlich Fälle, in denen schon bei

Differentiation von x2 in der Form 2xdx -f- dx2 nicht auf das

Glied mit dx2 verzichtet werden dürfe 368.

Kurz nach Herausgabe dieser Dissertation sollte Jakob eine

Überraschung erleben. Sein Schüler Hermann erhielt im
Sommer 1704 von J. Chr. Fatio die Mitteilung, man könne die
LEiBNiz-Reihe in die rechnerisch viel besser konvergierende
überführen 382 :

TU 1 1 1 1 1 4 4-5 4-5-6
.4 J 2 + 2-3 3-5 + 5^7 + 5-7-9 + 5-7-9-ll + 5-7-9-ll-13

Hermann erklärt diese Reihe in einem Brief an Leibniz durch
schrittweises Zusammenfassen und Halbieren aufeinanderfolgender

Glieder 383:

1,1 l 1,10 l\ l/l l\ l/l l\
3 5 7

± _ 2 + 2 3/ 2\3 5/ + 2\5 7/)T"'
1 1 1,1 (A 11 A(A~ 2 + 2

'
3 2 \1 -3 3-5/ 2 \3• 5 5-7/ + 2 \5^7 ~~

T9J T *"

1
t

1
[

1 1-2 1 / 1 1 \ 1

2 2-3 2 3-5 2 \l-3-5 3-5-7/ 2 \3-5-7 5-7-9
1 f 1 1 • 2 1-2-3 1-2-3-4 1

2 { 3 3- 5 3- 5- 7
^" 3-5-7-9 +

J
'

Er wendet das Verfahren auch auf

[In 2 =] 1 — 1 + 1 — 1 + -L + + — +J 23 4 1-22-43-8 4-16 ""

an. Die nämliche Rechnung findet sich auch bei Jakob 384;

dieser verweist ausserdem auf den Zusammenhang mit der

Entwicklung für ln2 In (1 + 1) In • Auf die Leib-
Nizsche Anregung 385, auch divergente Reihen mit in den
Kreis der Betrachtung aufzunehmen, konnte Jakob aus
gesundheitlichen Gründen nicht mehr eingehen; Hermann allein war
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dieser Frage nicht gewachsen. Erst Euler hat erkannt, dass den
beiden Beispielen ein Gedanke innewohnt, der sich zu einer

allgemeinen Methode ausbauen lässt 386. Die letzten
Aufzeichnungen Jakobs in den Med. beziehen sich auf die

Schwerpunktsbewegung und damit Zusammenhängendes 387, auf
elastische Vorgänge 388 und auf ein paar Gelegenheitsaufgaben

389.

23. Aus den zahlreichen hier in Kürze kaum mehr als
angedeuteten Einzelheiten, deren endgültige textliche Wiedergabe
und sorgfältige Kommentierung nach der biographischen,
problemgeschichtlichen und ideengeschichtlichen Seite hin wir
erst von der Bernoulli- Ausgabe erwarten dürfen, ergibt
sich meiner Ansicht nach folgendes vorläufiges Bild vom Wirken
Jakobs:

Ein sehr kluger, jedoch durch allzu strenge Erziehung in
vieler Hinsicht gehemmter und etwas unentschlossener junger
Mann findet bei allem Wissen um die ihn umgebende Welt doch
erst in der Traumsphäre der Mathematik seine wahre Befriedigung.

Er geht aus von den handgreiflichen Fragen der praktischen
Mathematik, und niemals hat ihn die Vorliebe für Probleme der

angewandten Mathematik verlassen. Die vielen mit mechanischen
Vorstellungen durchsetzten Untersuchungen sprechen eine
deutliche Sprache. Freilich steht fast nur die theoretische Seite
der Problematik im Vordergrund, nicht so sehr die experimentelle,

die sich den damals zur Verfügung stehenden Hilfsmitteln
noch weitgehend entzog. Deshalb muss man Verständnis für
das Schwanken in der Beurteilung mancher Grundtatsache
(z.B. bei der Biegung eines ausgedehnten elastischen Bandes)
aufbringen. Diese Ansätze sind als erste tastende Versuche auf
Neuland zu werten. Wir müssen sie schon dann als wertvoll
ansehen, wenn sie nach den damaligen Auffassungen als

zutreffend gelten konnten.
Jakob hat sich — grösstenteils als Autodidakt — der

DESCARTESSchen Auffassung in mathematicis bemächtigt und
ist zur Infinitesimalmathematik durch Barrow, Wallis und
Leibniz gekommen. Von anderen zeitgenössischen Arbeiten in
dieser Richtung wusste er anfangs überhaupt nichts; später
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hat er nur am Rande von fremden Methoden und Ansätzen
Kenntnis genommen — mehr kritisch als schöpferisch
nacharbeitend. Seinem im Grunde schüchternen Wesen entspricht es,

dass er zur Fortsetzung seiner Arbeit Anerkennung und Erfolg
braucht. Wird ihm beides versagt, so kann er die Dinge nicht
etwa grosszügig auf sich beruhen lassen, sondern versucht

gewaltsam auf seinem Standpunkt zu beharren. Gelegentlich
vergreift er sich dabei in den Mitteln, und doch können wir im

grossen und ganzen nur mit grösster Hochachtung von diesem

Mann sprechen.
In dem Bestreben, seine Erfinderrechte zu wahren, ist Jakob

recht unduldsam, am stärksten dem Bruder gegenüber, mit dem
ihn doch so viele wesensverwandte Züge verbinden, und den er
besser kennt und durchschaut als alle andern — tief verletzt
davon, dass ihm der Jüngere das schuldige Mass an Anerkennung
versagt. Sicher war Johann der lebhaftere, der raschere Denker
und in der Darstellung eleganter. Und doch bedurfte auch er
des wetteifernden Gesprächs mit dem Bruder und vermochte
nach dessen Tod nur mehr wenige wirklich schöpferische und
neuartige Gedanken zu entwickeln. Minderwertigkeitsempfindungen

bestimmen Jakobs Stellung zu Leibniz und zu Mencke,
durch die er sich (ganz zu Unrecht) benachteiligt fühlt. Erst nach
der Aufnahme in die Berliner Akademie sieht Jakob ein, dass

ihm Leibniz keineswegs übel gesonnen war, wie er. lange
geglaubt hatte. Die nunmehr in einem ungünstigen Augenblick
erneuerte Korrespondenz bringt nicht mehr viel Bedeutendes;
denn Leibniz ist inzwischen gealtert und kann den eigenartigen
Gedanken Jakobs (Gesetz der grossen Zahlen, isoperimetrisches
Problem) nicht mehr mit voller Einsicht folgen.

Eleganz der Ideen finden wir kaum bei Jakob. Was er —
fast ein wenig titanenhaft — hervorbringt, ist in erster Linie
auf die folgerichtige Verwendung der DESCARTESschen Ansätze
in Verbindung mit dem Calculus gegründet, dessen formaler
Ausbau so sehr durch Jakob gefördert worden ist. Geometrischen
Überlegungen ist Jakob im allgemeinen nicht recht zugetan.
Wo sie in seinen infinitesimalen Ansätzen auftreten, werden sie
nicht immer hinreichend deutlich begründet. Auf diesem Gebiete
ist Johann mit seinen kurzen und eleganten Schlussweisen
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weitaus überlegen. Andererseits hat das starre Festhalten
Jakobs an den rechtwinkligen Koordinaten, die er nicht allzu
häufig zu Gunsten der modifizierten Polarkoordinaten und nur
selten zu Gunsten anderer Koordinatensysteme aufgibt, seine

grosse Bedeutung für den formalen Ausbau der differentiellen
Koordinatengeometrie.

Bei allem Streben nach Allgemeinheit ist die wissenschaftliche

Tätigkeit Jakobs doch stärker auf erfassbare Einzelheiten
eingestellt, die in verhältnismässig loser Verbindung
nebeneinander stehen, ohne zu einer einheitlichen Theorie
zusammenzuwachsen. Dieser Art von Einstellung entspricht der lockere
wissenschaftliche Essay in Zeitschriften und das Spielen mit
interessanten Einzelproblemen weit besser als die konzentrierte
Darstellungsweise in einem Buch. Auch das einzige grössere
wissenschaftliche Werk, das Jakob geschrieben und doch nur
unvollendet hinterlassen hat — die Ars conjectandi — ist ja in
erster Linie eine Sammlung von Einzelproblemen mit nur
gelegentlichen Beiträgen zu einer allgemeinen Theorie.

Jakob ist in erster Linie Fachmathematiker und als solcher
eine kraftvolle Forscherpersönlichkeit, nicht so genial und
ideenreich wie Leibniz, jedoch ein tiefer Denker, zäh und
folgerichtig — einer der grossen Bahnbrecher auf dem Gebiet der
modernen Mathematik.

Der Verf. nimmt schliesslich Gelegenheit, den Herren Flecken-
stein-Basel, Kurt Müller-Berlin und vor allem Herrn Spiess-Basel
seinen tiefempfundenen Dank für die liebenswürdige
Beantwortung vieler zum Teil recht schwieriger Detailfragen
auszusprechen, ferner den Herren Niessner-Günzburg und Scriba-
Giessen für Mithilfe bei der Korrektur.
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ANMERKUNGEN

1 Jakob Bernoulli, Opera [-= BKC1, 2 Bände, G-enf 1744. Die Seiten der beiden
stattlichen Quartbände sind durchlaufend numeriert. Der erste Band umfasst ,vm +
48 + 664 Seiten, der zweite Band einschliesslich des Titels S.665/1139. Einige Druckfehler

sind auf S. 1140/41 verbessert. In dieser Ausgabe fehlt nur die Neuerfundene
Anleitung, wie man den Lauff der Comet- oder Schwantz-sternen in gewisse grund-
mässige Gesätze einrichten und ihre Erscheinung vorhersagen könne, Basel 1681, und
zwar ersichtlich deshalb, weil sie (bis auf das der deutschen Ausgabe beigegebene
Prognosticon15) in das viel weitergehende Conamen novi systematis cometarum...,
Amsterdam 1682 übergegangen ist. Einige Einzelstücke aus den Opera sind in Ostwalds
Klassiker [ — OKI.] übergegangen, nämlich die 5 Dissertationen über unendliche Reihen
(1689/1704), dtsch. v. Gr. Kowalewski, Leipzig 1909 (Nr. 171), ferner die Lösung
der Aufgaben meines Bruders, dem ich zugleich dafür andere vorlege (Acta eruditorum
[= AE] Y 1697 BKC, S. 768/75), dtsch. v. P. Stäckel in den Abhandlungen über
Variationsrechnung I, Abhdlg. II, Leipzig 1894, 2 1914 (Nr. 46) und schliesslich Auszüge

aus dem Schlussteil der Zweiten Abhandlung über die Differentialrechnung (AE
VI 1691 BKC, S. 451/52), aus der Abhandlung Über die Krümmung eines elastischen
Bandes (AE VI 1694 BKC, S. 576/600) und aus den Erklärungen, Zusätzen und
Ergänzungen zu dieser Abhandlung (AE XII 1695 BKC, S. 639/45), enthalten in
den Abhandlungen über das Gleichgewicht und die Schwingungen der ebenen elastischen
Kurven, dtsch. v. H. Linsenbarth, Leipzig 1910 (Nr. 175), S. 1/17 u. 100/121.

2 Basel 1713. Als Anhang sind die 5 Abhandlungen über die Reihenlehre
beigegeben. Eine von R. Haussner besorgte deutsche Übersetzung erschien in OKI. unter
dem Titel Wahrscheinlichkeitsrechnung (Ars conjectandi), Leipzig 1899 (Nr. 107/08).
Teile der Ars conjectandi sind auch in der frz. Übersetzung von L. Gr. F. Vastel (Buch I :

Caen 1801 mit eingehenden Erläuterungen) und in engl. Übersetzung von Fr. Masères
erschienen. Sie stehen in dessen Doctrine of permutations and combinations, London 1795,
S. 35/213 Scriptores logarithmici III, London 1796, S. 23/133.

s Enthalten in der von C. I. G-erhardt besorgten Ausgabe von Leibnizens mathematischen

Schriften Berlin-Halle 1849/63 (7 Bände), im folgenden zitiert als LMG +
Bandnummer, hier LMG IIIi, S. 1/110. Band III2 ist fortlaufend durchnumeriert; deshalb
werden wir stets als LMG III zitieren.

4 Enthalten in dem von der Naturforschenden G-esellschaft in Basel herausgegebenen
und von Herrn O. Spiess besorgten Briefwechsel von Johann Bernoulli I, Basel

1 955 [ BJS], S. 96/120.
5 BJS, S. 1/85.
e Mskr. (LI a 3) der Basler Universitätsbibliothek, im folgenden stets zitiert

als Med.
1 Hierunter sind zu erwähnen : a) Der Nachruf von J. Hermann für die AE, Beilage

zum Brief an Leibniz vom 28.10.1705 (LMG IV, S. 288/92) und mit einigen von
Leibniz vorgenommenen Textänderungen abgedruckt in AE I 1706 ** Leibniz, Opera
omnia, ed. L. Dutens, G-enf 1768 (6 Bde), in Zukunft zitiert als ED + Bandnummer —
hier LD IV, S. 280/83.

b) Die von J. Battier, einem Jugendfreund Jakobs, stammende und ersichtlich
auf genauer Kenntnis vieler interessanter Einzelheiten fussende Vita (Rede vom
23.XI.1705 =* BKC, S. 7/34).

c) Die familiengeschichtlichen Studien von P. Merian, Die Mathematiker
Bernoulli, Basel 1860.

d) Die Darstellung in R. Wolf, Biographien zur Kulturgeschichte der Schweiz I,
Zürich 1858.

e) A. Speiser, Die Basler Mathematiker, 117. Neujahrsblatt, herausgg. von der
Gesellschaft zur Beförderung des Guten und G-emeinnützigen, Basel 1939.

f) O. Spiess, Die Mathematiker Bernoulli, Basler Universitätsreden Heft 24 Basel
1 948.

g) O. Fleckenstein, Johann und Jakob Bernoulli, Basel 1 94 9 Elemente der
Mathematik, Beiheft 6.

8 D. Schwenter: Erquickstunden: Deliciae mathematicae, Nürnberg 1636.
« Jakob hatte damals keine Ahnung davon, dass J. de Billy diese Frage in Nr. 26

des Journal des Sçavans [= JS] vom 23.IX.1666, englisch wiedergegeben in den Philo-
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sophical Transactions [ PT] 1, Nr. 1 vom 22.X. (l.XI.) 1 666 behandelt hatte. Er wusste
auch nichts davon, dass die Aufstellung der Julianischen Periode auf J. J. Scaliger,
Thesaurus temporum, Leiden 1606, zurückgeht. Die fragliche Formel heisst so: ist s die
Jahreszahl im Sonnenzyklus, g die Jahreszahl im Mondzyklus (goldene Zahl) und i
die Indiktionszahl, dann ist die Jahreszahl in der Julianischen Periode der Rest von
4845s -f 4200g -f 69161 bei Division durch 7980. Diese Regel gab Jakob auch in der
Dissertation vom 25.1.1684, Art. 96 BKC, S. 190. Als er dann im Januar-Heft der
AE für 1692 die Rezension las, die Leibniz von J. Ozanam, Dictionaire mathématique...,
Amsterdam 1691 gegeben hatte, da fand er dort einen Hinweis auf Billy (bei Ozanam,
S. 183). Er notierte sich in den Auszügen, die er in Med., Art. 184 machte, natürlich
habe er als 18-jähriger von Billys Veröffentlichung nichts gewusst.

10 In den Med., Art. 11 steht eine eingehende Darstellung. Ein nicht ganz zutreffender
Bericht des Lyoner Arztes J. Spon in Nr. 8 des JS vom 25.111.1680 veranlasste Jakob,
in Nr. 31 des JS vom 19.XI.1685 einen französischen Auszug aus seinen Aufzeichnungen
einzurücken (— BKC, S. 209 bis 210). Dieser Auszug wird wiedererwähnt in Th. 25 der
Dissertation vom 22.11.1686 (BKC, S. 235).

11 Hier einige Beispiele: in Art. 4 der Med. wird die Möglichkeit einer in einem
einzigen Augenblick vollzogenen mittelbaren Schöpfung aus bereits vorgeformtem
Urstoff zurückgewiesen. In Art. 5 wird verneint, dass die bei der Flucht aus Ägypten
vor den Israeliten herziehende Wolke auch gegen Hitze geschützt habe. In Art. 16 wird
die Frage erörtert, ob es verschiedene Grade der zukünftigen Verklärung geben könne.
Das alles wird nach den strengen Regeln der scholastischen Disputierkunst und Logik
behandelt. Diese Methode wird auch auf Probleme der damaligen Physik angewendet,
so z.B. in Art. 8 auf die (verneinend beantwortete) Frage, ob sich ein senkrecht nach
oben geworfener Stein im Umkehrpunkt in Ruhe befinde. Dabei spricht Jakob für die
Aufwärtsbewegung von einem motus violens, für die Abwärtsbewegung von einem
motus naturalis, steht also (trotz Galilei) noch auf dem Boden der Impetus-Theorie.

12 Beispiel: Art. 12 der Med.: Methode zur Bestimmung der Wolkenhöhe,
fortgesetzt in Art. 72. Ein Hinweis steht in der Probevorlesung vom 14.11.1687 BKC,
S. 311, ein Auszug unter Beschränkung auf die einfachsten Rechnungen des Art. 72
in den AE für II 1688 BKC, S. 336/43. Art. 23/25: Auseinandersetzungen um die
CoppERNicANische Auffassung, die zwar gegenüber der PTOLEMÄischen den Vorzug
grösserer Anschaulichkeit besitze (Art. 24), jedoch mit gewissen Schriftstellen (Art. 23 ;

Vgl. Speiser 7, s. 9; ferner Art. 25) in Gegensatz stehe und auch auf physikalische
Schwierigkeiten stosse, da bei bewegter Erde Änderungen der Fixsternparallaxen zu
erwarten wären. Zitiert wird bei dieser Gelegenheit : D. Lipstorp, Copernicus redivivus,
Leiden 1653.

13 Vgl. hierzu den aus Jakobs Reisebüchlein, Mskr. (LI a 5) der Basler Universitätsbibliothek

stammenden Bericht in Speiser S. 16.
14 Med., Art. 26. Kurz zuvor entstanden die in BJS, S. 71 erwähnten noch

ungedruckten Tabulae gnomonicae von 1678: Mskr. LI a 2.
is Schon in Art. 1 der Med., worin Jakob die Annahme einer ovalen oder

elliptischen Erdgestalt zu Gunsten der Kugelform abweist, wird gegen eine mündlich
vorgetragene Lehrmeinung Megerlins Stellung genommen. In dem nur der deutschen
Ausgabe der Kometentheorie i beigefügten Prognosticon macht sich Jakob über einen
Einblattdruck Megerlins zum Kometen des Jahres 1680 lustig (Speiser 7, s. 12/13).
In der Dissertation vom 25.1.1684 kommt Jakob in Art. 94 (BKC, S. 190) auf die
Erdgestalt zurück, in Art. 90 (BKC, S. 189) wendet er sich gegen einen der Gründe
Megerlins in dessen Systema mundi Copernicanum, Amsterdam 1682 für die Copper-
NicANische Lehre (Speiser 7, s. 8/9).

16 U.a. werden J. Hevelius, Cometographia, Danzig 1668 und T. Brahe, De nova
Stella, Kopenhagen 1573 erwähnt.

17 Jakob gibt in der Kometentheorie i eine Ephemeride unter der Voraussetzung
einer Kreisbahn, die natürlich nicht stimmen konnte.

is Mir scheint Art. 27/35 der Med. die Frucht dieses Aufenthaltes zu sein. Art. 27
bezieht sich auf die Einteilung der Linien in gerade, krumme und gemischtlinige.
Art. 28/29 handelt von der scheinbaren Grösse geometrischer Figuren bei perspektiver
Abbildung. Hier wird neben Schwenter s h, ed. G. Pb. Harsdörffer, Nürnberg 1651
auch A. de Bosse, Manière universelle de MT Desargues..., Paris 1648 zitiert. Diese
Studie ist Gegenstand von Th. 97 der Dissertation vom 25.1.1684 (BKC, S. 190) und
von Th. 8 der Probevorlesung vom 14.11.1687 (BKC, S. 312). In Art. 30 ist von der
Behandlung trigonometrischer Tafeln die Rede. Zitiert werden J. Neper, Mirifici
logarithmorum canonis constructio nach der Ausgabe Leiden 1620, ferner A. Vlacq,
Trigonometria artificialis, Gouda 1633 und B. Ursinus, Magnus canon logarithmicus,
Kölln a.d. Spree 1624. Art. 31 handelt von der Halbierung einer sehr langen Strecke
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vermittels eines Zirkels kleiner Öffnung und eines Anlegelineals. Art. 32 bezieht sich
auf eine von Cl. Comiers in Nr. 16 des JS vom 17.VIII.1676 gestellte Einschiebungs-
aufgabe 3. Grades. Die Lösung wird als 1. Anhang zum Systema cometarum von 1682
(BKC, S. 41/43) abgedruckt. Die Aufgabe wird nochmals behandelt im Anhang zur
Dissertatio de gravitate aetheris 22 von 1683 (BKC, S. 159G60J. In Art. 33 wird die
Sonnenhöhe aus der Polhöhe und der Sonnendeklination bestimmt, wenn sich die Sonne
genau im Osten befindet. Dabei wird auf die Tabella horologiaria, Köln 1648 des sonst
kaum genannten Jesuiten L. v. Middendorff verwiesen. Art.. 34 handelt von der
Konstruktion einer Sonnenuhr und dürfte bereits von den Exercitationes rnathematicae
(V, sect. 29), Leiden 1657 des Fr. van Schooten abhängen, die später so stark auf
Jakob eingewirkt haben. Vgl. ferner das in der Probevorlesung vom 14.11.1687 (BKC,
S. 312) Angedeutete.

19 Bei Chr. Wittich und É. Lemoine.
20 Bei J. Fr. Bockelmann.
21 Seine Studien lassen sich in den Art. 36/50 der Med. schrittweise verfolgen. Sie

könnten recht wohl auf einer Privatunterweisung beruhen. Der mathematische Stil
entspricht genau dem Verfahren der „algebraisch-geometrischen Analysis", wie es in
der ScirooTENSchen Schule ausgebildet worden war. Im einzelnen erwähne ich Art. 38,
wo es um die Konstruktion und Halbmesserberechnung jenes Kreises geht, der zwei
äussere von 7 kongruenten sich je zu zweit berührenden Kreisen von aussen und den
umschliessenden Kreis der 6 äusseren dieser 7 Kreise von innen berührt. Eine ähnliche
Aufgabe ist das MalfaaTische Problem am gleichschenkligen Dreieck in der
Probevorlesung vom 14.11.1687 (BKC, S. 303/305). Es hängt zusammen mit einer Aufgabe
des Amsterdamer Rechenmeisters N. Vooght, gestellt auf einem Einblattdruck von
1682. In Art. 39 erklärt Jakob den berühmten Kontingenzwinkelstreit zwischen
Chr. Clavius und J. Peletier als gegenstandslos, weil es sich um eine Definitionsfrage
handle. Vgl. die Dissertation vom 25.1.1684, Th. 82 (BKC, S. 189). In Art. 40 wird die
von den spätscholastischen EuKLiD-Editoren bezweifelte Schlussweise: wenn a weder
grösser noch kleiner als b ist, dann ist a 6, als richtig anerkannt. Bei dieser
Gelegenheit wird Fr. Viètes Standpunkt erwähnt, dargelegt im Supplementum geo-
metriae, Tours 1593 Opera, ed. Fr. van Schooten, Leiden 1646, S. 240. Eine
Anspielung auf diesen Art. findet sich in den Th. 76 (BKC, S. 188) und 89 (BKC, S. 189)
der Dissertation vom 25.1.1684. Art. 49 bezieht sich auf die Billard-Aufgabe auf
rechteckigem Billard und hat zu einer entsprechenden Aufgabe in der Schlussthese 100
der Dissertation vom 25.1.1684 geführt. Andererseits spielt die Billard-Aufgabe eine
grosse Rolle in der Dissertatio de gravitate aetheris 22. Auf diesen Art. bezieht sich
Jakob auch in den Bemerkungen zur Rezension LEiBNizens betreff Ozanams Dictio-
naire 9, enthalten in Art. 184 der Med. — Die kritische Stellung Descartes gegenüber
bekundet sich in Th. 65 (BKC, S. 187) der Dissertation vom 25.1.1684 recht deutlich:
Jakob ist fest davon überzeugt, dass sich Descartes beim Gottesbeweis, bei der
behaupteten Unendlichkeit der Welt, bei den Bewegungsregeln, bei der Begründung
der Kohäsion, der Natur der Spiegelung und Brechung usw. geirrt habe.

22 Amsterdam 1683 BKC, S. 45/163. Das Vorwort ist datiert: Leiden, 11. VII.
1682.

23 Quaestiones nonnullae de aëris gravitate, Middelburg 1681.
2-1 Bei dieser Gelegenheit spielt die Stosstheorie vollkommen elastischer Körper

(Billard-Kugeln) eine grosse Rolle. In interessanten Digressionen wird von der Wirkung
des Steuerruders am Schiff (vgl. Th. 72 der Dissertation vom 25.1.1684 — BKC, S. 188),
von der Fahrtrichtung in Abhängigkeit von der Windrichtung und Steuerstellung und
vom Verhalten einer Kette gehandelt — alles Probleme, die später in anderem
Zusammenhang erneut auftauchen sollten.

25 Cluver zählt zu den LEiBNiz-Korrespondenten. Er verwies Jakob auf Leibniz'
erste Abhandlung in den AE II 1682 (LMG V, S. 118/22) Philosophical collections

Nr. 7, 1682, worin die LniBNiz-Reihe für mitgeteilt, jedoch nicht bewiesen wird.
Vgl. Jakob-Leibniz, 19.X.1695 LMG III, S. 22.

26 Es handelt sich um die Arithmetica infinitorum, Oxford 1656, um die Tractatus
duo, prior de cycloide, posterior de cissoide, Oxford 1659 und um die Mechanica, London
1 670/71.

27 Es handelt sich um die Lection es opticae, London 1669 und Titelauflagen, und
um die Lectiones geometricae, London 1670 und Titelauflagen. Barrows Name wird
übrigens schon in einem Zusatz zu Art. 8 der Med. n erwähnt, der nach Art. 40
eingeschoben ist. Auf diesen Zusatz wird in Th. 25 der Dissertation vom 19.TX.1685 BKC
S. 223 angespielt.

26 Amsterdam 1659/61, ed. Fr. van Schooten.
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29 Einige von Jakob selbst stammende Vorlesungsprotokolle sind erhalten. Sie
werden in BJS, S. 67 erwähnt und in 0. Spiess, Einige neu aufgefundene Schriften
der alten Basler Mathematiker, Verhandlungen der Naturforschenden Gesellschaft 56,
Basel 1944, S. 91/92 näher geschildert. Es handelt sich um Abschriften, die der Genfer
Physiker J. Jallabert im Winter 1737 anfertigen liess. Sie befinden sich heute unter
der Signatur Ms. lnv. 1607 in der Genfer Universitätsbibliothek.

so Nr. 21 vom 16.VIII.1683 BKC S. 168/70, vgl. auch Th. 73 der Dissertation
vom 25.1.1684 « BKC, S. 188.

Nr. 22 vom 29.XI.1683 BKC, S. 172/173.
Nr. 28 vom 31.VII.1684 BKC, S. 199/203.
Nr. 19 vom 18.VI.1685 BKC, S. 204/06.
Nr. 29 vom 17.IX.1685 *«= BKC, S. 207/08, wiedererwähnt in Th. 27 der Dissertation

vom 19.IX.1685 BKC, S. 223.
Nr. 31 vom 19.XI.1685 ^ BKC, S. 209/10 10.
31 AE II 1686 BKC, S. 239/45.

AE II 1686 tm BKC, S. 248/50.
AE II 1688 w BKC, S. 336/43 12.

32 Hier seien nur die Beiträge Jakobs angeführt;
JS Nr. 12 vom 24.IV.1684 a= BKC, S. 195/96, erwähnt in Th. 24 der Disserta¬

tion vom 19.IX.1685 BKC, S. 223.
AE IX 1684 «= BKC, S. 192/94.
AE VII 1686 BKC, S. 277/81.
AE VII 1691 BKC, S. 460/65.

Nach mehr als 10 Jahren kam Jakob erneut in drei abschliessenden Veröffentlichungen
auf das alte Problem zurück. Sie stehen in der Histoire de Vac. sc. für 1703/04 BKC,

S. 930/36, 937/46 und 947/65.
33 AE XII 1686 BKC, S. 286/90.

Probevorlesung vom 14.11.1687, Th. 6 BKC, S. 312.
AE VI 1687 BKC, S. 314/27.
AE XI 1688 BKC, S. 355/60.

34 Druck Basel 1684 BKC, S. 175/92. Vgl. ferner die Anmerkungen 9, 15, 18,
21, 24, 30.

35 Hierin spiegelt sich wohl Art. 40 21 der Med. wieder.
36 Leider tappen wir hier mangels irgendwelcher Hinweise in den Med. über die

Absichten des Verfassers im Dunkeln.
37 Aus Th. 4 der Dissertation vom 19.IX.85 (~ BKC, S. 219) geht hervor, dass

sich Jakob hier mit Cap. 6, pars 1 der Arnauld-NïÇOLEsehen Logique ou l'art de penser
(Paris 1662 u. öfter) auseinandersetzt.

38 Dieser Artikel zeigt uns, wie früh sich Jakob mit isoperimetrischen Fragen befasst
hat. Die Med. geben keine Auskunft über die Meinung Jakobs.

39 Vgl. hierzu Art. 39 21 der Med.
40 Wahrscheinlich handelt es sich um eine kritische Auseinandersetzung mit dem

Axiom vom Umfassenden und Umfassten in Archimedes, De sphaera et cylindro I,
Axiom 3.

41 Hier nimmt Jakob gegen das ARisTOTELische Dogma von der Unvergleichbarkeit
geradliniger und krummliniger Grössen Stellung. Über dieses vgl. J. E. Hofmann,

Sitzungsber. d. Heidelberger Ah. d. Wiss., Phil.-hist. Abt. 1941 /42, Nr. 4, Heidelberg 1 942,
S. 15/16.

42 Druck Basel 1685 &= BKC, S. 211/24. Von den beigefügten Thesen bezieht sich
Nr. 25 auf den in 35 erwähnten Zusatz zu Art. 40 der Med., Nr. 26 auf eine Untersuchung
über die Sonnenuhr (Med., Art. 35), Nr. 21 auf eine Erbteilungsfrage, die mit der
Wahrscheinlichkeitsrechnung zusammenhängt (genauer ausgeführt in Med., Art. 77 und
ergänzend behandelt in der Dissertation vom 22.11.1686, Th. 31 BKC, S. 236/37).
In Th. 13 verteidigt sich Jakob gegen den Vorwurf, er habe in den Bemerkungen über
den Kontingenzwinkel 21, 39? über die Julianische Periode 9, 21 und über die Gravitationstheorie

22 schon Bekanntes vorgebracht: damals habe er noch nichts von der einschlägigen

Literatur gewusst. »

43 De efjervescentia et fermentatione, Basel 1690 u. ö. Opera omnia, ed. G. Cramer
[= BJCj, Lausanne/Genf 1742 (richtiger 1743, da das Vorwort erst vom 1.3.1743
datiert ist), 4 Bde. Hier BJC I, S. 1/40. Im Anhang (S. 41/44) wird versucht, durch das
Zusammenwirken zweier Flüssigkeiten verschiedenen spezifischen Gewichtes in zwei
verbundenen Gefässen ein perpetuum mobile zu konstruieren.

44 Basel 1694 u.ö. ~ BJC I, S. 93/118. Der (heute allein noch interessante)
mathematische Teil wurde für sich in den AE V 1694 abgedruckt.

45 Brief an Leibniz vom 14.III.1696 LMG III, S. 30.



Art. 6/7 INFINITESIMALMATHEMATIK 115

46 Tatsächlich hat Johann nur eine einzige weitere Untersuchung dieser Art
veröffentlicht, die Aufsehen erregende Disputatio medico-physica de nutritione vom
U.V.1699, Groningen 1699 u.ö. BJC I, S. 273/306. Die hier vorgebrachten Einwände
gegen eine Auferstehung des Leibes mit allen seinen Atomen führte zu heftigen
Auseinandersetzungen mit den Theologen, die den rein physikalischen Standpunkt des
Verfassers nicht begreifen konnten.

47 Dieses Einschiebungsproblem lässt sich bis auf Apollonios zurückführen.
Jakob ist vielleicht durch das im Kommentar des Eutokios von Askalon zu Archimedes,

De sphaera et cylindro II Gesagte auf den Gegenstand hingewiesen worden,
wahrscheinlicher freilich durch die Erwähnung in der DESCARTESschen Geometria
(Ausg. 1659) nebst dem zugehörigen Kommentar von Schooten.

48 Dieses Problem dürfte durch die Lektüre des Briefes von Descartes an Mer-
senne vom 12.IX.1638 (Ausgabe von Cl. Clerselier, Paris 1657/67 u.ö., Band I,
Nummer 74) angeregt worden sein.

49 im Text steht ein Hinweis auf Barrow, Lectiones opticae 27, s. 41.
so Dabei wird auf J. de Witts Kegelschnittslehre in Band II, 1661 der Geometria 2s

hingewiesen.
51 Die Anregung könnte aus Nepers Construction stammen.
52 Ohne Anwendung der Algebra jene Zahl zu bestimmen, die 12 und 36 so teilt, dass

sich die um 8 vermehrten Quotienten wie 3: 5 verhalten. Jakob gibt eine Lösung vermittels
der régula falsi in Zahlen und in Buchstaben (die er anscheinend auch rein arithmetisch
aufgefasst hat). Eine andere Lösung des Problems ging an St. Spleiss. In der
Probevorlesung für die Basler Professur vom 14.11.1687 erscheint das Problem als erste
Aufgabe (BKC, S. 295/300). Der weltkluge Jakob wusste sehr genau, wie stark er mit
der auführlischen Behandlung dieser Aufgabe dem Geschmack der Zeitgenossen
entgegenkam.

52a Positiones miscellaneae e variis philosophiae partibus depromptae, Basel 1684.
53 Supplementum geometriae 21, prop. 23/24 & Opera, S. 255/56. Die Form der

entstandenen Gleichung 3. Grades gleicht jener in Schootens Exercitationes mathematical
is V, sect. 21.

54 in der Rechnungsführung folgt Jakob dem Vorgehen von Hudde in der Abhandlung
De reductione aequationum (Brief an Schooten vom 14.VII.1657), abgedruckt in

der Geometria I 28, s. 499/500.
55 Jakob verwendet die Gleichung x* — ax2 — '2a2x + a3 0, geht mit

x r + y zu z3 — 0 -i- a2 2 + ia3 0 über und erhält schliesslich

a 4 / 7 a3 / 1421 a6 */ 7 a3 /—* - T + V IT + Vnsïv-V- 54-+ V-
statt

a 4 / 7 a3 /49a°— 1372 chî IA¥T 5976

Er hat also das Zeichen unter der Quadratwurzel verdorben. Dann setzt era 1000
und erhält a 444 statt 445,04. Dieses Zahlenergebnis hätte er bei Viète 53 opera.
S. 256 ablesen können. Es scheint also, dass er das Supplementum geometriae nicht
selbst besass, sondern nur dem Hörensagen nach kannte.

56 Es soll 1. in ein rechtwinkliges Dreieck, 11. in einen Viertelkreis ein Rechteck
grösstmöglicher Fläche einbeschrieben werden.

57 Die Regel ist enthalten in der Abhandlung De maximis et minimis (Brief an
Schooten vom 26.1.1658) abgedruckt in der Geometria I 28, s. 507/16. Dort sind auch
mehrere Rechenbeispiele gegeben. Anstelle der Differentiation tritt die Multiplikation
mit den Gliedern einer passend gewählten arithmetischen Reihe, die als Faktoren der
Potenzen der Unbekannten eingeschoben werden. Indem das schwierigste Glied mit
Null multipliziert wird, lassen sich in vielen Fällen vorteilhafte Vereinfachungen
erzielen.

58 Auch diese Aufgabe stammt von einem Handzettel des Amsterdamer Rechenmeisters

N. Vooght aus dem Jahr 1682. Sie ist mit in die Probevorlesung vom 14.IL1687
(BKC, S. 301 /03) übernommen. Das dortige Zahlenbeispiel ist einfacher als das in den
Med. Dass die Aufgabe im Problema, quod jubct ex quattuor redis lineis datis quadrilaterum
fieri, Nürnberg 1598 in voller Allgemeinheit gelöst wurde, das Joh. Richter zum
Verfasser hat, dürfte Jakob kaum gewusst haben. Wohl aber finden wir in der Med. einen
Hinweis auf W. Ougiitred, Opuscula mathematica, ed. J. Wallis, Oxford 1677.
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59 Vieles davon ist in die Ars conjectandi 2 übergegangen. Hier eine kurze
Konkordanz :

Med., Art. Ars conj. Med., Art. Ars conj.
63 I, Anh. prop. 3 + III, prop. 5 68 III, prop. 20
64 prop. 4 + III, prop. 6 69 prop. 6

65 prop. 1, verkürzt 70 prop. 10
66 prop. 2 72 f» Teil Anhg. über das Ballspiel
67 prop. 5 82 I, prop. 4, Zusatz.

Dann folgen in Art. 83/89 weitere Beispiele, die nicht in die Ars conjectandi
übergegangen sind, hierauf nach Art. 129 ein Zusatz zu Art. 88, nach Art. 131 ein Zusatz
zu Art. 70, nach Art. 133 und 151 zwei wichtige Zusätze zu Art. 77. Sie enthalten eine
Arorform des entscheidenden Buch IV, Kap. 4 der Ars conjectandi, geben und begründen
das G-esetz der grossen Zahlen und werden abgeschlossen mit den kennzeichnenden
Worten: Diese Entdeckung schätze ich höher ein als wenn ich die Kreisquadratur hätte
geben können. Vgl. BJS, S. 160, Fussnote 8/10.

60 Das erste Problem handelt von zwei Würfelspielern und ist in Nr. 25 des JS vom
26.VIII.1685 BKC, S. 207 erschienen, blieb jedoch lange unbeachtet und wurde
daher von Jakob selbst in den AE V 1690 BKC, S. 429/31 gelöst. Daraufhin teilte
auch Leibniz eine Lösung mit (AE VII 1690 LD III, S. 237/38). Das Problem hängt
zusammen mit der im Anhang zu Buch I der Ars conjectandi behandelten prop. 1 5y.
Das zweite Problem ist mit dem ersten verwandt. Es befindet sich als Th. 20 in der
Dissertation vom 19.IX.1685 BKC, S. 221/22. Das dritte Problem bezieht sich auf
das Ballspiel und erscheint in Th. 32 der Dissertation vom 22.11.1686 — BKC S. 237
bis 238. Das vierte Problem tritt als 11. Th. der Probevorlesung vom 14.11.1687 BKC,
S. 313 auf. Es bezieht sich auf das Lotteriespiel.

61 In Art. 75 wird sin (180° -—a —b) aus cos a, sin a, cos b, sin b bestimmt. Diese
Untersuchung ist in die Anmerkungen zur Geometria 28, Neuausgabe von 1695 BKC,
S. 668/70 übergegangen. In Art. 76 soll aus b, c und p b cos a die Seite a gefunden
werden. In Art. 79 ist die Identität tg 45° — tg 15° tg 60° — tg 45° in geometrischer
Interpretation enthalten. Aus späterer Zeit stammen weitere ähnliche Aufgaben.
Z.B. steht in Art. 102 das Subtraktionstheorem der Tangens-Funktion, in Art. III der
Projektionssatz c a cos ß 4- b cos a im Dreieck. In Art. 127 wird sin 21 aus sin t

ausgedrückt, in Art. 128 der Sinussatz des Dreiecks am Parallelogramm ausgesprochen.
Art. 131 handelt von der Bestimmung der Winkel a und ß im Dreieck aus a, b, y;
Art. 137 von einer Dreiecksaufgabe, Art. 145 von der Konstruktion eines Fünfecks,
das durch eine kubische Konstruktion gewonnen wird. Art. 146 enthält die Bestimmung
von cos (a + b) und sin (a + 6) aus tg a, tg 6, 1 : cos a und 1 : cos b. Art. 151 bezieht
sich auf Kontrollrechnungen bezüglich der bekannten Näherungskonstruktionen von
C. Renaldini, De resolutione et compositione mathematica, Padua 1668 für regelmässige
Adelecke. Wie AI. Cantor, Vorlesungen über Geschichte der Mathematik III, 2 Leipzig 1901,
S. 23 bemerkt, tritt diese Konstruktion schon früher auf, nämlich bei A. de Ville
(1628). Jakobs Rechnung wird in Th. 12 der Epimetra zur 3. Reihendissertation vom
24.XI.1696 (BKC, S. 765) verwendet. — In Art. 157 werden die Gleichungen für die
5-Teilung und 7-Teilung eines Kreisbogens aufgestellt, sicherlich in Anlehnung an
Schooten, Exercitationes mathematicae 18 A7, Sect, 21 ; die A7orlage bleibt jedoch
ungenannt. Ausserdem erscheinen in Art. 120 Gleichungen für die Seiten regelmässiger Vielecke

im Kreise, ausgedrückt aus dem Kreishalbmesser (3- bis 9-Eck).
Aus all dem geht hervor, dass sich Jakob nicht näher mit den trigonometrischen

Lehren der vorausgehenden Epoche abgegeben haben kann; denn dort waren diese
Rechnungen und Umformungen schon ausgeführt worden, z.T. viel eleganter und
kürzer. Insbesondere lässt sich erkennen, dass Jakob die einschlägigen Schriften von
Viète und dessen Nachfolgern niemals genauer durchgearbeitet hat.

62 BKC, S. 234.
63 JS Nr. 3 vom 19.1.1693 BJC I, S. 64. Johann teilt nur die Lösung mit.

Unbemerkt, er und sein Bruder hätten sich schon seit mehr als 5 Jahren vergeblich mit
dieser Frage beschäftigt. Ausführlich ist das Problem in Johanns Vorlesungen für
L'Hospital über Differentialrechnung iss, prop. 20 behandelt. Von hier ist es in L'ITos-
pitals Analyse13S, Art. 161 übergegangen. —Auch Jakob hatte (in einem Brief vom
30.VII.1692 an Mencke, Druck AE IX 1692 BKC, S. 515/16) nur die Lösung
angegeben, aber in Art. 193 der Med., der in Abschrift am 14.III.1696 an Leibniz ging
(LMG III, S. 40/41) und aus dem Nachlass (Stück 16 BKC, S. 1075/77) erstmals
allgemein bekannt geworden ist, erscheint auch eine infmitesiinalgeometrische
Begründung. Vgl. ferner die Erwähnungen des Problems in der Abhandlung Jakobs in
den AE VI 1693 BKC, S. 572 (wo dieser feststellt, Johann habe seine Lösung ohne
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Jakobs Vorwissen veröffentlicht) und im Brief Johanns an S. Faesch vom Juli 1695 —

BJS, S. 415. Das Problem wird auch in L'Hospital, Analyse, Art. 61 behandelt.
64 Druck Basel 1686 BKC, S. 225/38. Vgl. ferner die Hinweise in Anm 10, 42,

60, 62.
65 Basel 1686 BKC, S. 251/76. Hier handelt Jakob vom G-ewicht, von der Elastizität

und von der Zusammendrückbarkeit der Luft. Er greift zurück auf die Disserlatio
de gravitate aetheris 22 und führt aus dieser die Rechnung BKC, S. 101/02 S. 272/74
vor. Sie gründet sich auf das Bo YLKSche Gesetz und handelt vom Druck eines durch
Quecksilberfüllung abgesperrten Gasvolumens, falls die abschliessende (unten offene)
Röhre im Quecksilbertrog gehoben und gesenkt wird. Dabei wird auf die Erwärmung
keine Rücksicht genommen. Neu hinzugekommen ist eine Tabelle (BKC, S. 275). Die
Vorlesung wurde durch vorgeführte und wohlgelungene Experimente unterstützt.
Später hat Jakob (Art. 206 der Med. Nachlass, Stück 15; BKC, S. 1067/74) auch
die barometrische Höhenformel gefunden. Natürlich konnte er nicht ahnen, dass auch
Huygens zu diesem Ergebnis gekommen war (Aufzeichnung vom 17.VII.1662, Œuvres
complètes [ HO] den Haag 1888/1950, 22 Bände), HO XIV, S. 483/90 mit weiteren
Ergänzungen, S. 491/97).

66 AE IX 1686 BKC, S. 282/83. Als Erläuterungsbeispiel dient

rcssanIerweise findet sich in den Med. keinerlei Aufzeichnung über diesen Gegenstand.
Auch später verwendet Jakob gelegentlich die unvollständige Induktion; vgl. z.B.
Art. 173/78 der Med. (Anm. 123/28) und die Akademie-Abhandlung von 1702 364.

67 BKC, S. 291/313. Vgl. auch Anm. 12, 18, 21, 52, 58, 60. Bemerkenswert ist noch
die ballistische Th. 10 BKC, S. 312, worin gesagt wird, die grösste Wurfweite eines
Geschützes werde unter Vernachlässigung des Luftwiderstands beim Abschusswinkel
45° erzielt, bei Berücksichtigung des Luftwiderstandes bei einem nur wenig kleineren
Winkel. Das scheint mit Th. 14 der Dissertation vom 22.11.1686 BKC, S. 234
zusammenzuhängen. wo Jakob im Gegensatz zu Wallis 2g} Mech. I, Cap. 10, prop. 8 behauptet,

die Wurfbahn sei auch bei Berücksichtigung des Luftwiderstandes eine Parabel.
Das wird in den Med., Art. 52 an Hand eines Zeit-Geschwindigkeitsdiagramms
angedeutet. Näheres ist in Art. 138 ausgeführt.

es in den Art. 92, 95, 105/07, 167.
69 In den Art. 96, 96 bis, 100, 111.
70 in den Art; 97, 110, 171.
71 In den Art. 99, 101, 103.
72 in Art. 98 erscheint (a2 — xO y2 a2 b'C in Art. 104 eine C4 und eine CG, in

Art. 113 die C4 : p4 x2 (»2 — y-2) und in Art. 114 die C3 : (a — x) y% (a + x) x*.
73 Neu tritt die Kenntnis von M. A. Ricci, Exercitatio geometrica hinzu, und zwar

wird eine Stelle aus der Ausgabe London 1668 zitiert. Diese ist als Anhang zu N. Mer-
cators Logarithmolechnia abgedruckt.

74 Med. Art. 108 ist die Vorstudie zur Abhandlung in den AE XI 1687 BKC,
S. 328/35 und weicht sprachlich nur wenig von dieser ab. Die Aufzeichnung enthält
jedoch einige zusätzliche Rechnungen, die in der Abhandlung unterdrückt sind. Das
Problem erscheint nochmals in den Ergänzungen zur Geometria am Ende der Ausgabe
Frankfurt a.M. 1695. Dort wird in Note 2 BKC, S. 671/74 die Lösung der Gleichung
auf den Durchschnitt einer Hyperbel mit einer C4 zurückgeführt. In Note 13 BKC,
S. 689/90 wird das Problem in Verbindung mit den Schnittpunkten zweier passender
C3 gebracht. Über das Gedruckte vgl. A. Procissi im Periodico di mat. (4) 14, 1934,
S. 1/21, über die Bibliographie des Problems G. Loria in der Bibliotheca math. (3) 4,
1903, S. 48/51.

75 Ein Hinweis hierauf findet sich am Anfang des Art. 108 der Med. Die nämliche
Angelegenheit wird erwähnt im Brief Jakobs an N. Fatio vom 2.V.1700.

76 in der Abhandlung werden keine Namen erwähnt; Jakob spricht nur vom
summus huius aevi mathematicus (BKC, S. 328).

77 HO XX, S. 425/30. Aus den dortigen Aufzeichnungen geht hervor, dass das
Problem von M. de Maubuisson — einer sonst unbekannten Pariser Persönlichkeit —
stammte. Maubuisson hat übrigens eine sehr zierliche rationale Sonderlösung gegeben,
deren Grundgedanke bei Jakob zwar anklingt, jedoch nicht voll durchgeführt ist.'

78 Erstaunlicherweise hat Hungens, der in solchen Fragen recht empfindlich
sein konnte, niemals berichtigend zur Abhandlung Jakobs Stellung genommen.

lim 1 + 2 f 3 + + n _ J_
_

n->00 n + n + n + + n 2

n (n + 1)
vorgeführt wird jedoch nur die Formel ^ + (n + 1)
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Der anschliessende Art. 109 der Med. handelt von der Dreiteilung einer Dreiecksfläche
durch zwei senkrechte Gerade. Es liegt ein Problem 4. Grades vor.

79 Vgl. Geometria 28 s. 339. Die dortige Stelle ist durch Huygens beeinflusst:
HO XIV, S. 413. Vgl. ferner Note 25 (BKC, S. 702) in den Ergänzungen zur Geometria 7A

80 Vgl. Geometria, S. 322. Auch diese Stelle ist durch Huygens beeinflusst : HO XIV,
S. 420/22. Nähere Ausführungen finden sich in den Ergänzungen Jakobs zur
Geometria 74, Note 24 BKC, S. 700/02.

81 In Art. 117 werden zur Auflösung der Gleichungen 3. und 4. Grades im Anschluss
an Hudde (Geometria I, S. 325) Kreis und Hyperbel herangezogen, dann zur
Auflösung der Gleichung 3. Grades im Anschluss an Geometria, S. 328 Kreis und Parabel.
Im Art. 118 werden zur Auflösung der Gleichung 6. Grades im Anschluss an Geometria,

S. 97 eine Parabel und eine C3 verwendet, dann ein Kreis und eine C3.
82 Hier führt Jakob bei der vorausgehenden Normalenkonstruktion durch einen

gegebenen Hyperbelpunkt vier Methoden vor: 1. Das Verfahren von Descartes
(Gleichung 4. Grades mit Doppelwurzel), 2. das von Hudde 57, 3. das von Fermât
(erste Erwähnung dieses Namens, Vorbild sind vielleicht die Varia opera, Toulouse,
1679, S. 63/64) und 4. das eigene (Kreis um einen passenden Asymptotenpunkt so,
dass er die Hyperbel im gegebenen Punkt berührt).

83 BKC, S. 343/51. In der Einleitung wundert sich Jakob darüber, dass weder
Schooten noch Hudde noch sonst einer der Leser der Geometria diese Vereinfachung
bemerkt hätten. Er kennt also weder Fermats Animadversio in Geometriam Cartesii
[Paris 1657] (ed. J. E. Hofmann, Abh. Nr. 9 der Preuss. Ak. d. Wiss. für 1943, Math-
natarw. Klasse, Berlin 1944, S. 45/47), noch Fermats kurze Zeit später entstandene
Dissertatio tripartita, die ihm aus dem Abdruck in den Varia opera82, S. 110/15 zugänglich

gewesen wäre. Erst in den Ergänzungen zur Geometria 7R Note 4 BKC, S. 678
wird auf Fermât hingewiesen. — Die Vorstudien zu Jakobs Abhandlung AE VI 1688
sind in den Art. 122, 123 und 134 der Med. enthalten.

84 Zusätzlich wird in Med., Art. 124 festgestellt, dass jede kubische Gleichung aus
den Schnittpunkten einer gezeichnet vorliegenden kubischen Parabel mit einer
konstruierbaren Geraden aufgelöst werden kann. Art. 125 gibt eine Variante der schon in
Art. 117 si erwähnten DESCARTESSchen Konstruktion aus der Geometria, S. 328.
Art. 126 handelt von der Konstruktion der vollständigen Gleichung 9. Grades.
Wahrscheinlich fällt in diese Zeit die Entstehung einer noch nicht ganz geglückten Studie
über die möglichen Typen der ebenen Kurven 3. Ordnung, deren Ms. erhalten ist.
Vgl. Jakob an Leibniz, Brief vom 28.11.1705 (EMG III, S.98) und BJS, S. 71.

85 Basel 1688 sw BKC, S. 361/73.
86 Th. 15 BKC, S. 371 am Schluss : Eine Linie kann als infinitesimaler Teil einer

Fläche aufgefasst und zu dieser in unendlich kleines Verhältnis gesetzt werden.
Th. 16 BKC, S. 371 : Ist von gleichartigen Grössen die eine endlich, die andere
unendlich gross, dann haben sie das Verhältnis Null oder besser ein unendlich kleines.

87 Basel 1689 BKC, S. 375/402 — OKI. Nr. 171 i, S. 3/24.
88 Diese Vorstudien verteilen sich so :

Art. 134 prop. 6, BKC, S. 380/81.
Art. 135 prop. 10, BKC, S. 382.
Art. 136 prop. 12, BKC, S. 383.
Art. 139 prop. 14, Abschn. 1, 2, 4: BKC, S. 384/86.
Art. 140 Stück von prop. 16, BKC, S. 393/94.
Art. 141 prop. 15, BKC, S. 388/89.
Art. 142 prop. 17, BKC, S. 395/97.
Art. 143 Stück von prop. 16, BKC, S. 393 und von prop. 17, BKC, S. 398.
Art. 144 nimmt einen Teilfall aus prop. 19 voraus: Reihendissertation vom

28.XI.1692 BKC, S. 521.
89 Es handelt sich um die Novae quadraturae arithmeticae, Bologna 1650 und die

Geometria speciosa, Bologna 1659. In den Novae quadraturae steht ein Divergenzbeweis
• 111für die harmonische Reihe, gestützt auf die Ungleichung — _ { F — 4-

n ]
> —

ferner die Summierung der reziproken figurierten Zahlen und der Hinweis darauf,
°°

1

dass 2 -r^ bisher noch nicht in geschlossener Form ermittelt worden sei. Hierzu vgl.
k=\

O. Spiess, Die Summe der reziproken Quadratzahlen, Festschrift zum 60. Geburtstag
A. Speiser, Zürich 1945, 21 S. — Die Geometria speciosa enthält Annäherungen für
die natürlichen Logarithmen rationaler Zahlen aus Teilreihen der harmonischen
Reihen.
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9° Ich erwähne vor allem prop. 4 BKC, S. 380. Sie enthält die berühmte „Ber-
NOULLische" Ungleichung (1 -f» x)n > 1 + nx für positive x, n ganz und ^ 2. Dieser
Satz stammt aus Barrow, Lectiones geometricae 27, Vorlesung 7, §13/16. Die
Summierung der geometrischen Reihe in prop. 7/8 entspricht genau dem Vorgehen von
Viète im Variorum... responsorum liber VIII, Tours 1593, cap. 17 Opera 21,

S. 397/98 und ist von dort in viele spätere Fachwerke übergegangen, sodass sich die
genaue Vorlage nicht feststellen lässt.

91 Dessen älteste Studien zur Reihenlehre — denen Jakobs sehr verwandt — finden
sich in den Anecdota, Abhandlung 150 (BJC IV) vor; die einschlägige Rechnung in
BJC IV, S. 8 entspricht genau dem in BKC, S. 392/93 Gesagten. Johann ordnet die
harmonische Reihe so um, dass sich schrittweise Vielfache der Reihe der reziproken
Dreieckszahlen ergeben, die sich summieren lassen. Das Ergebnis ist die um 1

vermehrte Ausgangsreihe. Jakob selbst verwendet im Grunde die Bemerkung, dass

—1— + JL > JL (gedankliche Vereinfachung des Verfahrens von Mengoli 89). An-
n - 1 n n
schliessend wird gefolgert, dass es Reihen gibt, deren Glieder gegen Null konvergieren,
ohne dass der Wert der Reihensumme endlich sein müsste.

92 Diese Reihen wurden bereits von Leibniz (seit 1673) summiert. Hierübersiehe
J. E. Hofmann, Die Entwicklungsgeschichte der Leibnizschen Mathematik während des

Pariser Aufenthaltes, München 1949, Stellen im Register unter Zahlenreihen. Auf diese
Summierung hatte Leibniz in den AE II 82 LMG V, S. 121 versteckt hingewiesen.
Natürlich konnte Jakob daraus nicht erkennen, was wohl gemeint sei.

93 Oxford 1685 mit Auszügen aus den Briefen Newtons an Leibniz vom 23.VI.
und 3.XI.1676. Ersichtlich kannte Jakob dieses Werk 1689 noch nicht, obwohl er an
Wallis' Schriften grosses Interesse zeigte.

94 Nürnberg 1689. Jakob wusste nicht, dass der nämliche Fehler schon in P. Guldin,
Centrobaryca, Wien 1635/41 auftritt. Leider haben wir keine Aufzeichnung über
Jakobs Gegenbeweis.

95 sie sind in die Reihendissertation vom 28.XI.1692 BKC, S. 519/48
übergegangen. Art. 147 bezieht sich auf prop. 26 BKC, S. 533/36, Art. 148 auf prop. 18

BKC, S. 520/21, Art. 149 auf prop. 19 BKC, S. 522/23.
96 AE X 1683 LMG VII, S. 125/32.
97 Med., Art. 150 ist die Unterlage für die Darstellung in AE V 1690 BKC,

S. 429/30. Vgl. ferner das Scholium zu prop. 59 der 5. Reihendissertation vom 8.IV.1704
(BKC, S. 970). Die in BKC, S. 430 nachfolgende Beziehung zur logarithmischen Kurve
erscheint in etwas anderer Fassung in Art. 177 127.

98 Med., Art. 152 entspricht AE XI 1689 BKC, S. 418/21. In der handschriftlichen

Aufzeichnung findet sich ein Hinweis auf J. Wallis, Tractatus de sectionibus
conicis, Oxford 1655.

99 Art. 153 der Med. ist in den Text BKC, S. 416/18 übergegangen, Art. 154/56 in
den Text BKC, S. 413/16. Der Gegenstand wird von Johann in den Vorlesungen 54/55
über Integralrechnung für L'Hospital ebenfalls behandelt: BJC III, S. 539/45.

100 Prop. 27/35 BKC, S. 536/39. — Dass diese Studien in enger Zusammenarbeit
mit Johann durchgeführt wurden, lässt sich aus dessen Abhandlung 150 9i erkennen.
Dort sind in prop. 9 ~ BJC IV, S. 13 ähnliche Fragen behandelt. Allerdings ist die
Meinung Jakobs, er befinde sich mit einen iterierten Konstruktionen auf Neuland,
ein erheblicher Irrtum. Ähnliches steht nämlich schon in J. Gregory, Vera circuli et
hyperbolae quadratura, Padua 1667 u. 1668, prop 9, wiederabgedruckt in Chr. Huy-
gens, Opera varia II, Leiden 1724, S. 426/27.

101 BKC, S. 421/26. Wohl aber hat Johann den Gegenstand ausführlich in den
Vorlesungen über Integralrechnung für L'Hospital behandelt. Die hier erwähnte Stelle
findet sich in Vorlesung 33/34 =# BJC III, S. 482/86. In OKI. Nr. 194, Leipzig 1914,
deutsch v. G. Kowalewski sind die ersten 37 Vorlesungen Johanns enthalten, nicht
aber die 22 weiteren.

102 Die Aufgabe wurde von Leibniz im Verlauf einer Kontroverse mit dem Pariser
Abbé Catelan um den Begriff der Bewegungsgrösse am Ende einer Abhandlung in den
Nouvelles de la République des lettres für September 1687 Leibniz, Die
philosophischen Schriften, ed. C. I. Gerhardt, Berlin 1875/90 (7 Bände), im folgenden zitiert
als LPG + Bandnummer, hier LPG III, S. 49/51 gestellt. Huygens teilte schon im
Oktoberheft der nämlichen Zeitschrift HO IX, S. 224/26 die Lösung mit. Leibniz
erwies die Richtigkeit der HuYGENSschen Auflösung in den AE IV 1689 LMG V,
S. 234/37 durch eine rein verbale Überlegung ohne algorithmische Infmitesimal-
betracbtung. Er stellte gleichzeitig die wesentlich schwierigere Frage, auf welcher
Linie sich ein Massenpunkt im Schwerefeld der Erde mit konstanter Geschwindigkeit
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auf einen festen Punkt hinbewegt fisochrona paracentrica). Erst Jakob iw gab für die
/ ds\^Kurve konstanten Abstiegs eine beweisende Herleitung. Er beginnt mit : y — •

Daraus ergibt sich mit ~ » b die Beziehung dx i/—^ — 1 dy und durch Inte-
dt V 63

oration die Lösung. Hier erscheint erstmals das von Johann stammende und von den
Brüdern Bernoulli fortwährend verwendete neue Fachwort Integral.

103 BJS, S. 97.
104 AE YII 1690 » LD III, S. 238. Leibniz rühmt hier Jakobs Abhandlung i°i

über die Kurve konstanten Abstieges, aus der deutlich hervorgehe, dass der Autor
zum vollen Verständnis der LEiBNizschen Analysis vorgedrungen sei. Wie Lfibniz
das Problem der Kettenlinie angegriffen hat, geht aus den Mitteilungen an
Bobenhausen vom 20.VIII.1691 (EMG VII, S. 370/72) hervor: Ist der Ursprung O als tiefster
Punkt der eine Endpunkt der Kette und u der Abschnitt, den die Tangente des lau-

s

fenden Kurvenpunktes auf der X-Achse erzeugt, dann ist us Çxds. Daraus entnimmt
0

Leibniz nach kurzer Zwischenrechnung, dass s c — cp, also dy ~ —cpdp
dx -\/l + p-

y
diund x =3 û f — lJ Leibniz integriert durch Übergang zur logarithmischen

q V2(v + y2

Funktion und konstruiert unter Verwendung der logarithmischen Kurve.
los BJC I, S. 48/51. Die eingeschlagene Methode ist deutlicher zu ersehen aus der

Darstellung in den Vorlesungen über Integralrechnung, Vorlesung 12 und 36 BJC III,
y

S. 426/27 und 491/97. Auch Johann findet x c f — y Er konstruiert einerseits
q V2cy + iE

vermittels der Quadratrix £+/2cy + i/2 — c2, andererseits aus der Fläche eines Sektors
der Hyperbel % \/2cy + y2, schliesslich aus der Rektifikation der Parabel E2 — 8ay.

106 HO X, S. 95/98. Wie aus den Aufzeichnungen von Huygens in den HO IX,
S. 502/10 hervorgeht, sieht diese Lösung in moderner Umschrift so aus:

ds c c2 + s2
— c also s c-tfifr, p —
dtg t cos2 t c

s s
C cds /* sds ^ /— -

X / y / g « V c2 + S2 — c

>f V C2 + S'2
Q V °2 + s2

Das zur Darstellung von x verwendete Integral macht Huygens abhängig von der

Quadratur der Kurve E, c2 : \/c2 + s2

107 BMG V, S. 243/47 mit Hinweisen auf das erste Auftreten des Problems bei
Galilei (Discorsi e dimostrazioni matematiche, Leiden 1638, Ed. Naz. VIII, Florenz
1898, S. 186 + 309/10), wobei die Kettenlinie als Parabel angesehen wird. Weiterhin
wird erwähnt, dass J. Jungius (Geometria empirica, Rostock 1627) bereits durch
Rechnung und Versuch widerlegt habe, dass die Kettenlinie eine Parabel sei. Die
erste theoretische Begründung gab bekanntlich der 17-jährige Huygens im Herbst
1646 : HO XI, S. 36/41.

los ich erwähne LEiBNizens Aufsätze in den AE IX 1691 LMG V, S. 255/58,
in Nr. 13 des JS vom 31.III. 1692 LMG V, S. 258/63 und im Giornale de letterati

GdL) 1692 LMG V, S. 263/66.
109 BKC, S. 432/40, beruhend auf den Vorarbeiten in den Med., Art. 161, die jedoch

nicht ganz in die Abhandlung übergegangen sind. Andererseits fehlt in den Aufzeichnungen
die Rektifikation der Spirale.

no AE X 1684 LMG V, S. 220/26, deutsch von G. ICowalewski in OKI. Nr. 162,
Leipzig 1908, 2 1920, S. 3/11.

m Diese Bemerkung zeigt nur, dass Jakobs Untersuchungen von Barrow ihren
Ausgangspunkt genommen haben, nicht mehr. Sie lehrt uns überdies, dass Jakob keine
Ahnung von den wichtigen Vorarbeiten J. Gregorys in der Geometriae pars universalis,
Padua 1668 hatte, auf die sich Barrow stützen konnte. Dort hätte er übrigens auch
die parabolische Spirale vorgefunden {prop. 66, S. 120/23), deren Fläche von Gregory
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(nicht ganz richtig) im Anschluss an mündliche Mitteilungen seines Lehrers St. degli
Angeli (Hinweis auf S. 122) bestimmt worden war. Fast gleichzeitig hatte auch

R. Fr. Sluse im Mesolabum, Lüttich 2 1668 (noch nicht in der Erstausgabe von 1659),

cap. 7, S. 112/14 die Fläche der Spirale (und zwar richtig) gefunden. Diese beiden

Autoren hatten ganz allgemein Kurven der Form *= (-|-)? (p' q ganz' P°sitiv UIld

teilerfremd) untersucht.
y ———

h2 Sie wird auf j dy • y 1 4 ^"7 — zurückgeführt und dann mit der Qua-

b

dratur der Kurve z2 a2 *4
(a — y)2 -n yerpin(}ung gebracht. Bei dieser Gelegen-

c2

heit fand Jakob die rektifizierende Transformation vermöge x ~ r, dy rd<? wieder,
die schon J. Gregory mr prop. 64, S. 116/17 und öfter und im Anschluss hieran auch
Barrow 27 1670, Vorwort zur 12. Vorlesung, verwendet hatten. Bei dieser Gelegenheit
erwähnt Jakob den Prioritätstreit zwischen Th. Hobbes und G. P. de Roberval um
die Entdeckung der Bogengleichheit zwischen der ArchivEinsehen Spirale und der
gewöhnlichen Parabel (von Roberval 1643 vorgetragen), über den er sich aus AVallis 26,

De cycloide et cissoide orientiert hatte. „Solche Auseinandersetzungen empfinde er als

überflüssig; denn warum sollten nicht die nämlichen Entdeckungen selbständig an
verschiedenen Orten und zu verschiedenen Zeiten gemacht werden können ?"

ii3 BKC, S. 442/47 in ziemlich engem Anschluss an Med., Art. 162. Jakob erwähnt
zwar als Vorgänger Barrow (Lectiones geometricae 27, Vorlesung 11, § 26), weiss jedoch
nichts von J. Gregory, der in den Exercitationes geometricae, London 1668, S. 14/17
viel weiter vorangeschritten war.

Das ist zwar einschliesslich der Reihenentwicklung enthalten in der LEiBNizschen
Abhandlung AE IV 1691 LMG V, S. 130/32, aber wahrscheinlich war Jakobs MS.
beim Erscheinen dieses AF-Heftes bereits in Leipzig.

Iis BKC, S. 448/49. Ersichtlich wusste Jakob nichts von der ähnlichen Behandlung
bei A. Girard, Invention nouvelle en algèbre, Amsterdam 1629, fol. g 2rjh 3Ü In
Art. 194 der Med. gibt er dann (unter Rückbeziehung auf seine Lösung der Florentiner
Aufgabe in den AE VIII 1692) den heute üblichen Beweis. Dass dieser Beweis schon
in B. Cavalieri, Directorium generale uranometricum, Bologna 1632, cap. VIII, S. 315
steht, war ihm ebenfalls unbekannt.

ii6 BKC, S. 449/51. Mit den nämlichen Fragen befasste sich Johann in der 38./41.
Vorlesung über Integralrechnung BJC III, S. 497/507. In den Med. wird diese Frage
nicht behandelt.

M7 BKC, S. 451/52. Jakob gibt hier Ergebnisse aus Med., Art. 170 wieder. Dort

war er von dy — —X dx mit E, t dn ~ dE, zu dr, —
^a ^

• dA gekommen.yV —vi 2 4Ü2

/ t ' 2

Nun wird vermittels \ f • — — a2 transformiert, nach Potenzen von 1 : t entwickelt
a

und dann gliedweise integriert. Diese Überlegungen sind in etwas abgeänderter Form
in prop. 60 der 5. Reihendissertation vom 8.IV.1704 BKC, S. 970/71 übergegangen.

us In Art. 165 der Med. wird die Differentialgleichung dieser Kurve auf die Form
d2 x : dy dy?> : fdy3 (mit der Bogenlänge s als der unabhängigen Veränderlichen)

d2 x / du\3gebracht. Es ist also a? A e» A — In BJS, S. 99/101 wird über den mutmass-
ds2 ^ d s/

liehen Inhalt von 5 zwischen Jakob und Johann gewechselten Briefen aus dem ersten
Drittel des Jahres 1691 berichtet, die grösstenteils von der Velaria gehandelt haben
dürften. Damals befand sich Johann in Genf, wo er bei dem Arzt D. Leclerc wohnte
und unter anderem dem Ingenieur J. Chr. Fatio de Duillier Unterricht in
Differentialrechnung erteilte. Die Velaria wird von Johann erstmals in der 33. Vorlesung über
Integralrechnung BJC III, S. 510/12 behandelt. Dort und in Nr. 16 des JS vom
28.IV.92 — BJC I, S. 59/61 wird festgestellt, dass die Velaria mit der Kettenlinie
identisch ist. Hier wird Johann zum erstenmal öffentlich gegen den Bruder ausfällig
mit der Behauptung, dieser habe zwar das Velaria-Problem gestellt, jedoch nicht
gelöst. Jakob hat die ihm angetane Kränkung niemals verwunden, zumal er bis dahin
jede sich bietende Gelegenheit wahrgenommen hatte, um auf des Bruders Entdeckungen
hinzuweisen. Seit diesem Zeitpunkt finden sich in Jakobs Abhandlungen — zunächst
versteckt, später ganz offen — abschätzige Bemerkungen über Johanns fachliche
Leistungen. Die Übereinstimmung zwischen der Velaria und der Kettenlinie steht auch
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in den Med., Art. 188 und ist von hier aus andeutungsweise in AE X 1692 BKC,
S. 484/90 übergegangen. Dieser Aufsatz wurde am 19.III.1692 (BKC, S. 481) nach
Leipzig gesandt.

119 Von diesem Gegenstand handeln auch die Art. 164 und 189 der Med. Johann
beschäftigt sich mit ihm in der 34. und 35. Vorlesung über Integralrechnung BJC III,
S. 512/16. Beide stellen fest, dass die Lintearia mit der Elastica identisch ist. An der
Darstellung Johanns hat Jakob später in den AE XII 1695 BKC, S. 655 deutlich
Kritik geübt. Hierzu ygl. auch BJS, S. 111, Anm. 13.

12° Leibniz äussert sich in den Bemerkungen zum Problem der Kettenlinie
AE IX 1691 EMG X, 257/58 zu Jakobs unterstellter Abhängigkeit von Barrow
mit einem Bericht über die Pariser Studien, der sich auf Grund der nachgelassenen
Aufzeichnungen bis ins kleinste nachprüfen und als richtig erkennen lässt. Vgl. hierzu
Hofmann 92. yor allem betont Leibniz, dass ihm die wichtigsten Anregungen aus
Pascal und Gregorius a St. Vincentio zugeflossen sind. Als er Gregorys
Werke m, iiß durchstudierte, hatte er die Transmutationsmethode, vermittels
deren er alle damals bekannten Quadraturen auf einheitlicher Grundlage erweisen und
zu interessanten Neuentdeckungen fortschreiten konnte, bereits erfunden. Barrows
Lectiones geometricae -7 hat er sogar erst nach der Erfindung des Calculus näher
durchstudiert und nun nicht mehr Neues daraus entnehmen können. Die genauere Darlegung,
die Leibniz über seine ersten Studien in Paris an Jakob gehen lassen wollte (PS zum
Brief vom April 1703 LMG III, S. 71/73), wurde leider nicht abgesandt; übrigens
hätte sie an Jakobs damals bereits verhärteter Einstellung schwerlich noch etwas
ändern können. Dessen ganzes Verhalten zeigt, dass er die in manchen grundsätzlichen
mathematischen Fachfragen deutlich spürbare geistige Überlegenheit LEiBNizens als
unerträgliche Anmassung empfand. Dass das Schwergewicht der LEiBNizschen
Fachleistung in der vereinheitlichenden calculmässigen Zusammenfassung der damals
zugänglichen Infinitesimalprozesse liegt, für die es überhaupt kein Vorbild gab, scheint
Jakob ebensowenig wie den übrigen mathematischen Experten der damaligen Zeit
aufgegangen zu sein. Jakob steigerte sich immer mehr in ein gänzlich unbegründetes
Misstrauen gegen Leibniz und Mencke (den Herausgeber der AE) hinein und glaubte
allen Ernstes, es sei beider Absicht, seine eigene Leistung zu verkleinern. Dazu tritt,
dass er den Versuch LEiBNizens, in den heftigen Auseinandersetzungen zwischen ihm
und dem Bruder zu vermitteln, ungerechtfertigterweise als Parteinahme für Johann
deutete. Deshalb stellte er sich in der Auseinandersetzung zwischen Leibniz und Fatio
seit 1699 hinter den Kulissen gegen Leibniz, wie aus den noch ungedruckten Briefen
an Fatio aus dieser Zeit deutlich zu erkennen ist. Leider war der fachliche Scharfblick,
der ihm in so vielen andern Fachfragen eigen war, in dieser Angelegenheit durch Über-
empfindlichkeit allzusehr getrübt.

121 In der Histoire des ouvrages des sçavans HOS) II 1693 HO X, S. 408/13.
Dass Newton die Lösung des Problems schon im Brief an Oldenburg für Leibniz
vom 3.XI.1676 LMG I, S. 145 gekennzeichnet hatte, war damals noch nicht an die
Öffentlichkeit gedrungen.

122 ygi. BJS, S. 114. Der Inhalt des Art. 169 der Med. ist übergegangen in prop. 51

der 4. Reihendissertation vom 26.XII.1698 BKC, S. 860/63.
123 Art. 173 der Med., übergegangen in prop. 42 der 3. Reihendissertation vom

24.XI.1696 BKC, S. 355/56. Als Vorlage wird die WALLissche Mechanik 26, s. 550
genannt, woselbst das Vorgehen N. Merc a tors 73 verbessert dargelegt wird.

12t Art. 174 der Med., übergegangen in prop. 53 der 5. Reihendissertation vom
8.IV. 1704 BKC, S. 958/60. Dieses Stück wurde von Jakob am 14.III.1696 als
Beitrag zu dem geplanten, jedoch nicht ausgeführten umfangreichen LEiBNizschen
Werk über die Scientia infiniti nach Hannover gesandt (LMG III, S. 35/36). Ersichtlich

wusste Jakob damals noch nicht, dass sich die allgemeine binomische Reihe bereits
unter den Auszügen befand, die Wallis aus den beiden grossen Briefen Newtons für
Leibniz vom Jahr 1676 in die Algebra, Oxford 1685 Opera II, Oxford 1693
übernommen hatte. Inzwischen war aber auch Band III, Oxford 1699 der WALLisschen
Opera erschienen, worin auf S. 634/45 der volle Wortlaut des NEWTONSchen Briefes 121

abgedruckt ist. Aus diesem Text geht hervor, dass Newton anfangs genau so wie
Jakob vorgegangen ist, um die binomische Reihe durch Interpolation aus den Ergebnissen

für ganze positive Exponenten in der WALLisschen Arithmetica infinitorum 26,

prop. 172 ff. herzustellen. Zum|Gegenstand vgl. auch J. E. Hofmann, Abh. Nr. 2 der
Preuss. Ak. d. Wiss. für 1943, Math.- naturw. Klasse, Berlin 1943, S. 100/03.

125 Art. 175 der Med., übergegangen in prop. 56/57 der 5. Reihendissertation von
8.IV.1704 BKC, S. 962/64. Auch dieses Stück lag als Beitrag zur LEiBNizschen
Scientia infiniti124 dem Brief vom 14.III.1696 bei: LMG III, S. 36/37.
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126 Art. 176 der Med. Jakob setzt zunächst a 2c und Vc2 + y2 z. Nun hat

cr z2dz_ Jz zu integrieren. Da hierbei auch ein loga-
-\/z2— C2 I 2z 2-4z3 J

rithmisches Integral auftritt, ist sein Ansatz praktisch wertlos. Ahnlich, sagt er, könne

man auch bei der Darstellung der Kettenlinie durch den Bruder vorgehen, indem man

dy LAS entwickle. Er bezieht sich hier auf Johanns Abhandlung AE VI 1691los,
/\/ — 0.2

die er selbst nach Leipzig gesandt hatte, und zwar schon gegen Ende 1690. — Der
hier angeführte Art. 176 der Med. ist im Frühjahr 1691 niedergeschrieben.

127 Art. 177 der Med. Vgl. dazu die Abhandlung AE V 1690 auf die im Text
angespielt wird. E. Hallet führt den nämlichen Gedanken in ähnlicher Unvollkom-
menheit durch in den PT 19, Nr. 216 für III/V 1695, S. 58/67. Vgl. ferner prop. 59 der
5. Reihendissertation vom 8.IV.1704 (BKC, S. 967/69).

128 Art. 178 der Med. : Das Ganze ist in modifizierter Form in die Akademie-
Abhandlung von 1702 (BKC, S. 922/28) übergegangen. Schon in Art. 159 der Med.
hatte Jakob im Anschluss an die vorangegangenen Vielecksberechnungen 61 bemerkt,
dass sich die Umfange un und die Flächen fn der regelmässigen Vielecke im Kreis des

Halbmessers a so darstellen lassen:

4a V 2 /4 «= 2«2;

u8 m Sa V2 — VT, /8 4a2V/2 —V^";

u 16 « 16 a V2 -- V2 r \/T, /16 • • • ; usw.

U 4-200 a V2 — \/T (sic!), f
Ähnliche Gedanken liegen den Entwicklungen in Viètes Varia responsa so, Cap. 18

Opera, S. 400 zu Grunde, die zur Herstellung des unendlichen Wurzelproduktes für
4
— geführt haben.
TT

129 LMG V, S. 128/32, insbes. S. 129.
130 BJS, S. 101.
131 BJS, S._ 105.
*32 BMG I, S. 115/16. Vgl. Hofmann 9% s. 154. Die in BJS, S. 105 gegebene

Wiederherstellung des Verfahrens von Jakob entspricht genau dem LEiBNizschen
Vorgehen. Übrigens kennt auch Jakob diese rationalisierende Transformation. Er bedient
sich ihrer in prop. 45 der 3. Reihendissertation vom 24.XI.1696 BKC, S. 760/61
zur Kreisquadratur.

133 Art. 179 der Med. Zum Gegenstand vgl. J. E. Hofmann in Centaurus 3, 1954,
S. 279/95. Aus der mir damals noch unzugänglichen Bemerkung L'Hospitals an Johann
vom 16.V.1693 (BJS, S. 169) geht im Gegensatz zu meiner Annahme (S. 287) hervor,
dass L'Hospital seine Lösung unabhängig von Johann gefunden hat. Dieser
hat den Gegenstand erst nachher mit L'Hospital durchgesprochen (4. Vorlesung
über Integralrechnung BJC III, S. 403/05). Übrigens geht aus dem Unvermögen
Jakobs erneut die Unkenntnis der Varia opera »2 Fermats hervor; denn dort war
die Fläche des Blattes bereits in geschlossener Form angegeben worden.

13-t Art. 166 der Med. Hierzu vgl. auch BJS, S. ill, Anmerkung 11.
135 AE I 1692 BJC I, S. 52/59. Nach BJS, S. 106 war der erste Teil des Aufsatzes

bereits gegen Ende 1690 abgeschlossen und sollte durch Jakobs Vermittlung nach
Leipzig gesandt werden. Dieser machte jedoch zusätzliche Bemerkungen über eine
vereinfachte Evolutenbestimmung (BJC I, S. 57/59), die von Johann in den Aufsatz
eingefügt wurden. Deshalb ging die Sendung erst im Spätherbst 1691 aus Basel ab.
Die Abhandlung Johanns war die berichtigende Antwort auf mehrere ohne Begründung
mitgeteilte und zum Teil irrige Ergebnisse, die E. W. v. Tschirnhaus in den AE XI 1682
und I 1687 veröffentlicht hatte. Schon in einer dritten Mitteilung AE II 1690 bezieht
sich Tschirnhaus auf Einwände Johanns, über die er wohl durch seinen Leipziger
Freund O. Mencke unterrichtet worden war. Johann hat die Kurve auch in der
26-/28. Vorlesung über Integralrechnung BJC III, S. 464/71 eingehend behandelt.

i3G LEiBNizens Aufsatz erschien in den AE IV 1692 LMG V, S. 266/69. In den
AE VII 1694 LMGV, S. 301/06 ist sein Gedankengang genauer ausgeführt und wird
an einem hübschen Beispiel erläutert. Jakob stellt dann in den AE X 1694 BKC,
S. 618/22 fest, dass seine Regel (von der LEiBNizens nur unterschieden durch die
Anwendung der HuDDESChen Tangentenregel anstelle jener der Differentialrechnung)
zum nämlichen Ergebnis führt. Bei dieser Gelegenheit gibt er auch eine infinitesimal-
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geometrische Konstruktion, die er in Art. 268 der Med. zur Bestimmung des
Krümmungsmittelpunktes einer gegebenen Kurve verwendet. In den Anmerkungen zur Geometria < A
Note 7 BKC, S. 680/84 erscheint die Einhüllende der Parabelschar y2 cx — c2,
ferner die Einhüllende der Wurfparabeln fester Anfangsgeschwindigkeit im
Ausgangspunkt 134; beidemale wird recht einfach auf algebraischem Wege (aus der Doppelwurzel)

gerechnet.
137 Über die Einzelheiten siehe BJS, S. 136/37.
138 Die Vorlesungen über Differentialrechnung 63 wurden später von L'Hospital

als Unterlage für die vielgelesene Analyse des infiniment petits verwendet. Hier die
einzelnen Auflagen: Paris 1696, 21715, 31716, U768 (f Titelauflage 1769), ed.
A. H. Paulian ; 51781, ed. L. Lefèvre-Gineau ; engl. v. E. Stone, London 1730,
lat. v. K. Scherffer, Wien 1764. Das lange als verloren angesehene MS. Johanns
wurde in einer späteren Abschrift 1920 von P. Schafheitlin in der Basler Universitätsbibliothek

wiederaufgefunden und im Original in den Verhandlungen der naturforschenden
Gesellschaft in Basel 34, 1922, in deutscher Übersetzung in OKI. Nr. 211, Leipzig

1924 herausgegeben. Über die Abhängigkeit der Analyse von Johanns Unterweisungsheften
im einzelnen vgl. BJS, S. 149/55; über die Integralrechnung vgl. 101.

139 Ygi. BJS, S. 136. Die Formel ist in Jakobs Aufsatz in den AE I 1691 BKC,
S. 436 noch nicht enthalten. Aus den Hinweisen Jakobs in den AE VI 1693 BKC,
S. 559 und VI 1694 - BKC, S. 577 geht hervor, dass die beiden Brüder unabhängig
von einander im Herbst 1691 zu dieser Formel vorgestossen waren. Die früheste
Anwendung bei Jakob findet sich in Art. 181 der Med., wo der Ausdruck für den
Krümmungsradius der logarithmischen Kurve, dessen Minimum und anschliessend die
Kurvenevolute bestimmt werden.

140 Art. 185 der Med., erwähnt in den AE V 1692 - BKC, S. 492/93.
141 LMG VII, S. 329/31. Auf diese Abhandlung bezieht sich Jakob schon im

Schlusssatz der Abhandlung in den AE I 1691 BKC, S. 442. In den Zusätzen zu
Johanns Abhandlung über die Catacaustica des Kreises 135, enthalten in den AE III
1692, hatte sich Jakob mit der irrigen Ansicht LEiBNizens (in den AE VI 1686 — LMG
VII, S. 326/29) auseinandergesetzt, wonach der Krümmungskreis die Kurve in 4
zusammenfallenden Punkten treffen sollte, und den Fehler berichtigt (BKC, S. 480). Leibniz
gab seinen Irrtum in den AE IX 1692 - LMG V, S. 279/85 LMG VII, S. 331/37
freimütig zu. Gegen Ende der Abhandlung behauptete Leibniz, die Differential-

/ dx \2 d2y
gleichung \ ^7 œ a führe auf die logarithmische Kurve, musste sich jedoch von

L'Hospital sagen lassen (Brief an Leibniz vom 24.11.1693 LMG II, S. 226. Das
Ergebnis ist auch eingeflochten in Jakobs Aufsatz in den AE VI 1693 BKC, S. 570/71),
dass dies nicht richtig sei ; wohl aber lasse sich die Lösung vermittels der logarithmischen
Kurve konstruieren.

142 Art. 185 der Med., übergegangen in die AE V 1692 BKC, S. 494/97.
143 Art. 186 der Med., übergegangen in die AE V 1692 BKC, S. 497/502. Zu

ähnlichen Ergebnissen war auch Johann vorgedrungen: Vorlesungen 24 und 32 über
Integralrechnung =* BJC III, S. 459/60 + 481.

144 Damit drückt Jakob aus, dass diese Spirale ihre eigene Evolute ist : AE V 1692
BKC, S. 502.
145 Dieser Wunsch wurde zwar erfüllt, jedoch nur unvollkommen; in der Hand

des Steinmetzen wurde aus der logarithmischen Spirale eine Archime Dische.
146 BJS, S. 119.
147 Art. 192 der Med.
148 BKC, S. 503/10. Damals wusste Jakob noch nichts von des Bruders kränkender

Bemerkung im JS vom 28.IV.1692 n8. Deshalb hat er sich wiederum bemüht, Johanns
Verdienste kund zu machen. Johanns erste Aufzeichnungen zur Catacaustica der
gemeinen Zykloide kennen wir nicht, wohl aber die näheren Ausführungen in der 31.
und 32. Vorlesung über Integralrechnung BJC III, S. 478/81.

149 ae VI 1693 ** BKC, S. 549/59. Es handelt sich um einen in der Hauptsache
aus Art. 195 der Med. entnommenen Bericht. Der Anfang der Aufzeichnung ging am
14.111.1696 (LMG III, S. 41/42) als Beitrag zur geplanten Scientia infini ti an
LeibNiz. Ein veränderter Auszug aus Art. 195 steht im Nachlass, Stück 17 (BKC,
S. 1077/80). Johann bemächtigte sich dieses Gegenstandes in der 56./58. Vorlesung
über Integralrechnung BJC III, S. 546/58.

150 BKC, S. 577/78. Jakob schreibt die Formel so (den Krümmungsradius bezeichnet
er fast durchwegs mit z) : dxds : ddy z dyds : ddx. Er gibt einen infinitesimalen
Beweis auf rein geometrischer Grundlage; über den Vorzeichenunterschied ist er sich
deshalb noch nicht im klaren. Anschliessend folgen dann verschiedene Formeln für
den Krümmungsradius bei Darstellung einer Kurve in Polarkoordinaten, wie wir heute



125

sagen würden. Jakob verwendet jedoch nicht r, cp, sondern r und t — acp als
Bestimmungsstücke.

lboa, Noch ohne die Bezeichnung theorema aureum findet sich der Satz in Art. 187

der Med. Hier bedient sich Jakob des Ansatzes jg, -j, um Differentialgleichungen

2. Ordnung auf solche erster Ordnung zurückzuführen. Er setzt im G-runde

dx t dy a d2x _
a2 dt

__
a2 dt dx

Ts Y/a2 + t2
' T ~ y a-2 + t2

' äs2 _
yTTT3 ds ~ t(a2 + 12)

*

ds ds

Die Wirksamkeit dieses Verfahrens wird an drei Beispielen auseinandergesetzt. Aus

a Tf: (d}lT entnimmt Jakob dx — — ^ also dy ~
a<^X

— (Identität der
ds2 \ds) y a2 + t2 y«® + a2

dy d'2x xdx\/a2 + £'-3

Kettenlinie mit der Velaria). Von a2 ^ px x : -p- gellt er

a3tch x2 a3 axAcU — x* _ x2 dx
zu xdx — also —- t dy — — 1

y a2 +19-3 2 Va2 + r2 ^ V4a4 —x4
über (Elastica). Iiier kommt er nur durch Kompensation der beiden Vorzeichenfehler

zu Erfolg. Der für p verwendete Ausdruck rT-
: ^ in der Originalschreibweise

ds ds2 ddx

ist das theorema aureum. Im dritten Beispiel y — 1 bildet Jakob aus a
dx2 dx

durch Differentiieren t — + — • — =* t), d.h. in seiner Schreibweise td2y — dydt,
dx2 dx dx

also — — a2 S Ausserdem erwähnt Jakob den Ansatz — — Sein Verfahren
y O dx a

ist mit der Einführung von p y' als Parameter gleichwertig. Der erste gedruckte
Hinweis auf ein neues Kunstmittel zur Behandlung von Krümmungsfragen befindet
sich in den AE VI 1693 (BKC, S. 559).

151 s. 433/37. Tschirnhaus hat hier Halbverstandenes aus Eeibnizcus Pariser
Studien wiedergegeben, die im Anschluss an Gregorys Vera quadratura 100 entstanden
waren und die Frage entscheiden sollten, ob Gregorys vorgeblicher Beweis für die
Unmöglichkeit der „analytischen" Kreisquadratur durch zusätzliche Existenztheoreme
schlüssig gemacht werden könne oder nicht. Zum Gegenstand vgl. J. E. Hofmann und
H. Wie leitner, Archiv für Gesch. d. Math., der Naturw. u. der Technik 13, Leipzig
1931, S. 2.77/92.

152 AE V 1684 LMG V, S. 123/26 nebst Ergänzung in den AE XII 1684, sogleich
verbessert in LMG V, S. 126/27. Leibniz kam auf die Angelegenheit nochmals in den
AE VI 1686 LMG V, S. 226/33 zurück, wo er sich unter anderem auch gegen die
Unterstellung von J. Craig in dessen Methodus figurarum lineis rectis et curvis com-
prehensarum quadraturas determinandi, London 1685 verwahrte, er sei der Autor des
(nur mit D. T. signierten) Aufsatzes 151 gewesen. Bei dieser Gelegenheit berichtet
übrigens Leibniz ziemlich ausführlich über seine Pariser Studien (LMG V, S. 230/32)
und über seine Stellung zu Barrow. Vgl. hierzu 120. Weiterhin berichtigt er einen
nebensächlichen Rechenfehler im Aufsatz AE V 1684.

153 AE IX 1687, S. 524/27. Tschirnhaus hat diesen hübschen Satz womöglich
nicht selbst gefunden, sondern aus einer Jugendschrift des A. de Lionne entnommen,
die von V. Léotaud als Beigabe zum Examen circuli quadraturae (Lyon 1654)
herausgegeben worden war. Vgl. hierzu H. Wieleitner, Zur Geschichte der quadrierbaren
Kreismonde, ed. J. E. Hofmann, Wissensch. Beilage zum Jahresbericht des Neuen
Realgymnasiums München für 1933/34, S. 42/44. Auf die neuerliche Behauptung
TsciiiRNHAusens ist Leibniz nicht mehr ausführlich eingegangen ; er spielt nur in
kurzen Worten in den AE IX 1691 LMG V, S. 256 auf die Angelegenheit an.

154 London 1687 und öfter. Ich beziehe mich auf die Wiedergabe in den Opera
quae extant omnia, ed. S. Horsley, London 1779/85, Bd. II, 1779, S. 126.

155 AE I 1691 BKC, S. 440. In den Aufzeichnungen Med. Art. 161 fehlt diese
Behauptung.

156 Der Beweisgedanke von Jakob sieht so aus: Wenn das Oval von einer
algebraischen Kurve gebildet wird, dann gibt es eine algebraische Beziehung zwischen cp

und tg cp. Sie muss zu tranzendenten Werten von cp führen, weil sie unendlich viele
Lösungen aufweist.

157 LMG V, S. 256. Bei dieser Gelegenheit bezieht sich Leibniz auf das Urteil
von Huygens, der im Brief vom 26.III.1691 (HO X, S. 57) als Gegenbeispiel gegen
Newton die „ovale" Fläche zwischen zwei symmetrisch gelegenen Parabeln anführt.
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158 Beilage zum Brief ail Leibniz vom 14.III. 1696 — LMG III, S. 39/40. Hier hat
Jakob seinem Entwurf (Med., Art. 190) noch erläuternde Zusätze beigefügt. Das
Beispiel erscheint übrigens auch im Brief LEiBNizens an Huygens vom 19.11.1692
(HO X, S. 262), der den Sachverhalt sofort durchschaute (ebenda), ferner im Brief
LEiBNizens an Bodenhausen vom 5.X.1692 (LMG VII, S. 374/75). Dort wird auf
die LiONNESche Quadratur 153 verwiesen, jedoch mit der höflichen Bemerkung, das
könne Tschirnhaus leicht auch selbständig gefunden haben. Schon früher hatte
L'Hospital durch Johann eine Abschrift des Art. 190 erhalten (erwähnt im Brief
L'Hospitals an Johann vom 2.1.1693 m BJS, S. 162). L'Hospital hat es nicht für
nötig befunden, auf dieses Manuskript Jakobs hinzuweisen, jedoch an Leibniz am
15.VI.1693 (LMG II, S. 242/43) eine hübsche Erweiterung gehen lassen. Sie ist in den
H MP vom 29.1.1701 (Druck 1704) näher ausgeführt.

159 BKC, S. 650/51.
160 LMG V, S. 330.
161 Dass die gemeinen Epizykloiden rektifizierbar sind, war bereits allgemein

bekannt.
162 BKC, S. 736.
163 BKC, S. 758.
164 ich nenne zunächst Med., Art. 180 über den Lichtweg in Luft verschiedener

Dichte, der durch einige Ausführungen am Ende von .Art. 202 (Behandlung von
Differentialgleichungen ohne Kurvenquadratur) ergänzt wird. Das hier Dargelegte ist fast
unverändert übergegangen in Stück 14 des Nachlasses (BKC, S. 1063/67). Art. 182
handelt im Anschluss an den Traité de la lumière, Leiden 1690 fssa HO XIX) vom
Verlauf der HuYGENsschen Wellen in Luft verschiedener Dichte. Dann folgt in Art. 206
die bereits erwähnte barometrische Höhenformel 65 mit eingehender Tabelle Nachlass-
Stück 15 (BKC, S. 1067/74). Im Zusammenhang mit dem Brachystochronenproblem
spielt Jakob auf die Aufzeichnungen in den Artikeln 180, 182 und 202 an. Unklar
bleibt, inwieweit Jakob von Johanns Bemerkungen über den Lichtweg in inhomogenen

Medien beeinflusst sein könnte (vgl. dessen Briefe an Jakob vom Ende April und
22.V.1691 BJS, S. 101/02). Dessen eigener Ansatz steht in der 46. Vorlesung über
Integralrechnung (BJC III, S. 516/18) und findet sich wieder in der Lösung des Bra-
chystochronenproblems (AE V 1697 BJC I, S. 190/91).

165 Diese Untersuchungen sind veranlasst durch die Théorie de la manœuvre des
vaisseaux (Paris 1689) des Marine-Ingenieurs B. Renau, auf deren Unzulänglichkeit
Jakob in den AE V 1692 (BKC, S. 484/89) hinwies. Was er dort im Zusammenhang
mit den Studien über die Velaria n8 andeutet, ist aus Art. 182 der Med. entnommen.
Jakob bemerkte jedoch alsbald, dass er sich geirrt hatte (Eintrag in Art. 188),
ausdrücklich zugegeben in den AE XII 1695 BKC, S. 656. Ein etwas anderer Ansatz
findet sich in Art. 196 (gekürzt im Nachlass, Stück 18 =« BKC, S. 1080/82), weiteres
in den AE VI 1693 (BKC, S. 562/63). Etwas später hat sich auch Huygens kritisch
mit Renau auseinandergesetzt (Bibliothèque universelle et historique [= BUH] IX 1693

HO X, S. 525/31). Die Folge war eine lange Kontroverse der Jahre 1694/95 zwischen
Huygens und Renau (HO X). Jakob war jedoch auch mit der Auffassung von Huygens

nicht ganz zufrieden (AE XII 1695 BKC, S. 658/59). Leibniz nahm nur kurz
gegen Renau Stellung (AE III 1696 LMG V, S. 330). Jetzt wurde Jakob etwas
ausführlicher (AE VII 1696 BKC, S. 737/38). Hier stützte er sich auf Art. 234 der
Med. (Nachlass, Stück 13 BKC, S. 1057/61). Etwas später entstand Art. 255 (Nachlass,

Stück 13 BKC, S. 1061/62). Auch diese Versuche können nicht voll befriedigen.
Eine abschliessende Darstellung fand der Gegenstand in Johanns Essai d'une nouvelle
théorie de la manœuvre des vaisseaux, Basel 1714 BJC III, S. 1/96). Dort ist (BJC III,
S. 97/167) auch die weitere Diskussion zwischen Renau und Johann abgedruckt.
Schliesslich sei auf Art. 279 der Med. (Nachlass Stück 27 *= BKC, S. 1109/15)
hingewiesen, der von der Bewegung eines Bootes durch Anschlagen eines Pendels im Boot
handelt.

166 Diese Untersuchungen setzen mit Med. Art. 196 ein, auf die sich die zum Teil
weiterführenden Mitteilungen in den AE VI 1693 BKC, S. 563/70 beziehen. Jakob
nimmt den Widerstand eines Profils, gegen das die Flüssigkeit von unten her laminar

b \ b

strömt, proportional zu j dx: j dx an. Der Gegenstand wird nochmals in den

a a

AE XII 1695 (BKC, S. 659) und in den Artikeln 234 und 255 (Nachlass,. Stück
13 BKC, S. 1057/61) berührt. Vgl. auch AE VII 1696 (BKC, S. 738).

167 Auf diesen Gegenstand wird — ausser der Ersterwähnung in den AE VI 1691 n7,
die Leibniz zu einem interessierten Hinweis in den AE IX 1691 (LMG V, S. 257)
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veranlasst hatte — nochmals vorankündigend in den AE V 1692 (BKC, S. 490) und
VI 1693 (BKC, S. 549) hingewiesen, ehe sich Jakob zur endgültigen Veröffentlichung
in den AE VI 1694 (BKC, S. 580/600) entschliesst. Allerdings sieht er sich in den
AE XII 1695 (BKC, S. 656) zur Zurücknahme einiger über die Lintearia aufgestellten
Behauptungen (BKC, S. 598/99) veranlasst. In Art. 187 i59® der Med. gibt Jakob eine
verbesserte Herleitung der speziellen Elastica-Gleichung, stellt in Art. 189 119 die
Identität der Elastica mit der Lintearia fest (vgl. den Hinweis in den AE VI 1694
BKC, S. 597) und untersucht in Art. 198 die Deformation einer rechteckigen Haut bei
Längsdehnung und gleichzeitiger Querkontraktion.

I68 Jakob kann das noch nicht direkt hinschreiben. Er bedient sich vielmehr einer
für uns überflüssigen Hilfsgrösse t, die er vermöge ady tds einführt. Die Darstellung
in Art. 205 ist in ihrer Kürze und Übersichtlichkeit viel leichter lesbar als die ausführlichere

in den AE VI 1694 (BKC, S. 580/81).
!" BKC, S. 580/81. Vorarbeit: Einschaltung nach Art. 207 bezw. 215 der Med.

In Art. 207 wird die LEiBNizsche Regel für das Zusammensetzen von Einzelkräften
nach dem Parallelogrammsatz bewiesen, die in Nr. 35 des JS vom 7.IX.1693 (LMG VI,
S. 231/33) enthalten ist. In Art. 208 behandelt Jakob eine sehr einfache algebraische
Aufgabe aus der Disputation des Mediziners S. Battier vom 30.XI.1693. Darnach
dürfte der Zusatz zu Art. 207 im Spätherbst 1693 entstanden sein.

170 Art. 217 der Med., übergegangen in prop. 58 der 5. Reihendissertation vom
8.IV.1704 (BKC, S. 964/66). In den AE VI 1694 (BKC, S. 596) wird nur das Ergebnis
mitgeteilt, nicht die Methode.

m Art. 216 (Nachlass, Stück 20 BKC, S. 1084/86) wird erwähnt in den AE VI
1694 (BKC, S. 600). Jakob geht aus von dem Ansatz a2 ps — (sie) s~ :

ds ds2

Er bildet a~ d ^ — sdx — adt (Definition der Hilfsgrösse t) und integriert so :

a ~ a (sic) — t. Nun ist a ~ ** \/2 at —t2, ferner ^ ^ {: V^af — Fds ds ds'2 a dx v

usw. Der Kürze halber ist die Ausdrucksweise etwas modernisiert.
17 2 Die Aufgabe stammt von V. Viviant, dem letzten Schüler Galileis, der sich

unter dem Pseudonym A. D. Pio Lisci Pusillo Geometra (statt A[utore] postremo Galilei
diseipulo) verbarg. Sie befindet sich auf einem vom 4.IV.1692 datierten Flugblatt.
Schon am I.V.1692 gab Viviani seine eigene Auflösung, die unter dem Titel Formazione
s misure di tutti i cieli zu Florenz gedruckt wurde. Sie ist wiederabgedruckt in G. Grandi,
Geometrica demonstratio Vivianorum problematum, Florenz 1699. Lösungen gaben
L'Hospital (derzeit verschollen, sichergestellt aus der Mitteilung an IIuygens vom
23.XI.1692 HO X, S. 346), ferner Leibniz (AE VI 1692 nebst berichtigender Ergänzung

in den AE I 1693, beides vereinigt in LMG V, S. 274/78), dann Jakob (AE VIII
1692 =3 BKC, S. 512/15), Wallis (Brief vom 12.IX. 1692, abgedruckt in den PT 17,
Nr. 197 vom I 1693, S. 584/92, übergegangen in Cap. 192 der Algebra Opera II,
1693), Johann (nicht veröffentlicht, erwiesen aus Jakobs Bemerkung in den AE VI
1693 BKC, S. 571/72 und dem Brief Johanns an L'Hospital vom 22.VII.1694
BJS, S. 232), David Gregory (PT 19, Nr. 207 für I 1695, S. 25/29) und G. Grandi
(Flores geometrici..., Florenz 1728). Über den Gegenstand vgl. die Monographie von
L. Tenca im Ist. Lombardo Sc. Lett., Rendiconti, CI. sc. mat. natur. 86, 1953, S. 113/26.
Auf die zahlreichen Erwähnungen in den Briefen der Zeitgenossen kann nur mehr
streifend eingegangen werden. Ich verweise etwa auf die unter Problème de Viviani
angeführten Stellen in HO X und auf LMG VII, S. 364/69. — Die Med. enthalten keine
Aufzeichnungen Jakobs über seine Lösung des Florentiner Problems.

173 Diese Lösung stimmt im wesentlichen überein mit jener Vivianis172. Das
wurde von IIuygens in einer Aufzeichnung vom 27.X.1692 (HO X, S. 336/37)
festgestellt und später auch von Jakob erwiesen (AE X 1696 » BKC, S. 744). Huygens
bemerkte ausserdem (a.a.O.S. 337/38), dass die BERNouLLische Kurve mit einer Ellipse
bogengleich ist. Dies folgt für uns aus der Parameterform x a sin cp, y a cos2 cp,

z a cos cp sin cp ; denn ds2 a2 (1 -f- cos2 cp) dep2 (a sin cp dep)2 + (a \/2 cos cp dcp)2.
17-i Ausgangspunkt ist die Bemerkung Johanns (AE VI 1696 BJC I, S. 160/61),

das Oberflächenstück eines geraden Kreiskegels verhalte sich zu seiner Projektion auf
den Grundkreis wie die Seitenlinie zum Grundkreisradius. Man könne auch das
Oberflächenstück auf einer beliebigen Drehfläche kennzeichnen, und bei den Drehflächen
2. Ordnung sei das Problem besonders einfach. Jakob teilt alsbald (AE X 1696 — BKC
S. 739/44) unter Bezugnahme auf diese Stelle mit, er habe folgendes gefunden- Istdie Meridiankurve r r (z) und im Meridianschnitt eine weitere Kurve p p (z)
gegeben und werden auf dem Breitenkreis in der Höhe z (Halbmesser r) die Bögen a
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so vom Ausgangsmeridian aus abgegrenzt, class — — (s Bogenlänge auf dem
p ds

Meridian), dann umgrenzen die Endpunkte P der Bögen a eine Oberfläche, die gleich

I"? dz ist. Dieser Sachverhalt ergibt sich für uns sofort aus der Beziehung O «= (j)rdcpds

Jods Eine weitere Komplanation beruht auf dem nämlichen Grundgedanken.

Ferner fügt Jakob zur Meridiankurve r — r (z) noch die Kurven n (z)
d" rhinzu, wobei n die Kurvennormale ist und aus — m — ermittelt werden kann. Dann
ds n

bestimmt .Jakob die veränderliche Strecke Fjeweils so, dass r- — 2 Jndz ist. Die

Projektion des auf dem Drehkörper abgegrenzten Oberflächenstücks wird von der Kurve
r s» r umschlossen. Diese wird punktweise auf die Kurve r r bezogen. Dann ist

0 j/, d y rds *** Jdy • Jndz ~ Jr2 • d y •

Also ist das Flächenstück innerhalb der Kurve r r(y) ebensogross wie das Ober-
flächenstück auf dem Drehkörper senkrecht über dem von der Kurver r umschlossenen

Flächenstück. Auch hier folgt noch eine weitere Komplanation, die auf dem
nämlichen Grundgedanken beruht.

Johann gibt später (AE III 1697 BJC I, S. 174/75) ergänzende Sätze über
Oberflächen und Kauminhalte von Körpern, die durch Drehen um drei sich schneidende
Achsen entstehen, wenn die eine den Winkel zwischen den beiden andern halbiert.

im BKC, S. 517 41. Die Vorarbeiten stehen in den Med., Art. 144 88, 147,49 m
und 153 55 99.

~jz n x
176 Prop. 18: Z ; prop. 19 : S ; prop. 20: S.

1 1 n
iff Schon Cramer hat in den zugehörigen Anmerkungen (BKC, S. 53 1/32) auf

die Unzulässigkeit dieser Schlussweise hingewiesen. Kowalewski i (S. 125 28) gibt
eine, moderne Analyse des Sachverhaltes.

im Jakob denkt hier an die logarithmische Spirale, von deren Bogenlänge bis
zum unendlich oft umkreisten Pol schon in den AK VI 1691 (BKC, S. 443) die Rede
war. Die Rektifikation der logarithmischen Spirale war schon Descartes bekannt 48.

Dass auch Torricelli zum nämlichen Ergebnis gekommen war (Opere, ed. G. Loria-
G. Vassuba. Faenza 1919, 3 Bde., zitiert als TO) und darüber seit 1645 in vertraulichen
Briefen (TO III, S. 280. 36 1 62, 364, 391 92. 470, 477) und in der Übersicht über seine
Studien aus der zweiten Hälfte 1645 (TO III, S. 21 24) berichtet und eine interessante
Abhandlung von 1647 (TO I2, S. 349 76) hinterlassen hatte, konnte Jakob nicht
wissen. Diese Abhandlung ist nunmehr in der von E. Carruccio (Pisa 1955) besorgten
revidierten Textfassung zugänglich.

i"9 In diesen Sätzen sehen wir Hinweise auf das bereits erwähnte MS. Jakobs über
Kurven I. Ordnung84.

iso Vermutlich bezieht sich Jakob auf ähnlich lautende Sätze in Hungens, Horo-
logium oscillator iura (Paris 1673, S. 90 HO XVIII, S. 241). Dass sie erstmals von
Torricelli (TO Ii, S. 191 221 ; TO I2, S. 25, 233, 241 und öfter; TO III, S. 12. 372)
und Fermât (Œurres, ed. P. Taxwert Ch. Heart, Paris 1891 1910, 4 Bde., zitiert
als FO) in einer sehr frühen Abhandlung (FO I, S. 256 60, 266, bereits abgedruckt in
den Varia Opera 8 2 von 1679) aufgestellt wurden, hat Jakob wohl nicht gewusst.

i3i Es handelt sich um die schon oben erwähnte Angelegenheit. Leibniz hatte
die Bemerkungen Jakobs nicht voll verstanden; deshalb legte dieser seinen Standpunkt

in den AE VI 1693 (BKC, S. 559,61) nochmals eingehend dar. Zu diesem Thema
äusserte sich Leibniz in den AE VIII 1694 (LMG V, S. 309 10) überhaupt nicht,
erklärte jedoch, schon lange bediene er sich bei der Bestimmung von Krümmungsradien
ähnlicher Sätze wie des jAKOßschen theorema aureum150 ; im übrigen bestimme er den
Krümmungsmittelpunkt (Z. rj "eines laufenden Kurvenpunktes (x, y) durch Differentiation

der Normalengleichung p x 4- (y —- y) y' 0 unter der Annahme, dass p

und t, fest bleiben. So findet er i — - x ----- — y' 1 — y'~0 : y", y — y (1 V y"2) : y"
usw. Bei dieser Gelegenheit betont er, man könne auch ohne (infinitesimale) Betrachtung
an einer Hilfsfigur nur durch den Calculus selbst zum Ziel kommen. Das ist näher
ausgeführt in Art. 157 der L'HospiTALSchen Analyse iss. Erst in den AE VIII 1695

(LMG V, S. 328) gab Leibniz unumwunden seinen Irrtum hinsichtlich der Wertigkeit
dm zusammenrückenden Punkte bei der Berührung zwischen Kurve und Krümmungs-
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kreis zu. Jakob erneuerte seinen Angriff in den AE XII 1695 (BKC, S. 647) und in
Note 8 (BKC, S. 684/85) der Ergänzungen zur Geometria 74 — damals wahrscheinlich
noch nicht im Besitz des Augustheftes der AE. In den AE III 1696 (LMG Y, S. 330)
hat Leibniz seinen Irrtum erneut eingestanden.

is2 Die Aufgabe befand sich in einem heute verschollenen Brief Debeaunes vom
September 1638. Der Wortlaut ist erkennbar aus der Antwort von Descartes vom
20.11.1639 (Ausgabe von Clerselier 4s; Bd. III, Nr. 71). Die Aufgabe wird auch
erwähnt in einem Brief von Descartes an einen unbekannten Empfänger vom Juni 1645

(Clerselier, Bd. III, Nr. 79).
is3 Descartes hatte bereits folgendes festgestellt : Wird die Gerade y — a + x

mit der Parallelen durch den laufenden Kurvenpunkt P (x, y) zur x-Achse in Q und
mit der Kurventangente durch P in R geschnitten, dann ist QR a)/2 (Descartes
an Debeaune is2? 20.11.1639). Leibniz wusste bereits (Aufzeichnung vom Juli 1676,
abgedruckt im Briefwechsel mit Mathematikern, ed. C. I. Gerhardt, Berlin 1899,
S. 201/03), dass das Problem durch eine logarithmische Kurve gelöst wird. Johann
trennt in der 11. Vorlesung über Integralrechnung (BJC III, S. 423/24) die Veränderlichen

vermittels der Substitution y ~ X + z, erhält dx « zdz: (a — z), konstruiert
die Hyperbel £ az: (a — z) und bestimmt ax als Flächeninhalt, indem er die

Quadratur J £, dz ausführt. Er weiss, dass y m Hb x die Kurvenasymptote ist, und findet
0

x
ausserdem J ydx x (a + y) — yV2- ^as Ganze stellt er L'Hospital zur Verfügung,

0

x
der die Ergebnisse (vermehrt um die Schwerpunktskoordinaten der Fläche J ydx und

0

mit Hinweisen auf die Rauminhalte der Körper, die durch Drehen dieser Fläche um
die beiden Achsen bezw. um die abschliessende Ordinate entstehen) in Nr. 34 des JS
vom 1.IX.1692 (BJC I, S. 62/63) unter seinem eigenen Signum G*** veröffentlicht.
L'Hospital, der für sich kaum mehr als die Textfassung in Anspruch nehmen konnte,
stellte sich trotzdem Huygens gegenüber im Brief vom 10.IX.1692 (HO X, S. 312/13)
als den Entdecker der Lösung hin und übermittelte sogar eine Abschrift des Aufsatzes
mit einem Zusatz (Konstruktion der lösenden Kurve aus der logarithmischen) an
Huygens (Brief vom 12.11.1693 HO X, S. 391/93), die wenig später auch an Leibniz
ging (Brief vom 23.IV.1693 LMG II, S. 234/36). Andererseits wusste Jakob wohl
schon seit dem Frühjahr 1692, dass sich Johann mit der DEBEAUNESchen Aufgabe
befasst hatte. Das ist zu schliessen aus Art. 191 der Med. Hier stellt Jakob zunächst
fest, dass auch y - x j- a mit zu den Lösungen zählt. Auf die Differentialgleichung
dx zdz : (a — z) wendet er die Substitution a — z t an und erhält (ohne
Berücksichtigung des Vorzeichens) dx adt:t — dt. Daraus entnimmt er, dass die lösende
Kurve nicht geometrisch sein kann.

Leibniz nimmt L'Hospitals Aufsatz und einen Hinweis auf diesen (Brief von
Huygens vom 12.1.1693 HO X, S. 387) zum Anlass, um in den AE IV 1693 (LMG V,
S. 287/88) eine Lösung durch Reihenentwicklung unter Hinweis auf die Darstellbarkeil
durch Logarithmen zu geben. Kurz zuvor hatte er die Beziehung zur logarithmischen
Kurve auch im Brief an Huygens angedeutet (Schreiben vom 30.III.1693 HO X,
S. 429). Dieser glaubte nunmehr irrtümlich, Leibniz habe nur das von L'Hospital
Empfangene etwas umgeformt (Brief an L'Hospital vom 9.IV.1693 HO X. S. 437).
Johann nimmt in den AE V 1 693 (BJC I, S. 65/67) den Aufsatz im JS vom 1.IX.1692
(mit Recht) für sich in Anspruch. Auch er gibt eine Konstruktion vermittels der
logarithmischen Kurve; sie ist eine Variante der L'HospiTALSChen. Bei dieser Gelegenheit
bemerkt Johann, die Rektifikation der das DEBEAUNESche Problem lösenden Kurve
sei möglich, „jedoch nicht in abstracto, sondern nur unter Mitverwendung der
logarithmischen Kurve oder einer gleichberechtigten". Von Huygens zur Rede gestellt
(Brief an L'Hospital vom 5.VIII.1693 HO X, S. 476), musste L'Hospital zugeben
(Brief an Huygens vom 10.VIII.1693 HO X, S. 484), er habe in Paris Johann das
DEBEAUNESche Problem vorgelegt. „Dieser habe ihm in sehr kurzer Zeit eine Lösung
übermittelt, die sich kaum von seiner eigenen unterscheide." In den AE II 1696 (BJC I,
S. 145/48) kommt Johann nochmals auf die Konstruktion vom V 1693 zurück und
gibt eine eingehende Begründung.

is-* Erwähnt sei die Disputation vom 7.XII. 1693 (Basel 1693 BJC I, S. 77/91)
über logische Sätze. Einige der beigefügten Thesen richten sich gegen weitverbreitete

L'Enseignement matliém., t. II, fasc. 1-2. q
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Tagesmeinungen, so die achte: Non datur saltus in verum natura gegen Descartes,
die elfte gegen die Erklärung von Spiegelung und Brechung auf Grund des Prinzips
vom kürzestdurchlaufenen Weg: Leibniz (AE VI 1682 LD III, S 145/50) ist zwar
vielleicht gemeint, wird jedoch nicht genannt. In Th. 19 wird darauf hingewiesen, dass
der Lichtweg (in geschichteter Atmosphäre) keine Gerade ist. Es handelt sich um die
Ergebnisse der gemeinsamen Studien beider Brüder ißR Th. 22 besagt — vielleicht
im Anschluss an LEiBNizens Note in Nr. 7 des JS vom 28.11.1678 (LMG VII, S. 119/20),
dass jede Primzahl > 3 in der Form 6n ^ 1 geschrieben werden kann. In Th. 23 wird
festgestellt, dass die zusammengesetzten Zahlen der Form 6n ± 1 nur Teiler der
nämlichen Form haben können.

185 Jakob berichtet im Brief vom 19.X.1695 an Leibniz (LMG III, S. 21) von
skorbutartigen Anfällen mit Gallenbeschwerden, die ihm das Arbeiten am Schreibtisch
zur Qual machten und ihn für ein halbes Jahr ans Bett fesselten. Johann muss an
L'Hospital (wohl im verschollenen Brief vom 20.1.1693 *= BJS, S. 164) einen sehr
ungünstigen Bericht gegeben haben ; denn dieser äussert sich in seiner Antwort vom
20.11.1693 (BJS, S. 165) recht besorgt und betont, welchen Verlust die Wissenschaft
durch den allenfallsigen Tod Jakobs erleiden müsste. Jakobs Erkrankung wird auch
im Brief Johanns an Mencke vom 7.III.1693 (BJS, S. 390) erwähnt; zum Glück
befinde sich der Patient jetzt wieder auf dem Wege der Besserung.

186 Aus dem Brief LT lospitals an Johann vom 2.1.1693 (BJS, S. 162) geht z.B.
hervor, dass l'Hospital eine Abschrift aus Art. 190 iss der Med. und die Konstruktion
Jakobs für die LEiBNizsche Pseudologarithmica i64 a m (<ÊM.\2 vom Ende des

ds2 \ds /
Art. 202 (Zusatz zu Art. 180) erhalten hat. Jakob war hier folgendermassen vorgegan-

dx d2 x du d2 u
gen : er hatte die Beziehung — 1—- • —- ^ q zur Uberführung der LEiBNizschen

ds ds2 ds ds2

Differentialgleichung in die Form a - verwendet und diese mittels
ds2 ds ds

dy z dx /— /-
ds ^ ü~9 also ds" * 0,2 — z2 : a>ds — a2 dz: zy a2 — z2 reduziert. Daraus konnte

er dx sa — adz: z und dy — adz: \/a2 — z2 entnehmen. Jetzt wird y als Bogen

am Kreis y2 + z2 he a2 gedeutet, dem die Strecke z a cos —- zugeordnet ist.
a

Andererseits ist x ~ a In A aus einer logarithmischen Kurve konstruierbar, also auch
z

die Kurve (x, y). Eine Variante dieser Konstruktion befindet sich im Nachlass, Stück 14

(BKC, S. 1064/65). L'Hospital bestätigt die Konstruktion (BJS, S. 162/63), kann
sich aber nicht denken, wie sie zustande gekommen ist. Johann gibt im verschollenen
Brief an L'Hospital vom 20.1.1693 (BJS, S. 164) die gewünschte Auskunft. Vielleicht
bemerkte er hierbei, dass man ohne Umschweife sogleich mit dem Ansatz — « — zu

ds a
Erfolg kommt. L'Hospital sieht (Brief an Johann vom 20.11.1693 ^ BJS, S. 165)
in der Verwendung zweier Hilfskurven zur Konstruktion einer gesuchten etwas
grundsätzlich Neues. — Ausserdem erhielt Johann Einblick in Art. 178 i28 der Med. und
liess die darin dargelegte Methode zur Bestimmung der Cosinus- und Sinus-Reihe an
Varignon gehen (BJS, S. 167), der sie an L'Hospital weitergab. Dieser vermerkte
sehr richtig im Brief an Johann vom 25.IV.1693 (BJS, S. 167/68), das Bildungsgesetz
der Koeffizienten sei von Jakob durch Induktion erschlossen, nicht eigentlich bewiesen.
— Weiterhin finden wir in den Med., Art 200/01 Aufgaben über arithmetische und
geometrische Reihen, die in Teil IV, Kap. V der Ars conjectandi, S. 228/30 verwendet
werden, aber auch in frühe Aufzeichnungen Johanns übergegangen sind (BJC IV,
S. 26/27). Eine davon wird auch in Johanns Brief an Leibniz vom 18.VI.1695 (LMG
III, S. 184/85) behandelt.

187 Hier erscheint (BKC, S. 559) die erste Andeutung über ein neues Kunstmittel
zur Behandlung von Krümmungsfragen iso® (nämlich das hier noch nicht genannte
theorema aureum), „das anscheinend uns Brüdern allein zugehört". Später (BKC, S. 562)
wird allerdings festgestellt, Johann sei damals in Paris mit dem Velaria-Problem nicht
ganz fertig geworden, obwohl auch er Jakobs Mittel zur Bewältigung der Gleichung

a
(ANl (dû \3 entdeckt habe. Das war die Antwort auf Johanns taktlose Bemerkung
ds2 \ds /

vom 28.IV.1692 n8, die jedoch mit keinem Wort erwähnt wird. Schliesslich verweist
Jakob (BKC, S. 572) auf Johanns Lösung des Florentiner Problems 172 und auf dessen
Behandlung des Problems der kürzesten Dämmerung, die veröffentlicht worden sei,
ohne dass Jakob davon etwas gewusst habe 83. jn diesem Aufsatz übt Jakob des
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öfteren ziemlich scharfe Kritik an Leibniz, so in der Frage, wie der Krümmungskreis
die Kurve trifft ui {BKC, S.559/61), und bei Behandlung der LEiBNizschen Pseudo-
logarithmica 164, isß (BKC, S. 570/71). Legen Ende der Abhandlung schlägt er freundlichere

Töne an und hebt LEiBNizens grosse Verdienste in durchaus angemessenen
Worten hervor (BKC, S. 572/73).

is« Hier wäre die Preisaufgabe zu erwähnen, die Johann in Nr. 28 des JS vom
20.VII.1693 (BJC I, S. 66/67) stellt: Die graphische Konstruktion von Gleichungs-
lösungen vermittels eines kleinen Stückes einer passenden Hilfskurve zu geben. Johann
setzt sein Verfahren in Nr. 34 des JS vom 31.VIII.1693 (BJC I, S. 67/69) auseinander.
In Th. 24 der logischen Disputation vom 7.XII.1693 (BJC I, S. 90) werden die in
Nr. 36 des JS vom 14.IX.1693 (BJC I, S. 70/72) erhobenen Einwände eines Unbekannten
als unzutreffend zurückgewiesen, und in Nr. 4 des JS vom 18.1.1694 (BJC I, S. 73/74)
wird Jakobs Aufsatz in den AE VI 1688 83 anerkennend genannt. Später hat Jakob
den Hauptinhalt der Note Johanns vom 31.VIII.1693 in die Ergänzungen zur Geome-
trici Note 18 übernommen (BKC, S. 694/96) und bei dieser Gelegenheit auch seinen
Aufsatz in den AE IX 1689 »» erwähnt, nicht aber Johanns Beiträge. —Auch Th. 26
der logischen Disputation Johanns vom 7.XII.1693 (BJC I, S. 90), bezieht sich auf
eine Behauptung Jakobs aus den AE I 1691 155, der freilich an dieser Stelle nicht
erwähnt wird, nämlich auf die vorgebliche Unmöglichkeit, das durch eine in sich
zurücklaufende algebraische Kurve begrenzte Flächenstück algebraisch zu quadrieren
und seine Berandung algebraisch zu rektifizieren 156. Johann äussert sich so : Allein
aus der Tatsache, dass die Spiralen keine algebraischen Kurven sind, weil sie von einer
Geraden in unendlich vielen Punkten geschnitten werden, folgt verbindlich, dass die
Quadratur und Rektifikation von Kreisen und anderen in sich zurücklaufenden Kurven
und den von ihnen umschlossenen Flächen algebraisch unmöglich ist.

189 vgl. hierzu BJS, S. 182, Anmerkung 2.
190 Niemand ahnte damals, dass dieses Problem schon ein Menschenalter früher

von J. Gregoby gelöst worden war. Unter Bezugnahme auf die einschlägigen Stellen
im J. Gre®ûKy-Tercentenary memorial volume, ed. H. W. Turnbull, London 1939
(zitiert als GT) erwähne ich zunächst Gregorys Brief an Collins vom 15.IX.1670
(GT, S. 102), wo gesagt wird, das Problem hänge von der Hyperbelquadratur ab. In der
Sendung an Collins vom 29.XII.1670 (GT, S. 148/50) wird die Logarithmica als Kurve

konstanter Subtangente aus —^ ~ erklärt. Das Bogenintegral s -jyr+ — dx
v2

geht vermöge der Substitution b \/... - - t -f IG : x über in b • In — + — / tdx. Nach
a b J

partieller Integration und unter Verwendung der Hilfsgrösse c 4 / 52 y 1 kl findetV a2 a
Gregory einen sehr geschickt unter Mitverwendung der Ausgangskurve geometrisch
gedeuteten Ausdruck, der auf die Darstellung in der Form

bs ix — ac — 2 b2 In (\/b2 — c2 : -\/b2 — i2) + b2 In ~
hinausläuft. Dazu tritt (nach Abspalten eines Logarithmus) die Entwicklung nach

v
Potenzen von :v vermöge s ^ b In ~ + j A jy \ + ~ - f j dx. Hierbei wird die

a
Wurzel nach dem binomischen Satz entwickelt und dann gliedweise integriert. Schliesslich

folgt im Brief an Collins vom 27.V.1671 (GT, S. 190) die Entwicklung nach
x

^
Potenzen von X aus dem Ansatz s x + j

i9i L'Hospital teit zunächst im Brief an Hutgens vom 26.VII.1692 (ITO X, S. 305)
das Ergebnis mit, verbessert im Brief vom 10.IX.1692 (HO X, S. 312) ein Schreibversehen

des Kopisten und führt eine Verifikation durch, die sein Vorgehen genau erkennen
lässt. Auch er geht von der Darstellung der Logarithmica aus der kennzeichnenden
Differentialgleichung aus. Dann formt er um:

T v
* b'2 ^ _ UIUW; ,.0 f dxA7 dx y'WT& + b-> I —Al_

• v*2 + fc2 X \/WT
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Im verbleibenden Integral substituiert er zuerst x b- : u. Das Ergebnis
u

b —
du ist — das wusste er aus der zweiten Vorlesung Johanns über Inte-

J Vö2 + u2
52 :a

gralrecbnung (BJC III, S. 396) — proportional zur Sektorfläcbe an der gleichseitigen
Hyperbel v2 52 + u2. Jetzt macht er vermöge S. (u -f r) : -\/2. '4 (— u + v) : \/'2
die Hyperbelasymptoten zu den [Koordinatenachsen und erhält das verbleibende

Integral in der Form 5 In (4; —^rV Am Schluss verwendet er die aus

\ V~J
it*f\/ b-; u- b- \/ % 4- b + x- % _ /-S - y— bzw. 2^2A. b2.V + 2 525 y 2

bestimmte Hilfskurve. Im Brief an Hungens vom 23.XI.1692 (HO X, S. 342,44) führt
L'Hospital eine Variante dieses Verfahrens vor. Mit einem Schlag rationalisiert er die

Wurzel vermöge \/£>2 4- ~ — 5. Daraus erhält er die einfachere Hilfsgleichung
0

£2 x b- x + 2b2 t und nunmehr unmittelbar ~ — b—• Ohne die Her-
x y b2 + a2 t

leitung findet sich diese Form des Ergebnisses samt der zugehörigen Hilfsgleichung
auch im Brief an Leibniz vom 14.XII.1692 (LMG II, S. 216 17). Hungens berichtet
über l'Hospitals Entdeckung, die er für richtungsweisend ansah, in der HOS II 1693
(HO X, S. 407/08). Er bemerkt, dass gleichzeitig die Quadratur der Kurve
a21/2 (52 -f a2) b6 geleistet ist; man könne jedoch auch mit der einfacheren
Hilfskurve x2 y2 b2 (b2 4- a'2) auskommen. — Später hat Jakob die Ausstreckung der
logarithmischen Kurve in geschlossener Form und durch Reihenentwicklung in prop. 52
der 4. Reihendissertation vom 26.XII.1698 (RKC, S. 863/64) übernommen.
Erstaunlicherweise hat keiner der damaligen Bearbeiter bemerkt, dass das Bogenintegral am
einfachsten vermittels der Substitution b2 + xi ** y2 behandelt werden kann.

192 HO X, S. 408/13 121. Leibniz gibt seine eigene Lösung in den AW IX 1693
(LMG V, S. 296/97). Dort berichtet er, er sei bereits in Paris von Cl. Perrault, der
es nicht zu meistern wusste, auf das Traktrixproblem hingewiesen worden und habe
es schon damals gelöst.

193 BJC I, S. 66. Aus dem Brief Johanns an L'Hospital vom 22.IV. 1694 (BJS.
S. 208/1 1) geht hervor, dass Johann OT als x, PT als px : q und die Projektion von PT
auf die Abszissenachse als y eingeführt hat. Er transformiert die entstehende

Differentialgleichung (p2 x A q2y) ydx — p2 x2 (dx + dy) vermittels ay tx in — op~ —x a'212 — a2 p 2

setzt dann £ — + e-P- un(1 erhält schliesslich — Erst viel
q q'2z'2 — a'2 p'2 x q z

später (um 1740) hat Johann auf einem beigelegten Zettel die Integration nicht durch
die Transformation £ — 2, sondern durch Partialbruchzerlegung erledigt und einen
begangenen Fehler berichtigt (BJS, S. 212/14).

194 RAC, S. 574/76 enthält nur die Lösung und eine interessante mechanische
Fadenkonstruktion. Aus Art. 203 (Naclilass, Stück 19 RAT, S. 1082/84) der Med.
geht Jakobs Ansatz hervor: PT wird als x, OT als nx, die Projektion von PT auf die

Abszissenachse als y bezeichnet. Jetzt ist ^ ^ — VaÜ Vi
5

also SÉA VOIE

d(nx y) y x'2 — y2

-
71 dx + dy. Mit y X2 ergibt sich ^ n folglich y x •

c~" ~ x"n Jakob
y 22 — 1 x c'2n -f x'2n

nimmt allerdings für c nur den Wert 1 an. Eine andere Art der Lösung gibt L'Hospital
im Brief an Johann vom 27.VI.1693 (BJS, S. 174/77). Sie erscheint nach einigem Hin
und Her (hierzu vgl. BJS, S. 174, Anm. 4) in der von Johann besorgten lateinischen
Übersetzung in den AE IX 1693 (S. 398/99). L'Hospital beginnt —- erkennbar aus dem
Brief an Hungens vom 18.IX.J693 (HO X, S. 518'23) — mit der Differentialgleichung

y setzt dann x uy, erhält q — (p- + qQdx
x dy ydxq y qU yp2 u2 o_ p2 q-i

durch den Ansatz VV2 u2 A P2q2 v— pu zu einem durch Logarithmen integrierbaren

Ausdruck in v. Sein Ergebnis erscheint in etwas erweiterter Form auch in den
Mémoires de mathématique et de physique [= M MP] vom 30.VI.1693, S.97/101 (erschienen

Ende 1693) mit lateinischem Nachdruck in den AE V 1694, S. 193/96. In den'
AE X 1693 (HO X, S. 512/14) berichtet Huygens ohne Rechnung über seine Bestätigung
für Jakobs Lösung. Er spricht ausdrücklich von einer Differentialgleichung, rühmt
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Leibniz als den Entdecker der Differentialrechnung und stellt eine kurze instrumentale
Lösung in Aussicht. Im Brief an L'Hospital vom 1.X.1693 (HO X, S. 536/37) erwähnt
Huygens zum erstenmal die von ihm kurz zuvor (HO X, S. 555) aufgefundene Bedingung

für das Auftreten einer Spitze n > 1 j, deren Tangente auf dem Fahrstrahl

durch den Ursprung senkrecht steht (zuerst mitgeteilt in den AE IX 1694 HO X,
S. 673/74). Die Einwände des Abbé Cat elan gegen L'Hospitals Lösung (Nr. 13 des

JS vom 29.III.1694, lateinisch in den AE Y 1694), ihre Widerlegung durch L'Hospital
(AE X 1694) und das Eintreten Leibnizbus für Jakob und L'Hospital (AE YII
1694 *= EMG V, S. 306) sowie L'Hospitals Darstellung in der Analyse138, Art. 74 seien

nur mehr am Rande erwähnt. Auch die einschlägigen Bemerkungen LEiBNizens (AE
VII 1693 LMG Y, S. 288 ; AE VII 1694 LMG V, S. 306 und Nr. 34 des JS vom
23.VIII. 1694 LMG V, S. 306/08) über die Behandlung von Differentialgleichungen,
die sich als Funktionen aus Stücken am charakteristischen Dreieck ergehen, können
nur mehr gestreift werden.

dx a2 dz
195 Med., Art. 204. Jakob setzt zunächst ay xz, erhält — —— —-——

x bz2 — a2z + a2c
und beseitigt alsdann das lineare Glied im Nenner vermöge der Transformation
2 t + a2 : 25. Wahrscheinlich stammt das Problem von Johann, der eine Lösung
am 20.1.1693 (BJS, S. 164) an L'Hospital gehen liess. Dieser äusserte sich in der
Antwort vom 20.11.1693 (BJS, S. 165) anerkennend über das für ihn neue Verfahren
Johanns, das wir heute nicht mehr sicher identifizieren können.

196 Es handelt sich um Th. 27 der Dissertation (BJC I, S. 91). Jakobs Aufzeichnungen
finden sich in den Med., Art. 209/11.

197 Jakob wusste wohl nicht, dass derartige Fragen schon längst in J. Collins,
Doctrine of decimal arithmetic, simple interest, etc., London 1664, 21674 behandelt
worden waren. — Am Ende der Aufzeichnung bemerkt Jakob, es handle sich um das
nämliche Problem wie in These 9 der Epimetra zur 2. Reihendissertation vom 28.XI.1692
(BKC, S. 541), wo gefragt wird, nach wieviel Zügen einer Luftpumpe im Rezipienten
ein vorgeschriebener Grad von LuftVerdünnung auftritt. Später erscheint die Aufgabe
als letzte These der Epimetra zur 3. Reihendissertation vom 24.XI.1696 (BKC, S. 766).

198 L'Hospitals Entdeckung ist in einer Note vom 30. XI.1693 in den M MP,
S. 145/47 enthalten, die vermutlich Ende Mai 1694 zum Druck kamen. Sie richtet
sich gegen die Behauptung Jakobs in den AE III 1692 (BKC, S. 481), im Wendepunkt
müsse der Krümmungshalbmesser unendlich sein, der auch Leibniz in den AE IX 1692
(LMG V, S. 282) beigetreten war. Sie wird auch in Note 22 (BKC, S. 697/98) der
Ergänzungen Jakobs zur Geometria von 1695 wiederholt, Anscheinend war Jakob
von Johann über L'Hospitals Entdeckung verspätet unterrichtet worden.

Die ersten Erwähnungen des richtigen Sachverhaltes finden sich in den Briefen
L'Hospitals an Huygens vom 22.III.1694 (HO X, S. 585/86) und an Johann yom
7.IV.1694 (BJS, S. 203/04). Beidemale nennt L'Hospital als Gegenbeispiel das
Verhalten der Kurve a% x3 yb [m Ursprung. An Leibniz geht im Brief vom 30.XI.1694
(LMG II, S. 253) nur ein kurzer Hinweis ohne das Beispiel. Es scheint, dass Johann
schon dem Brief an Mencke vom 22.IV.1694 (BJS, S. 392/93) einen Zettel an Leibniz
beigelegt hatte, worin L'Hospitals Entdeckung erwähnt wird (vgl. Johanns Brief an
L'Hospital vom 22.IV.1694 BJS, S. 206). Auf den Sachverhalt wird ausserdem
auch in L'Hospitals Analyse is*r Art. 82 verwiesen, die in der später hinzugefügten
Überschrift zu den Med., Art. 218 erwähnt wird.

199 "Vgl. Johanns Brief an L'Hospital vom 22.IV.1694 (BJS, S. 206).
200 Dies ist, soweit ich sehe, das erste Beispiel für die Auflösung einer höheren

Kurvensingularität. — Art. 218 der Med. ist mit nur geringfügigen sprachlichen
Veränderungen in AE IX 1697 (BKC, S. 779/82) übergegangen, wo ausdrücklich auf
L'Hospitals Note vom 30.XI.1693 i98 Bezug genommen wird.

201 BKC, S. 576/600. Vgl. Anm. 139, 150, 167/71.
202 BKC, S. 579/80. Indem Jakob x ** acp, y ~ r setzt und das Bogenelement

der Kurve mit ds bezeichnet, erhält er einen Ausdruck für p, der mit a—-(2— • — +ds' \ ds ds
d'2x \+ V tut gleichwertig ist und in verschiedenen Varianten auftritt.dy2 /

203 in den AE X 1694 (BJC I, S. 119) stellt Johann die Sätze Jakobs über den
Krümmungshalbmesser in Polarkoordinaten als wenig belangreich und sehr einfach
beweisbar hin. Ein Beweis steht im Brief an L'Hospital vom 12.1.1695 (BJS, S. 256)
mitverwendet in den Artikeln 64, 66, 79 und 81 der Analyse i38. An späterer Stelle des
Aufsatzes vom Oktober 1694 (BJC I, S. 121) versucht sich Johann mit der Gegen.
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bemerkung zu revanchieren, dem Bruder sei die Darstellung von Integralen wie

I1
dx i"* dx

— - oder 1 — " durch Rektifikation noch nicht bekannt. Sein Hin-
V1a2 x — xs J \/a+ — x4

weis war jedoch ein Schlag ins Wasser; denn schon in den AE IX 1694 (BKC, S. 611)
hatte Jakob des Bruders Andeutung vorweggenommen, der diesen Aufsatz noch nicht
kannte. Nachmals behauptete Johann im Brief an Leibniz vom 17.IY.1696 (LMG III,
S. 268/72), in dem er sich voller Bitterkeit über Jakob äussert, dieser habe die
Konstruktion mit der Lemniskate erst nach Johann gefunden, aber seine Arbeit sei früher
zum Druck gekommen. Vgl. Anm. 223.

204 An der etwas ruhmredigen Ausdrucksweise Jakobs (vgl. BJS, S. 251, Anm. 9)
nahm auch L'Hospital Anstoss : Siehe den Brief an Johann vom 31.XII. 1694 (BJS,
S. 251/52), wo zwei der von Jakob beweislos mitgeteilten Formeln durch eine direkte
geometrische Betrachtung erwiesen werden. L'Hospital bemerkt, auf die eine dieser
Formeln sei er durch Jakobs Abhandlung in den AE VI 1693 149 über die diakaustischen
Kurven verfallen und habe sie schon am 2.IX.1693 an Johann gegeben, dazu eine

Variante der Formel 1 : p ----- —— (BJS. S. 185/87). Auch im Brief an Leibniz vom
ds2 d s

2.III.1695 (LMG II, S. 271) nimmt L'Hospital die Sätze Jakobs für sich in Anspruch
unter Verweis auf seinen Aufsatz vom 31.VIII.1693 (MMP, S. 129/33, etwa im Frühjahr

1694 gedruckt). Johann bestätigt L'Hospitals Anspruch im Brief an Leibniz
vom 12.11.1695 (LMG II, S. 163). Er beklagt sich in scharfen Worten über die
Geheimnistuerei und das Geltungsbedürfnis Jakobs, vor allem über die Art, wie dieser Johann
um dessen Erfolge willen beneidet. Vergeblich versucht Leibniz im Brief vom 10.III.1695
(LMG III, S. 165/66) Johann zum Einlenken und zu besserer Würdigung der
Verdienste des Bruders zu bewegen. Im Brief vom 30.IV.1695 (LMG III, S. 173) stehen
weitere abschätzige Bemerkungen über Jakob. Nur ungern bestellt Johann die ihm
regelmässig für den Bruder aufgetragenen Grüsse und bringt immer wieder Nachteiliges
vor, vor allem im Brief an Leibniz vom 17.IV.1696 (LMG III, S. 268/72).

2°5 BKC, S. 586/89. Die Spannungskurve t c wird als höhere Parabel

angenommen. In den Med. findet sich für diese Betrachtung keine Vorlage.
206 BKC, S. 591/92. Jakob beginnt mit der Kennzeichnung einer Kurve aus

dy ^ Rx)^ sag^ wenn man eine algebraische Kurve o (x, u) 0 angeben könne,
dx a

deren Subtangente u: — — sei, dann ergebe sich y aus dem Logarithmus von u
dx t

^nämlich als a-in— Lasse sich keine derartige algebraische Hilfskurve ermitteln,

dann genüge der ausschliessliche Ansatz mit Logarithmen nicht mehr. Gegen die
missverständliche sprachliche Fassung erhob Leibniz im Brief an Huygens vom 27.VII.1694
(HO X, S. 661) und in den AE VIII 1694 (LMG V, S. 313) Einspruch, jedoch konnte
sich Jakob durch zweckmässige Auslegung seines Textes in den AE XII 1695 (BKC,
S. 646/47) salvieren. Andererseits hatte Jakob angedeutet, unter den transzendenten
Kurven liesse sich nur die logarithmische punktweise konstruieren. Auch dagegen
wandte sich Leibniz in den AE VIII 1694 (LMG V, S. 311/12), indem er auf die punktweise

Konstruierbarkeit der Sinuslinie y a sin - durch fortgesetztes Halbieren von
a

Winkeln und Strecken hinweist, sobald der Viertelkreisbogen konstruiert vorliegt.
207 BKC, S. 592, vgl. Anm. 218. Johann übt an dieser Stelle in den AE X 1694

(BJC I, S. 122) eine nicht ganz zutreffende Kritik, wenn er sagt, dass das Integral nur

zum Teil von der Rektifikation der Ellipse (in der Form j a" + x" -dx) abhängt. —
J \/a± — x4

Schon bei der Rektifikation der%parabolischen Spirale in den AE I 1691 112 war Jakob
a

auf das elliptische Integral Jdy\A+4p2(a — y)2 : a2 p2 gestossen, hatte jedoch
0

y a
damals nur die durch J • • • und J gekennzeichnete Bogengleichheit zwischen je zwei

0 a-y
einander zugeordneten Bogenstücken gefunden. Das hatte ihm ein schönes Lob von
Leibniz (AE IX 1691 LMG V, S. 256) eingetragen.
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208 BKC, S. 601/07. — Leibniz hatte das Problem in den AE IV 1689 (LMG V,
S. 237) gestellt 102 und in den AE V 1690 (LMG VI, S. 194) und VII 1690 (LD III,
S. 239) wiederholt. Lange wagte sich niemand an die Lösung.

209 ist nämlich der Ursprung 0 jener Punkt, dem der laufende Kurvenpunkt (x,y)
mit konstanter (positiver oder negativer) Geschwindigkeit c zustrebt, dann ist x2 E y2 —

c2 tK Weil die Bewegung im Schwerefeld der Erde vorsieh geht, gilt weiterhin

2g (a + y) mit der Anfangsbedingung e2 2ga. Daraus ergibt sich die erwähnte
Differentialgleichung durch Entfernen von c und g. Ersichtlich hat sie L'Hospital durch
Johann kennengelernt. Er brachte sie vermittels des Ansatzes y z2 : a auf die Form
a2 (x + z) dx 2 (a2 x — zE dz. Da er nun nicht mehr weiterkam, wandte er sich am
14.XII.1692 (LMG II, S. 217) an Leibniz. Dieser schlug in seiner Antwort vom Januar
1693 (LMG II, S. 220/22) eine Lösung durch Reihenentwicklung vor. L'Hospital
entgegnete am 24.11.1693 (LMG, S. 224), es handle sich um eine spezielle Lösung
der isochrona paracentrica, jedoch ging Leibniz auf diese Bemerkung nicht ein. Irgendetwas

über diese Korrespondenz muss an Jakob gegangen sein, vielleicht in den
verlorenen Briefen des Jahres 1692 von L'Hospital an Jakob (vgl. BKC, S. 660). Daraus
erklärt sich wohl die Unterstellung Jakobs in den AE VI 1694 (BKC, S. 601), auch
Leibniz sei mit der Aufgabe nicht fertig geworden. In Wirklichkeit hatte dieser den
Zettel mit der Auflösung verlegt (Brief an Huygens vom 11.XII.1693 HO X,
S. 574/75 bezw. an L'Hospital vom 6.1.1695 LMG II, S. 257) und erst später
wiedergefunden.

2i° Dieser Ansatz heisst x2 Ey2 ~ r2, ay ~ rz. Er führt auf — adz_ —
\/rär \/az(a2 — z2)

211 Vermittels az u2 folgt nämlich Var —a~ ^u

J Va4 — u4=

212 Erst Huygens bemerkte im Brief an Leibniz vom 24.VIII.1694 (HO X,
S. 667/68, auch übergegangen in den von Leibniz veranlassten Auszug in den AE
IX 1694 HO X, S. 671/72), dass es auch lösende Kurven geben könne, die sich dem
Ursprung in unendlich vielen Windungen annähern.

213 Dass sich Jakob nicht hinreichend von dem jüngeren Bruder anerkannt fühlte,
geht sehr deutlich aus dem bei Spiess V, S. 27 in deutscher Übersetzung wiedergegebenen

Hochzeitsgedicht vom März 1693 hervor.
214 Med., Art. 219 (Nachlass, Stück 2 BKC, S. 999/1006). Ein Auszug ging am

14.III.1696 (LMG III, S. 42/44) als Beitrag Jakobs zur beabsichtigten scientia infiniti
an Leibniz.

215 Vom griechischen hygviaxoc, wollenes Band.
216 BKC, S. 608/12.
217 Dies ergibt sich mittels der aus x2 -f y2 t2, x2 — ?/2 a2 folgenden Parameterform

für die gleichseitige Hyperbel.
218 Unter Mitverwendung der Ellipse 2x2 E y2 2a2 folgt das so: Das Bögen-

n2 | y,2
differential der Ellipse ist — dx, das der Elastica —- also ihre Differenz

V'a4 — xi Va4 — *4
x2 dx

V«4 X4
2iQ Brief an Leibniz vom 24.VIII.1694 (HO X, S. 664/67), in einem von Leibniz

besorgten lateinischen Auszug nebst dessen zusätzlichen Bemerkungen abgedruckt in
den AE IX 1694 (HO X, S. 671 72).

220 LMG V, S. 309/18.
221 Die ersten Versuche LEiBNizens in dieser Richtung gehen zurück bis auf den

August 1673. Vgl. hierzu D. Maumke, Neue Einblicke in die Entdeckungsgeschichte der
höheren Analysis, Abh. d. preuss. Ak. d. Wiss. Jhg. 1925, phys.-math. Kl. Nr. 1, Berlin
1926, S. 52/53 und 55/56 bezw. J. E. Hofmann/H. Wieleitner isi, s. 587/88.

222 BJC I, S. 119/22.
223 Johann verwendet die durch einen Kunstgriff gewonnene Zerlegung

- Q3^2
_ (a + 2t)2 dt2 (a - 2t)2 dt2 _ Jro2t(a2~t2)^ 4 t(a + t) ^ At(a-t) " ^ + * '

Daraus folgt E,2 at E t2, y2 ~ at — t2. Daran schliesst sich eine sehr elegante
Konstruktion der Elastica vermittels der Lemniskate. Im Brief an L'Hospital vom
3.V.1695 (BJS, S. 287) schreibt Johann, er habe seine Lösung vor Jakob gefunden,
und unterstellt, der Bruder habe eine Andeutung erhalten und sei dem Entdecker
durch eilige Sendung nach Leipzig zuvorgekommen. Vgl. Anm. 203.
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224 BKC, S. 639/63. Vgl. die Anmerkungen 119, 159, 165/67, 181, 206.
225 BKC, S. 641. Jakob denkt sich die Bogenlänge s einer Kurve geradegestreckt

und als Abszisse aufgefasst. Wird die zugehörige Strecke a2 : p als Ordinate aufgetragen,
s

dann „hängt / — • ds a2T von der Kreisquadratur ab". Der Satz ist näher ausge-J P
0

führt in den Med., Art. 249 (gekürzt im Nachlass, Stück 10 BKC, S. 1033/36). Dort
wird ausserdem die Behandlung von Differentialgleichungen 2. Ordnung vermittels
passender Beziehungen zwischen den 2. Ableitungen der Koordinaten x, y und der Bogenlänge

s gelehrt und auf die Velaria, die Elastica und die Lintearia angewendet. Der Satz
ist wahrscheinlich die Antwort Jakobs auf die Entdeckung Johanns in den AE VIII
1695 (BJC I, S. 142/44), wonach die Endpunkte A und B einer starren Strecke c, die
auf einem (wendepunktfreien) Bogen rollt und dabei um den Winkel t gedreht wird,
zwei sich zu ct ergänzende Bögen beschreiben. Johann® Beweis ging am 23.VI.1695
(BJS, S. 295) an L'Hospital und wurde von diesem in Art. 166 der Analyse138
aufgenommen. — In den Med., Art. 221 hat sich Jakob einen Beweis für Johanns Satz
zurechtgelegt, der auf einer direkten infinitesimalgeometrischen Betrachtung beruht
und von dem Johanns kaum abweicht. In BKC, S. 644 deutet er an, dass er auf das
Problem unabhängig von Johann gekommen ist. Woher die Anregung stammt, ist
bisher noch nicht klar. Leibniz bildet Johanns Ergebnis weiter, indem er die Fläche
ausrechnet, die bei Abwicklung des Fadens längs einer Kurve von einem bestimmten
Fadenstück überstrichen wird (AE XI 1695 LMG VII, S. 337/39).

226 BKC, S. 656/58. Diese Studien sind angeregt durch die Mitteilungen LEiBNizens
in Nr. 35 des JS vom 7.1 X.1693 i69 (LMG VI, S. 231/33) über die Zusammensetzung
von Kräften und Bewegungen nach dem Parallelogrammgesetz. Sie umfassen die
Artikel 222/27 der Med. nebst einem vor Artikel 230 beigefügten Zusatz.

227 Med., Art. 230 setzt die früheren Studien fort. Art. 232 enthält die Behandlung
der Kurve mittlerer Richtungen nebst einigen Beispielen.

2 28 BKC, S. 618/23.
229 Vorstudie: Med., Art. 197 vom Winter 1692/93. In den AE wendet Jakob

sein Ergebnis sogleich mit grossem Deschick an auf die bereits von Johann in den
AE I 1692 (BJC I, S. 57/58) geleistete Bestimmung der Astroide. Der Degenstand
wird auch in Art. 148 der L'HospiTALSchen Analyse 138 behandelt, die Astroide dort-
selbst am Ende von Art 158 erwähnt.

230 ygi. Med., Art. 166 134. Der Degenstand wird nochmals in Note 7 (BKC
S. 682/84) der Ergänzungen zur Geometria 74 behandelt. Auch L'Hospital wusste über
Johann von der Hüllkurve der Wurfparabeln. Er erwähnt das Problem im Brief an
Leibniz vom 24.11.1693 (LMG II, S. 226) und übernimmt diesen Hinweis in die
Analyse188, Ende von Art. 147.

231 Es handelt sich um die Kurvenschar yp+q tp (x — t)q mit t als Parameter.
Der einfachste Fall p 1, q 1 wird ziemlich ausführlich in Note 7 (BKC,'S. 681/82)
der Ergänzungen zur Geometria1-1 dargelegt. Der allgemeine Fall erscheint in L'Hos-
p itals Analyse188, Art. 209. In den Ergänzungen zur Geometria findet sich ausserdem
(BKC, S. 683) ein Hinweis auf die Einhüllende jener Schar von Parabeln mit parallelen
Achsen durch einen festen Punkt, deren Scheitel auf einer gegebenen Kurve wandert.
Diese Frage wird auch im Brief L'Hospitals an Johann vom 8.XII.1692 (BJS, S. 160),
in der verschollenen Antwort Johanns vom 18.XII.1692 (BJS, S. 161) und in L'Hospitals

Entgegnung vom 2.1.1693 (BJS, S. 161/62) berührt. Im Brief an Leibniz vom
24.11.1693 (LMG II, S. 225/26) führt L'Hospital das von Johann Erhaltene ohne
Nennung des Mentors vor und übernimmt es in die Analyse, Art. 146/47.

232 BKC, S. 621/22. Jakob denkt an die unter Anwendung des theorema aureum
(Haupttext bei Anm. 168) durchführbare Trennung der Veränderlichen.

233 BKC, S. 623. Die Aufgabe lautet: Degeben sind die algebraischen Kurven
dt, V. Die Tangente in P auf o? schneide dt in U und V in V. Die Tangenten an dl in U
und V in V schneiden sich in n. Die Tangente an die von n bestimmte Kurve in II
ist zu bestimmen. Johann, der die Aufgabe als armselig (chetif) bezeichnet (Brief an
L'Hospital vom 21.11.1695 BJS, S. 264), gibt die Lösung in den AE II 1695 (BJC I,
S. 138) in sieben Zeilen, L'Hospital eine Lösung und Verallgemeinerung in den
AE VII 1695, S. 307/09.

234 Das Problem fordert, jene Kurve für ein Laufgewicht anzugeben, das in jeder
Stellung eine Zugbrücke im Dleichgewicht hält, wenn die Zugbrücke durch das
Laufgewicht von einer Kette gehalten wird, die über eine feste Rolle läuft. Rein statisch
behandelt, führt es auf die Kurvengleichung in Polarkoordinaten r a + b cos cf
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2o5 über das Intrigenspiel, das Johann in dieser Angelegenheit angerichtet hatte,
vgl. BJS, S. 145/47.

236 BJC I, S. 129/31. — Bei L'Hospital ist die Cosinus-Funktion ersetzt durch

x:r. L'Hospital gibt am Schluss die Differentialgleichung des Problems an, aus der

er es gelöst hatte.
237 BJC I, S. 132/33. Johann weist vor allem darauf hin, dass die Zugbrückenkurve

als Epizykloide bei Abrollen eines Kreises auf einem zweiten gleichen
Halbmessers entsteht. Anschliessend gibt er eine Erweiterung des Problems (BJC I,
S. 134/35): Ein Gewicht P kann sich auf einer Kurve V bewegen. Es soll durch ein
Gewicht Q im Gleichgewicht gehalten werden, das mit, P durch eine Kette verbunden
ist, die über eine feste Rolle läuft. Dann setzt Johann (BJC I, S. 136/38) auseinander,
dass das von Leibniz (AE VIII 1694 LMG V, S. 308) irrtümlich mit der Rektifikation

der Hyperbel in Verbindung gebrachte Integral Ja/cG + * dx in Wirklichkeit
auf die Rektifikation der kubischen Parabel 3a2 y x3 führt — eine Bemerkung, die
auch im Brief L'Hospitals an Leibniz vom 2.III.1695 (LMG II, S. 271) enthalten
ist. Hierauf folgt die bereits erwähnte Lösung der Tangentenaufgabe Jakobs 233.

238 AE II 16 95 (BKC, S. 624/25). Jakob geht auf die Natur der lösenden Kurve
nicht weiter ein.

239 AB IV 1695 (LMG V, S. 318/20). Jetzt zieht Leibniz die Behauptung über

J \/a± + x4 • dx zurück und will sich die Sache nochmals genauer überlegen. Die

I-Iyperbelrektifikation hatte ihm schon seit Jahr und Tag Schwierigkeiten gemacht.
Um 1675 glaubte er aufgrund einer unrichtigen Rechnung (vgl. Hofmann, 1949
S. 118), sie lasse sich auf die Hyperbelquadratur zurückführen. Diese Fehlmeinung
klingt noch im Brief vom 16.VI.1694 (LMG III, S. 142) an Johann an. Die unrichtige
Behauptung in den AE VIII 1694 237 beruht auf einem Rechenfehler, über den der
Brief LEiBNizens an L'Hospital vom Ende März 1695 (LMG II, S. 275) aufklärt: die

Hyperbelrektifikation führe auf f a/u4 + xi * dx '• x2 (wahrscheinlich durch eine Flüchtigkeit

bei der Transformation des richtigen Integrals fx2 dx : a/cG + aG entstanden) ;

2to AE XII 1695 (BKC, S. 661).
241 AË XI 1694 (BJC I, S. 123/25). Johann hatte seine neuen Vorstellungen sehr

knapp an den beiden Beispielen p2 y' ax (Wendeort x (p3 — 2ax2) « 0, nicht
angegeben) und a2y' x2 + y2 (Wendeort a2 x + x2 y -f- ys — 0, mitgeteilt)
angedeutet. Im Brief an L'Hospital vom Dezember 1694 (BJS, S. 247/48) ist ein Stück
dieses Kurvensystems nebst Wendeort richtig eingezeichnet.

242 Diese Reihe erscheint erstmals im Brief an Leibniz vom 12.IX.1694 (LMG III,
S. 150), dann gedruckt in den AE XI 1694 (BJC I, S. 125/28). Die Erfindung ist angeregt
durch LEiBNizens Mitteilungen in den AE IV 1693 (LMG V, S. 285/88) über die
Reihenentwicklung der Lösungen von Differentialgleichungen durch Ansatz in unbestimmten
Koeffizienten. Johanns Reihe lässt sich durch schrittweises Anwenden partieller
Integrationen gewinnen — das ist der Sinn der Herleitung, die Leibniz im Brief an
Johann vom 16.XII.1694 (LMG III, S. 156) gegeben hat. Es wäre ein Leichtes gewesen,

auf diesem Wege zu strengen Konvergenzbetrachtungen zu gelangen.
Erstaunlicherweise hat sich Johann mit verhältnismässig wenigen und nicht sehr bedeutenden
Beispielen zufrieden gegeben, obwohl er durch geschickte Anwendung seiner Reihe
die sämtlichen damals bekannten Potenzentwicklungen auf einheitlicher Grundlage
hätte herstellen können.

243 Aus den AE VIII 1694 (LMG V, S. 317/18). Dort wird jedoch in erster Linie
von den Näherungspolygonen gesprochen 221 ; qer Feldbegriff ist nur ganz schwach
angedeutet.

244 Hier dürfte Jakob auf die Schlussbemerkung zu Art. 232 der Med. anspielen,
wo er die Differentialgleichung y' x2 + y% zunächst vermittels des Ansatzes
y — — 1Ü2 auf die Form z" + x2 % « 0 bringt. Nun entwickelt er z in eine nach
Potenzen von x4 fortschreitende Reihe und stellt das für x 0 verschwindende Integral
der Ausgangsgleichung dar in der Form

er glaube dieses Integral auf cG + x4 • dx reduzieren zu können.

x3 X7

3 3-4-7 +3-4-7 ^ 3-4-7-8-11 3-4-7-8-11 -12-15 -V

3-4-7-8-11 -12 ^ ""
Das Ganze ist im Nachlass, Stück 12, Ende (BKC, S. 1053) gedruckt.
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Diese Entwicklung- wäre allerdings vermittels der BERNOuLLischen Reihe nicht
gut möglich gewesen. Im Brief an Leibniz vom 15.XI.1702 (LMG II, S. 65) verweist
Jakob auf die reduzierte Differentialgleichung, gibt sie jedoch in der unrichtigen
Form z" x2 z. Auf LEiBNizens Bitte vom April 1703 (LMG III, S. 68) um die näheren
Einzelheiten sendet Jakob am 3.X.1703 (LMG III, S. 74/75) sowohl die ursprüngliche
wie die durch Ausdividieren entstandene Reihe.

245 AE XII 1695 (BKC, S. 663), nochmals erwähnt in den AE VI 1696 (BKC,
S. 724 und 726). Schrittweise hat sich Jakob der Lösung dieser Differentialgleichung
bemächtigt. Das erkennen wir aus Art. 232 der Med. (Nachlass, Stück 12 BKC,
S. 1 049/53). Dort wird nur die Gleichung y' axm y + bxp yn durch Reihenentwicklung
behandelt. In den AE VII 1696 (BKC, S. 731/34) ist das Lösungsverfahren nur flüchtig
angedeutet. — Aus dem interessanten Art. 232 ist insbesondere die Einführung der
Symbole Is für In s und Ncxp für ecxP beachtlich.

246 BKC,S. 665/71. Vgl. die Anmerkungen 61, 74, 79, 80, 83, 136,181,188,198, 230/31.
Geschlossene Notizen über die Vorlagen für diese Ergänzungen sind anscheinend nicht
mehr vorhanden.

247 in der einen dieser Aufzeichnungen (Med., Art. 228) wird behauptet, es gebe
unendlich viele durch quadratische Konstruktion bestimmbare Streckenpaare b, c so,

c

dass J dx: \/a± + xA algebraisch ist. In der anderen Aufzeichnung (Art. 229) glaubt
b

Jakob eine Methode angeben zu können, mittels deren er nach Adjunktion einer
einzigen transzendenten Konstanten durch quadratische Konstruktionen unendlich
viele Punkte der Kettenlinie konstruieren könnte. Unrichtig ist hier nur das eingeschlagene

Verfahren ; nicht der Satz. Ist z.B. die Grundstrecke a und die transzendente
Strecke b A(e 4® l : f bekannt, dann lassen sich tatsächlich unendlich viele Punkte

der Kettenlinie y - A (ez:a e~x:a) wie gefordert aus a und b herstellen. Die Menge

der auf diesem Wege herstellbaren Punkte der Kettenlinie ist in sich dicht. In den
AE VII 1696 (BKC, S. 735/36) erwähnt Jakob algebraische Punktkonstruktionen an
transzendenten Kurven. Er bezweifelt jedoch, dass es hierfür allgemeine Regeln gebe.

248 BJC I, S. 149/52 BKC, S. 718/22.
249 AE VT 1696 ^ BKC, S. 723/24.
250 AE VI 1696 BJC I, S. 159/60.
251 AE VI 1698 BJC I, S. 242/47. Die Abhandlung ging am 14.XII.1697 (LMG II,

S. 473) an Leibniz und wurde in Leipzig von Tschirnhaus eingesehen, der die Ber-
NOüLLische Konstruktion im Brief an Leibniz vom 18.III.1698 (LBG, S. 503/05) als
unrichtig erklärte. Dieser gab hierüber am 4.IV.1698 (LMG III, S. 482) an Johann
Nachricht, der sich nunmehr in seiner Antwort vom 26.IV.1698 (LMG III, S. 485/86)
heftig über die Druckverzögerung beklagte. Er erhielt mit LEiBNizens Brief vom
25.V.1698 einen Auszug aus TscHiRNHAusens Schreiben (LMG III, S. 489/92). In der
Antwort vom 10.VI.1698 (LMG III, S. 492/95) setzte er sich so geschickt zur Wehr,
dass die Abhandlung nunmehr sogleich gedruckt wurde. Leider ging dieser eine Note
TscHiRNHAusens voraus (AE VI 1698, S. 259/61), worin sich dieser in erstaunlicher
Skrupellosikeit den entscheidenden Gedanken Johanns aneignet.

252 BKC, S. 725/28. Die dort ohne Ableitung mitgeteilte Konstruktion stammt
aus den Med., Art. 233 (Nachlass, Stück 21 BKC, S. 1086/87, etwas abgeändert).
Jakob sucht eine Kurve mit dem laufenden Punkt C, die im Ursprung A von der
X-Achse berührt wird. Die Kurventangente schneidet die X-Achse in D ; das Lot
aus C trifft auf die X-Achse in B. Mit AD x, DB y, DC p (x) ergibt sich nach

x
/ *

73 7/
Umformung / — In- -. Dann folgt die Konstruktion. Sie ist als Erweiterung

J V V + V
0

der für den Sonderfall v nx gegebenen194 anzusehen und mit einer ähnlichen
LEiBNizens (AE IX 1693 LMG V, S. 299/301) verwandt.

253 BKC, S. 731/35.
254 AE II 1696 (LMG V, S. 330/31). Leibniz sagt, die Gleichung könne auf

t\ 7t (£) 7) + x (£) zurückgeführt werden. Diese Gleichung hatte er schon im Brief
an L'Hospital vom 6.1.1695 (LMG II, S. 257) allgemein gelöst.

255 im Brief an Leibniz vom 4.IX.1696 (LMG III, S. 323/24) führt Johann die
n

allgemeine Differentialgleichung vermöge des Ansatzes yn — r\1~rl zurück auf eine
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lineare und löst diese vermittels r, uv. Im Druck befindet sich das in den AE III 1697

(BJC I, S. 175/76).
256 BKC, S. 745/66.
257 BKC, S. 748.
258 wie schon in Anmerkung 124 erwähnt, wusste Jakob damals noch nichts von

den Mitteilungen über Newtons Vorgehen in den WALLisschen Opera II 124 von 1693.
259 Ausgabe von 1713, S. 95/98. Dort wird ausdrücklich auf die Mängel des WALLisschen

Verfahrens der unvollständigen Induktion hingewiesen und die Summierung
vermittels der „BERNouLLischen Zahlen" allgemein durchgeführt. Dabei steht der
Schluss von n auf n -f 1 an Beispielen im Vordergrund. Die Med. enthalten nichts
hierüber.

260 Unabhängig von Jakob und fast gleichzeitig hatte auch Leibniz das nämliche
Ergebnis gefunden, jedoch nicht geometrisch, sondern vermittels der logarithmischen
Funktion erklärt: Brief an Johann vom 19.XI.1696 (LMG III, S. 337).

261 Jakob geht aus von der Gleichung x2 v a2 y%, bestimmt das Element

der Sektorfläche in der Form dy ~ v dx TLÊA *, q=
ALAR. und setzt dann x a ± t.

2 2x 2 y
t

Die Sektorfläche stellt er dar durch / adt rationalisiert vermittels
C 2 \^2at±G

a/2 at E l2 —, entwickelt nach Potenzen von z und integriert dann gliedweise.v z
262 BJC I, S. 161, — Die Aufgabe war bereits am 15.V.1696 (BJS, S. 319) an

Vabignon gegangen, der sie den Pariser Mathematikern mitteilte, ferner nach England
(wahrscheinlich an Cluver ; vgl. LMG III, S. 283) und am 19.VI.1696 (LMG III,
S. 283/84) an Leibniz. Dieser gab am 26.VI.1696 (LMG III, S. 290/95) die Auflösung
und wollte das Problem auch in französischen und italienischen Zeitschriften anzeigen.
Da es aber Druckverzögerung gab, schlug er im Brief vom 2.IX.1696 (LMG III,
S. 322/23) Verschiebung der ursprünglichen Frist (Ende 1696) auf Ostern 1697 Tor,
wozu Johann am 22.IX.1696 (LMG III, S. 330) seine Einwilligung gab. Dieser neue
Termin wird in den Anzeigen in Nr. 38 des JS vom 19.XI.1696 (LD Iii, S. 94/97), im
GdL 1695 (Druck 1696; vgl. LD V, S. 116), in den AE XII 1696 (BJC I, S. 165), in
einem später als Programm bezeichneten Flugblatt Johanns vom 1.1.1697 (BJC I,
S. 166/69) und in der HOS XII/II 1696/97, S. 284 genannt.

263 im Brief an Johann vom 26.VI.1696 (LMG III, S. 290/95). Zunächst
kennzeichnet Leibniz den Punkt P auf einer gegebenen Horizontalen zwischen A und B,
der (unter Beibehaltung der Laufgeschwindigkeit im Knick bei P) bei Bewegung auf
der Doppelstrecke APB kürzeste Fallzeit erzeugt. Dann überträgt er die erhaltene
Bedingung auf je drei benachbarte Punkte eines Streckenzuges kürzester Laufzeit
zwischen A und B, dessen Ecken in aequidistanten Horizontalen zwischen A und B

liegen. Durch Grenzübergang erhält er hieraus die Bedingung ~ • — j=a const wobei
d s dt

die Fallzeit t in senkrechter Richtung proportional zu \/y ist. Daraus folgt ^5 4/ N
ds V 2a

und hieraus

« ïv"y •.' V 2 a-v./y2 a

In der Eile bemerkt er noch nicht, dass sich als Lösungskurve eine Zykloide ergibt ;

darauf wird erst von Johann hingewiesen (Brief vom 31.VII.1696 LMG III, S. 299)'.
264 im Brief an Leibniz vom 31.VII.1696 (LMG III, S. 302/06). Johann denkt

sich die Brachystochrone als Lichtweg in horizontal geschichteter Atmosphäre, wobei
er dem Vorgehen Fermats (Opera variai, S. 156) bezw. LEiBNizens 184 folgt. Dem
Brechungsgesetz gibt er die Fassung ARA JL const. Dabei ist a der Winkel der

u c

Kurve mit der y-Achse, also sin a Die Fortpflanzungsgeschwindigkeit u inds
der atmosphärischen Schicht ist von y abhängig. Hieraus ergibt sich dx udy

c2 — u-
Aus dem Fallgesetz folgt aber iG cy, also dx l/—— dy uswV c — y

1
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265 LMG III, S. 306/08. Johann kennzeichnet zunächst jenen Kreisbogen durch
zwei Punkte A, B, auf dem ein Körper zwischen A und B in kürzester Zeit fällt. Durch
Grenzübergang folgt, dass der Krümmungsradius der Brachystochrone das Doppelte
des Abschnittes auf der Kurvennormalen vom Kurvenpunkt bis zur x-Achse ist. Das
liefert die Differentialgleichung der Kurve.

266 Brief vom 10.VIII.1696 (LMG III, S. 310); im Druck erschien sie erst am Ende
der Abhandlung in der Histoire de VAcadémie Royale des sciences avec les Mémoires de
mathématique et de physique H MP) 1718 (BJC II, S. 267/69).

267 PT 19, Nr. 224 vom I 1697 Opera i->4 iy, s. 415. Johann erhielt die Lösung
um den 20.III.1697. Eine Abschrift ging im Brief vom 30.III.1697 (LMG III, S. 388/89)
an Leibniz und wurde in den AE V 1697, S. 223/24 abgedruckt.

268 Ein vom 26.XII.1696 datiertes Schriftstück Sauveurs (BJS, S. 334/37) lag
dem Brief L'Hospitals an Johann vom 31.XII.1696 (BJS, S. 333/34) bei. L'Hospital
entdeckte den Fehler (unzulässiger Grenzübergang) nicht, wohl aber fanden ihn
Johann und Leibniz (Brief an Johann vom 8.II.1697 LMG III, S. 360/63), dem
Sauveurs Schreiben von Johann am 29.1.1697 (LMG III, S. 354/57) übermittelt
worden war.

269 Dieser nicht näher bekannte junge Mann hatte geglaubt, ax2 y3 sei die
Brachystochrone. Vgl. Johann an L'Hospital, 30.III.1697 (BJS, S. 348), sowie die
Briefe Johanns an Leibniz vom 30.III. und 17.VT.1697 (LMG III, S. 387 und 420).

2io L'Hospital berichtet hierüber im Brief an Johann vom 3.VI.1697 (BJS, S. 349),
LAh ire habe auf mehreren Wegen „gefunden", dass die Brachystochrone eine kuhische
Parabel sei.

271 L'Hospital kam zunächst mit der Fragestellung nicht zurecht. Im Brief an
Johann vom 15.VI.1696 (BJS, S. 319) erbat er eine rein geometrische Form des Pro-

r ds
blems und erhielt am 30.VI.1696 (BJS, S. 321) die Fassung: Wann nimmt j
seinen kleinsten Wert an Johann versäumt allerdings, zu sagen, dass hier nicht s,
sondern x als die Integrationsveränderliche anzusehen ist. L'Hospital lässt sein
Verfahren am 25.11.1697 (BJS, S. 342/45) an Johann gehen, der den Brief am 5.III.1697
(LMG III, S. 372/75) an Leibniz sendet. In BJS, S. 343/45 ist auseinandergesetzt, dass
L'Hospital unzulässige Schlüsse verwendet und nur durch Zufall zum richtigen
Ergebnis kommt.

272 Das wissen wir durch einen Zufall. L'Hospital hatte von Jakob, mit dem er
in einem nicht mehr erhaltenen Briefwechsel stand, ein Paket mit den letzten Nummern
der AE empfangen, das versehentlich einen Zettel mit Aufzeichnungen über das
Problem enthielt. Diesen Zettel sandte L'Hospital am 30.XI.1696 (BJS, S. 326) an Johann,
der sich in der Antwort vom 21.XII.1696 (BJS, S. 329) über des Bruders Versuch lustig
machte, den Kreis als Brachystochrone aufzufassen (wie es schon Galilei getan hatte:
Discorsi i°7, 3. Tag, prop. 36, scholium). — In der gedruckten Abhandlung (AE V 1697
BKC, S. 769) teilt Jakob mit, Leibniz habe ihm im (verschollenen) Brief vom 23.IX.1696
angezeigt, dass er die Lösung besitze. Jakob fügt hinzu, er habe seine Lösung am
16.X.1696 gefunden und Freunden (wohl S. Battier und Hermann) gezeigt. — In
der HOS VI 1697 (BJC I, S. 200) weist Johann öffentlich darauf hin, dass Jakob die
Auffassung Galileis längere Zeit geteilt habe und nur durch grosse Anstrengungen
zur Lösung des ganz einfachen Problems gekommen sei.

273 im Brief an Leibniz vom 6.II.1697 (LMG III, S. 49) wird die Sendung
angekündet mit der ausdrücklichen Auflage, sie nur mit den andern gemeinsam zu
veröffentlichen. Am 15.III.1697 (LMG III, S. 377) schreibt Leibniz an Johann, das MS.
sei bei Mencke eingetroffen.

274 Der Aufbau ist aus Med., Art. 237 genau erkennbar. Die Druckvorlage für die
AE V 1697 (BKC, S. 769/74) weicht nur wenig von der Aufzeichnung in den Med. ab,
ist jedoch wegen umständlicher Ausdrucksweise etwas schwieriger zu lesen. Die
Einzelausführung gleicht jener LEiBNizens ; der einzige Unterschied ist, dass die zwischen A
und B liegende Horizontale durch den Mittelpunkt von AB hindurchgeht. Auch Jakob
war sich des Zusammenhanges des Brachystochronenproblems mit der Bewegung in
einem geschichteten Medium bewusst ; das zeigt ein Hinweis am Schluss seiner
Ausführungen.

275 Dies wird auch von Leibniz, der Jakobs Aufsatz am 5.VI.1697, d.h. sogleich
nach Erhalt des Mai-Heftes der AE, an Johann sandte (LMG III, S. 407/13) ausdrücklich

hervorgehoben. Bei dieser Gelegenheit macht Leibniz einen neuen Versöhnungsversuch

(LMG III, S. 405/06): Er gestehe zu, dass Jakob schwer zu behandeln sei,
halte ihn jedoch nicht für unversöhnlich und rate, Johann möge bei passender Gelegenheit

deutlicher hervorheben, wieviel er von seinem älteren Bruder gelernt habe.
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276 Hintereinander folgen die Aufsätze von Leibniz (LMG V, S. 331/36), Johann
(BJC I, S. 187/93), Jakob (BKC, S. 768/78) und L'Hospital (BJS, S. 342/44). Angefügt

ist ein Beitrag TscHiRNHAUsens (AB1, S. 220/23), der vermutlich durch Mencke
erfahren hatte, dass die lösende Kurve eine Zykloide sei. Mehr als diesen Hinweis
können wir aus TscHiRNHAUsens Bemerkungen nicht entnehmen, vor allem nichts
über die eingeschlagene Lösungsmethode. Abschliessend wird Newtons Lösung, ein
Wiederdruck der Mitteilung in den PT I 1697 267, abgedruckt. Die meisten dieser
Beiträge enthalten auch Lösungen der von Johann im Programm vom 1.1.1697 202

gestellten Aufgabe : Jene Kurve zu ermitteln, die von jeder Geraden durch den Punkt 0
in genau zwei Punkten P und Q derart geschnitten wird, dass OPm + OQm const.

277 BKC, S. 775.
27S Das Problem wird in Art. 240/41 der Med. eingehend behandelt. Ihr Inhalt ist

in die ziemlich ausführliche Darstellung in den AE Y 1698 (BKC, S. 787/94) übergegangen.

Johann hatte die Lösung bereits in der HOS VI 1697 (BJC I, S. 202/03) durch
die Bemerkung gekennzeichnet, die Zykloide müsse auf die fragliche Gerade senkrecht
auftreffen. Auch L'Hospital gab eine Lösung: AE I 1698, S. 48/52.

Im Anschluss an seine Ausführungen verallgemeinert Jakob das Problem (BKC,
S. 788/90): Gegeben sei eine Kurvenschar durch O, deren Exemplare aus 0 ähnlich
liegen, ferner eine Linie E, die von den Kurven der Schar bezw. in P getroffen werden
soll. Auf welcher Kurve der Schar erhält eine passende Funktion, die von der Lage
des Punktes P abhängt, einen Extremwert Als einfachstes Beispiel wird in Wiedergabe
von Art. 236 gefragt, auf welchem von O senkrecht nach unten ausgehenden Kreisbogen
ein fallender Körper mit grösster Wucht auf eine gegebene Senkrechte (nicht durch O)
auftrifft. Für beliebige Kurven, die zu einander affin sind, wird das Problem in Art. 253
der Med. behandelt (Nachlass, Stück 4 BKC, S. 1017/20). Im MS. verweist Jakob
auf einen am 8.V.1698 abgesandten verschollenen Brief unbekannten Empfängers.

279 Der wesentliche Inhalt ist in verbesserter Redaktion übergegangen in die
isoperimetrische Dissertation vom I.III.1701 (Basel 1701 BKC, S. 895/920), die
auch in den AE V 1701 erschienen ist.

2fio Dieser schon in den AE VI 1691 (BJC I, S. 50, Nr. 13) bei Johann anklingende
Gedanke wird erstmals von Leibniz im Brief an Johann vom 16.V.1695 (LMG III,
S. 176) klar ausgesprochen. Keiner von beiden ist zu einem rechnerisch brauchbaren
Ansatz gekommen.

28i Um das Verfahren in Jakobs Sinn zu Ende zu führen (so steht es in der Dissertation
vom 1.III.1701 BKC, S. 917/19), berücksichtigen wir die Beziehung dxd'2 x 4

4 dyd2 y O. Jetzt folgt 3- und nach Integration a Mit
dx t dx t dy a d2x a2 dt— — ergibt sich — ** ' — « - ' — — ; also t s usw.dy a ds -\/a2 + t2 ds \/a2 + t2 \/..A
Wir würden nunmehr zuerst v Va'2 is'^a^l + fj|)2 bestimmen, dann
quadrieren und differentieren.

282 Mittels dxd2 x dsd2 s würde sich 3 ~ ergeben, also ~ a n?ds d2x ° ' \dyj d2y
Daraus folgt, dass die Lösung konstanten Krümmungshalbmesser p hat, also ein Kreis
ist. — In der isoperimetrischen Dissertation fehlt dieses Beispiel, weil dort gleich der
allgemeine Fall erledigt wird.

283 wir gehen nicht auf diese Rechnung ein, weil unten (Haupttext nach
Anmerkung 306) der allgemeine Fall J p (x) dy ausführlich behandelt wird.

284 Das teilt Johann im Brief an Leibniz vom 17.VI.1697 (LMG III, S. 414) mit.
Er hatte einen Sonderdruck als Beilage zu einem (verschollenen) Brief Menckes
erhalten, der wahrscheinlich gleichzeitig mit Menckes Brief vom 1.VI.1697 an Leibniz
(vgl. LMG III, S. 406) abgesandt wurde. Auch Leibniz sandte einen Sonderdruck an
Johann (Beilage zum Brief vom 5.VI.1697 LMG III, S. 407/13)

285 LMG III, S. 416/18.
286 BJC I, S. 202.
287 LMG III, S. 4 27/31. Johann denkt sich ein rechteckiges Tuch, das vollständig

biegsam, unelastisch und flüssigkeitsundurchlässig ist, an zwei Gegenseiten in gleicher
Höhe festgeklemmt und seitlich durch senkrechte Wände abgeschlossen. Nun wird die
entstehende zylindrische Mulde stricheben mit Flüssigkeit gefüllt. Gefragt ist, bei
welcher Profilform des Tuches der Schwerpunkt der als konstant angesehenen
Flüssigkeitsmenge am tiefsten liegt. Die freie Flüssigkeitsoberfläche wird als y-Aclise eingeführt,

der schichtweise in vergebener Art veränderliche Flüssigkeitsdruck proportional
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zu xm angesehen. Da das Tuch feste Ausmasse hat, muss das Maximum von J xmdy ge-
f* bm -f xrn) dx

meint sein. Johann kennzeichnet die Profilform des Tuches aus y ^ I

J \/a-w—{bm f a*'"I'll

nd stellt fest, dass zum Maximum vom J xmdy ein Minimum von J x'mds gehört.
288 Abgedruckt in Nr. 39 des JS vom 2.XII.1697 ; ein lateinischer Auszug befindet

sich in den AE I 1698. Die französische Fassung ist wiederabgedruckt in BJC I, S.206/14
und BKC, S. 814/21. Die fragliche Stelle: BJC I, S. 208/11.

289 LMG III, S. 506/14. Da Leibniz diesen Brief nach dem Überlesen verlegte,
erhielt er unterm 2.VIII.1698 (LMG III, S. 517) nochmals eine Abschrift; eines dieser
MS. ging auf Bitten Johanns (Briefe vom 21.11. und 14.III.1699 LMG III, S. 572
und 581) als Beilage zum Brief LEiBNizens vom 24.III.1699 (LMG III, S. 578) wieder
zurück. Am 22.1.1701 ging das MS. in versiegeltem Umschlag an Varignon (vgl. BJS,
S. 373) und wurde von diesem der Académie am 1.II.1701 präsentiert (BJC I, S. 424);
der Umschlag sollte erst nach Eingang der Lösung Jakobs geöffnet werden. Als Johann
durch einen Brief Varignons vom 27.11.1701 erfuhr, dass der Bruder persönlich nach
Paris kommen und dort seine Lösung vorlegen wolle, zog er das MS. zurück ; es wurde
ihm am 23.III.1701 durch Fontenelle übersandt. Erst nach dem Tod des Bruders
ging die Sendung erneut nach Paris und wurde dort am 17.IV.1706 eröffnet. Das
ursprünglich lateinische MS. erschien in französischer Übersetzung in den H MP 1706
(BJC I, S. 424/35).

290 Johann gibt zwei Arten von Lösungen, eine direkte und eine indirekte. Die
direkte Lösung beruht auf einer infinitesimalgeometrischen Überlegung unter Beschränkung

auf GJieder 2. Ordnung. Johann geht von zwei nahe bei einander liegenden
Kurvenpunkten A und B aus und schaltet zwei Punkte P und Q so ein, dass AP + PBJdy p(x)

p (x) dy sein Maximum für ^ annimmt.

Die indirekte Lösung ist die in Anmerkung 287 gekennzeichnete vermittels der
hydrostatischen Hilfsüberlegung. Anschliessend behauptet Johann fälschlich, J q (s) dy

besitze eine durch — a gekennzeichnete Extremale.
ds dx2

291 Das sagt Leibniz sogar in den AE IV 1701 (LD III, S. 368/69), wo er auf Wunsch
Johanns den richtigen Eingang der lösenden Analysis in der Sendung vom
15.VII.1698 289 bestätigt.

292 Am 9.VI.1701 (LMG III, S. 340) hatte L'Hospital an Leibniz geschrieben, er
habe gerade Jakobs isoperimetrische Dissertation vom 1.III.1701 erhalten und voller
Interesse überflogen. Ihm scheine das angewendete direkte Verfahren gut zu sein.
Leibniz knüpft im Brief an Johann vom 24.VI.1701 (LMG III, S. 674) an diese
Bemerkung an. Er halte die Verwendung von Gliedern 3. Ordnung für überflüssig und
sehe Johanns Verfahren als besser an. So schreibt er auch an L'Hospital am 26.IX.1701
(LMG II, S. 343).

293 Es handelt sich um die Wiedergabe des Briefs an Varignon vom 15.X.1697
(BJC I, S. 206/14).

294 BKC, S. 821/22.
295 BJC I, S. 215/20.
296 BKC, S. 827.
297 BJC I, S. 221/22.
298 BKC, S. 829/39.
299 BKC, S. 839/40.
300 BJC I, S. 231/39.
soi Vgl. BJS, S. 366, Anmerkung.
302 BKC, S. 873.
303 Selbständig gedruckt in Basel 1700. In BKC, S. 874/87 ist nur der auf das rein

Mathematische beschränkte Auszug in den AE VI 1700 aufgenommen. Das dort
Fehlende ist von Ch. Bossut inMen Observations sur la physique, sur l'histoire naturelle
et sur les arts 41, 1792, S. 161/73 wiedergegeben.

304 BKC, S. 874/80.
305 Nachlass, Stück 32 BKC, S. 1134/39.
306 Vgl. die Stelle im Haupttext nach Anmerkung 279. Dieses Beispiel erscheint

auch in der Dissertation vom 1 .III. 1701 (BKC, S. 909/12).
307 Das wird in Artikel 246 der Med. nur knapp angedeutet und erst in prop. 6

der Dissertation vom 1.III.1701 (BKC, S. 907/08) näher ausgeführt, jedoch nicht in
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der allgemeinen Form des Haupl text es, sondern nur am Eiläuterungsbeispiel p (x) —

308 in der Anmerkung zu BKC, S. 1135 sagt Cramer, dass es keines intuitiven
Ansatzes bedurft hätte; denn nach Verwendung von dxd2 x » dsd2s und Division mit

d'dx n d2s dh
hds2 d2 x ergibt sich die integrable Differentialgleichung ^ — ds ^ TT'

309 BKC, S. 880/82.
310 Jakob stellt fest, dass die Extremale des zu einem Minimum werdenden

isoperimetrischen Integrals J q (s) dy nicht durch ~ a gekennzeichnet wird, wie

Johann behauptet hatte 290 (Schreiben an Varignon vom 15.X.1697), sondern durch

dy qds : ~\/a2 + q2.
311 Jakob vertraute die Sendung nicht der Post an, sondern liess sie durch den

verlässlichen Jk. Hermann persönlich in Groningen überbringen. Johann berichtet
an Leibniz am 7.V.1701 (BMG III, S. 668/69) kurz über Hermanns Besuch, über die
seiner Meinung nach überflüssige Einschaltung von zwei Zwischenpunkten auf der
Extremalen und über den Entschluss, die eigene Lösung erst dann preiszugeben, wenn
des Bruders Veröffentlichung bei den von beiden Seiten anerkannten Preisrichtern
eingetroffen sei. Aus dem noch unveröffentlichten Brief Jakobs an N. Fatio vom
9.VIII.1701 erfahren wir, Johann habe Hermanns Bitte um die Aushändigung der
Analysis seiner Lösung mit den Worten abgelehnt : er sei nicht verpflichtet, diese

Analysis irgendjemand zu zeigen.
312 zum Glück für Johann scheiterten dessen Versuche, nach Erhalt des offenen

Briefes 303 Und der Dissertation an Jakobs in den AE oder im JS eine weitere
Gegenerklärung einrücken zu lassen.

313 London 1715, prop. 17, Probl. 12 S. 68/70.
314 Jakobs Name wird nicht genannt, jedoch ist schwerlich anzunehmen, dass

Taylor nichts von seinem Vorgänger wusste.
315 BJC II, S. 235/69. Eine lateinische Fassung, die nicht in die BJC übergegangen

ist, erschien in den AE I und II 1718.
316 Vermutlich ist Hermann gemeint, der seine eigene Überarbeitung der Jakob-

schen Methode in den AE I 1718, S. 32/38 erscheinen liess.
317 AE IX 1697 (BKC, S. 782/85). Diese Note wird von Jakob selbst als Ergänzung

zur Untersuchung in den AE VII 1696 253 über die Differentialgleichung y' p (x) y +
+ q (x) yn angesehen.

318 Nachlass, Stück 12 BKC, S. 1050/53.
319 BKC, S. 784.
320 Diese Formel ist nicht mit in den Nachlassdruck aufgenommen.
321 BJC I, S. 193.
322 Mit Orthogonaltrajektorien hatte sich Johann erstmals im Sommer 1694

beschäftigt. So erwähnt er im Brief an Leibniz vom 12.IX.1694 (LMG III, S. 151/52)
die sich senkrecht durchschneidenden Scharen xn uH~1y, nx2 + y2 v2 und
x% fc= 2p (y + u), y + p • In - 0. Ausserdem weiss er, dass sich Lichtstrahl und

v
Wellenfront im Sinne der HuYGENsschen Theorie senkrecht durchschneiden. An der
nämlichen Stelle wirft er auch das Isogonaltrajektorienproblem auf, erläutert am
Beispiel der logarithmischen Spiralen um den Ursprung, von denen die Fahrstrahlen
aus dem Ursprung unter festem Winkel geschnitten werden. Im Zusammenhang mit
der Lösung des Brachystochronenproblems entdeckte er dann, dass sich die von einem
Punkt A auf den Brachystochronen durch A fallenden Körper in gleichen Zeiten wieder
auf einer Zykloide befinden, die von der Gesamtheit der Brachystochronen senkrecht
geschnitten wird. (Synchrone 11 pr0b 1 e 1 n, erstmals erwähnt im Brief an Leibniz vom
31.VII.1696 LMG III, S. 299/300). Dort wird ergänzend bemerkt, eine ähnliche
Eigenschaft komme auch der logarithmischen Spirale zu. Schon im ersten Entwurf
des Brachystochronen-Aufsatzes (Druck V 1697), der dem erwähnten Brief an Leibniz
beilag (LMG III, S. 302/09), wird die Bestimmung der Orthogonaltrajektorien der
logarithmischen Kurven gefordert. Da Leibniz keine Zeit zur Auflösung fand, sandte
Johann seine Lösung am 6.XI.1696 (LMG III, S. 333/34).

323 Das geht aus einem Eintrag in Art. 242 der Med. hervor. Dort sind die beiden
komplizierteren Beispiele ausführlich behandelt, während der Druck in den AE V 1698
(BKC, S. 810/12) nur die Konstruktion und Diskussion einer einzigen der Lösungskurven

enthält.
324 BKC, S. 806/13.
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325 In etwas modernisierter Bezeichnungsweise heisst die Ausgangsgleichung der

Schar x a In ^ 1 —^ ; eine dazu senkrechte Kurve wird durch 2ax + y2 + a2 e a ~

326 Jetzt heisst die Ausgangsschar x u • In - ; eine dazu senkrechte Kurve
a

*s= av gekennzeichnet
326 Jetzt heiss

ergibt sich aus x2 —
2 a

327 AE X 1698 BJC I, S. 266/71.
328 Es handelt sich um die Differentiation eines Integrals nach einem Parameter.

Auf diese Methode war Leibniz verfallen, um die von Johann am 27.VII.1697
(EMG III, S. 441) gestellte Frage zu beantworten, wie die Kurven zu kennzeichnen
seien, die von den Endpunkten gleichlanger Bögen aus dem Ursprung auf den Ellipsen
y2 xx (2a — x) gebildet werden. Das LEiBNizsche Verfahren ist in einer Beilage
zum Brief an Johann vom 13.VIII.1697 (LMG III, S. 451/54) enthalten und wird am

Beispiel der logarithmischen Kurven y u • In - entwickelt. Gemeinsamer Anfangs-
a

punkt der Bögen ist diesmal der Punkt (a, 0). LEiBNizens Methode ist erst durch
Gebhardt bekannt geworden. — Johann wusste nicht, dass sich auch Jakob erfolgreich

mit der nämlichen Frage beschäftigt hatte. Dieser betrachtet in Art. 254 der Med.
(Nachlass, Stück 5 BKC, S. 1021/23) eine Schar affiner Kurven durch O und
bestimmt aufgrund einer Methode, die der in Anmerkung 333 angedeuteten verwandt
ist, die Tangenteneigenschaft jener Kurve, deren Punkte P auf den einzelnen Kurven
der Schar gleichlange Bögen OP abschneiden. In diesem Zusammenhang wird der
verschollene Brief vom 8.V.1698 278 nochmals erwähnt. Anschliessend behandelt Jakob
das Problem, indem er eine beliebige Kurvenschar zugrunde legt, die aus ihrem
Parameter bestimmt wird.

329 Die Orthogonaltrajektorien der Parabelschar y2 u (x — u) bestimmt
Johann aus — —

(a2 + 4ri2)d7] in BJC I, S. 271 hatte er eine unrichtige Formel
u (3 a2 + 2 7]2) 7]

gegeben, die in einer Akademie-Abhandlung von 1702 (BJC I, S. 395) verbessert ist. —
Aus den Anmerkungen Cramers zu BKC, S. 808 und 812 lässt sich erkennen, wie
Johann vorgegangen ist. Mittels ax ui, ay uri wird die Ausgangsgleichung zu
7^2 a (£ — a). Daraus folgt, dass die Parabeln der Schar aus dem Ursprung ähnlich
liegen. Nun ist dx udZ, + E,du, dy udr\ + r\du. Also gilt für die Orthogonaltrajektorien

^ - ud+ ^du, d.h. — — d^ + d7\2 • Wird jetzt aus der Parabel-
dE, udri A r, du u c, d % + r,

gleichung eingesetzt, dann ergibt sich Johanns Formel. Dieser verschweigt allerdings,
dass die Parabelschar von den beiden Geraden x2 — 4y2 0 berührt wird, und dass
die Orthogonaltrajektorien wendepunktfrei sind, bei steigbügelartiger Form in Spitzen
auf den Einhüllenden der Parabeln aufsitzen und die Y-Achse zur gemeinsamen
Asymptote haben. Das Isogonaltrajektorienproblem an den um den Ursprung gedrehten
Kurven löst Johann, indem er modifizierte Polarkoordinaten (rund t acp) verwendet.

330 BJC I, S. 204/05.
331 BKC, S. 796/806.
332 AE, S. 48/52. — Die Art der Lösung ist aus dem Brief L'Hospitals an Johann

vom 27.IX.1697 (BJS, S. 351) erkenntlich.
333 Im Anschluss an Cramer (BKC, S. 803) gibt Herr Spiess (BJS, S. 355) eine

schöne Wiederherstellung der Konstruktion Jakobs. Er geht aus von der Kurve
y y (x) mit dem laufenden Punkt P (x, y) und dem zugeordneten Flächeninhalt

X

F (x) J ydx. Die zu dieser Kurve affin-benachbarte habe unter Beibehaltung der
o

Abszisse x die Ordinate y + 8y und den laufenden Punkt n (x, y + 8y). Die zugeordnete
Fläche ist F + 8F. Wegen der Affinität gilt 8F : F 8y: y. — Nun gehen wir auf der
Ausgangskurve zum Punkt *Q (x + dx, y + dy) über. Der zugeordnete Flächeninhalt

x + dx

ist F (x + dx) F + dF J ydx. Also ist (unter Beschränkung auf Grössen
o

Ordnung) dF y (x) dx. Gesucht ist jene Kurve nQ, längs deren 8F dF ; also

ist

pn [(y + 8 y) — y (x + dx)] + [y(x + dx) — y (x)l

?/2 ; F ist. Nun ist
dx
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und ^ + 8y"> y(,x + dx^ unter t die durch I1Q auf der x-Achse bestimmte Sub-
dx t

tangente verstanden. Entspreebend ist y^x + ^ vJl! }L, unter s die durch PQ

auf der X-Achse bestimmte Subtangente verstanden. Nun ist aber y : s y' aus der
gegebenen Kurve bekannt, also die Tangente an die gesuchte Kurve konstruierbar.
Jakob konstruiert genau nach dieser Vorschrift ; Johann gibt im Brief an L'Hospital
vom 15.X.1697 (BJS, S. 354/55) eine Variante. — Jakob fügt hinzu, die gesuchte
Kurve hänge von einer Differentialgleichung der Form y' yy + qyn ab. Dies dürfte
auf einer Täuschung beruhen.

334 Jakob konstruiert aus einer Verhältnisgleichung, die auf folgendes
hinauskommt: Trifft der Bogen OP auf einer Kurve der Schar die Sehne OP unter einem
bestimmten Winkel, dann wird die gesuchte Kurve von jener Halbierenden des Winkels
bei P berührt, die nicht in das Segment OP eindringt. Cbameh (BKC, S. 804) beweist
die Verhältnisgleichung Jakobs durch eine Überlegung, die jener von vorhin ähnelt.
Der Sachverhalt ist jedoch auch ohne Rechnung klar: Ist OQ der zu OP aus 0 ähnliche
Bogen auf einer Nachbarkurve der Schar und gleich dem Bogen OPn auf der Ausgangskurve,

dann ist bis auf Glieder 2. Ordnung PQ Pn. — Johanns Lösung im Brief
an L'Hospital vom 15.X.1697 (BJS, S. 354) ist eine Variante der soeben angedeuteten
rein geometrischen Überlegung. Jakob fügt ein weiteres Ergebnis an ähnlichen Bögen
zu, das mit Flächeninhalten zusammenhängt.

335 Lassen wir etwa die aus O ähnlich gelegenen Kurvenbögen auf der X-Achse
beginnen und eine gegebene Gerade g schneiden, dann sieht Jakobs Konstruktion so
aus : Er greift irgendeine Kurve der Schar heraus ; ihr Anfangspunkt auf der X-Achse
sei A. Dann schneidet er die in A beginnende Evolvente dieser Kurve mit der Parallelen

h zu g durch 0 in C, bestimmt den Berührpunkt B der aus C an die Kurve möglichen
Tangente und schneidet OB mit g in B*. Der Bogen A* B* der Schar zwischen g und
der X-Achse, so sagt er, ist der gesuchte. Cramer gibt in BKC, S. 792 einen
analytischen Beweis, in BKC, S. 805 einen infinitesimalgeometrischen.

336 Brief an Johann vom 18.XI.1697 (BJS, S. 360/61).
33? Leibniz an Johann, Brief vom 27.XII.1697 (LMG III, S. 475).
338 BKC, S. 797/801.
339 Nachlass, Stück 6 BKC, S. 1023/25.
340 Sur quelques questions de maximis et minimis, H MP 1733, Pariser Ausgabe

S. 186/94.
341 Nachlass, Stück 7 BKC, S. 1025/26. Hier verwendet Jakob den Umstand,

dass die geodätischen Linien des Kegels bei dessen Ausbreitung in die Ebene zu Geraden
werden.

342 Nachlass, Stück 8 BKC, S. 1028/29.
343 AE X 1698 (BJC I, S. 263/66).
344 Diese Kennzeichnung (die durch drei konsekutive Kurvenpunkte bestimmte

Schmiegungsebene der Kurve enthält die Flächennormale) ist im Brief Johanns an
Leibniz vom 26.VIII.1698 (LMG III, S. 532) angedeutet. In einer Mitteilung an
S. Klingenstierna aus dem Jahr 1728 (BJC IV, S. 108/28) wird eine sehr interessante
Allgemeindarstellung mit vielen Erläuterungsbeispielen gegeben.

345 Hiervon handeln die Artikel 243/45 der Med. Der umfangreiche Art. 245 ist im
Nachlass als Stück 11 (BKC, S. 1036/48) gedruckt.

346 Art. 247 der Med. ist die Vorarbeit für die beiden Akademie-Abhandlungen
von 1703 (BKC, S. 930/46). Art. 248 ist die Vorarbeit für die Akademie-Abhandlung
von 1704 (BKC, S. 947/53).

347 Art. 250 der Med. enthält die Vorarbeiten für die Akademie-Abhandlung von
1705 (BKC, S. 976/89). Die Ergänzung in Art. 251 (Nachlass, Stück 9 BKC, S. 1030/32)
bezieht sich auf die Frage, mit welcher Geschwindigkeit sich die einzelnen Teile eines
ursprünglich gespannten und dann freigegebenen elastischen Bandes wieder strecken.
Die abschliessende Ansicht Jakobs über die Biegung eines ausgedehnten elastischen
Bandes weicht von der in Art. 250 gegebenen ab. Sie findet sich in Art. 280.

348 Basel 1698 BKC, S. 849/67.
349 Übernommen aus den AE IV 1691 129 und VI 1691 107
350 AE VI 1691 113.
351 Die zugehörigen Rechnungen erscheinen erst in den AE II 1699 (BKC, S 868/70)

Der Beweis steht in Art. 267 der Med.
352 Es handelt sich um Beispiele für Differentialgleichungen, in denen die Differentiale

einer einzigen Veränderlichen auftreten. Modern geschrieben: ay" y'2 bezw
2yy" 7/2. " *

L'Enseignement malhém., t. II, fasc. 1-2. 10
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353 D. Gregory hatte in den PT 19, Nr. 231 für VIII 1697, S. 637/52 (mit Wiederdruck

in den AE VII 1698, S. 305-31) eine Herleitung der Kettenlinie gegeben, von der
Jakob sagt: Das Ergebnis ist nur deshalb richtig, weil sich zwei grundsätzliche Fehler
aufheben. Leibniz liess eine anonyme Widerlegung in den AE II 1699 (LMG V,
S. 336/39) erscheinen, auf die Gregory in den AE VII 1700, S. 301/06 mit einer
einsichtslosen Entgegnung reagierte. Unter diesen Umständen unterliess Leibniz die
Fortsetzung der aussichtslosen Diskussion. Im Zusammenhang mit Gregorys
Ausführungen ergab sich jedoch ein neues anregendes Problem : Wie müssen die Steine eines
gewölbten Tores behauen werden, damit dieses ohne Mörtelverbindung in sich selber
festhält Dass der Torbogen nach Art der Kettenlinie gewölbt werden müsse, behauptet
Jakob in Art. 285 der Med. (Nachlass, Stück 29 BKC, S. 1119/23). Nach Cramers
Feststellung (BKC, S. 1120) ist seine Schlussweise nicht fehlerfrei. Laut Eintrag im MS.
hat Jakob diese Untersuchung am 5.X.1704 ausgeführt, als es ihm gesundheitlich schon
sehr schlecht ging.

354 BJC I, S. 322/27 (lateinisch) HMP 1699 (französisch).
355 Aus dem laufenden Punkt P (x, t) des Kreises t2 =— 2ax — x2 mit der Bogen-

X

länge OP s a J dx : t ist der laufende Punkt Q (x, s + t) der Zykloide bestimmt,
o

Johann beweist, dass das Zykloidensegment zwischen den Punkten Q1Q2 elementar
quadrierbar ist, falls xt + X2 a ist. Dabei darf Q2 auch durch seinen Spiegelpunkt Q2

an der X-Achse ersetzt werden. Entsprechend zeigt er, dass die Fläche zwischen dem
Zykloidenbogen OQ und den Verbindungsstrecken des Punktes R (a— x, 0) mit O
und Q quadriert werden kann. Schliesslich deutet er an, auch die Zykloidenzone zwischen
der X-Achse, dem Bogen QiQ2 und den zugehörigen Ordinaten lasse sich algebraisch
quadrieren, falls das Verhältnis der Bögen OQi und Q1Q2 ganzzahlig ausgedrückt werden
könne. Johann verweist bei dieser Gelegenheit auch auf die Zykloidenquadraturen von
Huygens (xj X2 a : 2) im Horologium oscillatorium (Paris 1673 HO XVIII,
Buch III, prop. 7) und von Leibniz (xi 0, X2 a) in Nr. 18 des JS vom 23.V.1678
(LMG V, S. 116/17), die sich aus seiner eigenen als Spezielfälle ergäben.

356 Das folgt aus der Erwähnung im Brief an Leibniz vom 22.IX.1696 (LMG III,
S. 327).

357 Wahrscheinlich war beiläufig erwähnt worden, dass Johann Neues über
quadrierbare Zykloidensegmente in Aussicht stelle.

358 BKC, S. 871/73.
359 BJC I, S. 330/35.
360 BKC, S. 892/94. Die Einzelausführung ist enthalten in Art. 264 bis der Med.

(Nachlass, Stück 31 BKC, S. 1129/34). Ein dort auftretender Rechenfehler ist
belanglos.

361 BJC I, S. 386/89. Anschliessend folgt (S. 389/91) die Anwendung auf das Zykloi-
denprohlem.

362 Johann verweist auf die Mitteilung an L'Hospital (vom 22.1.1701 BJS,
S. 371/73), woselbst die Reihe (A) durch schrittweises Vorgehen an Hand
geometrischer Überlegungen für ganzes n bewiesen wird. Anscheinend wusste er nicht, dass
sein Verfahren genau dem Vorgehen Viètes in Theor. 7 der nachgelassenen Sectiones
angulares entspricht, die wir in der von A. Anderson besorgten Ausgabe kennen
(Paris 1615 Opera 21, S. 296/97). Der Unterschied liegt einzig darin, dass sich
Viête mit der Aufstellung des Koeffizientenschemas begnügt, während Johann auch
den allgemeinen Ausdruck für das Ergebnis hinschreibt. Die Ausdehnung auf unganze n
wird von Johann nicht etwa erwiesen, sondern nur formal erschlossen. Echten
Anspruch kann Johann wohl auf die Reihen (B) erheben. Auf sie wird im Brief an
L'Hospital nur kurz verwiesen. Die Herleitung findet sich in einer Beilage zum Brief
an Leibniz vom 10.VI.1702 (LMG III, S. 699/701).

363 BJC I, S. 391/92.
364 BKC, S. 921/29. Die Abhandlung war Beilage zu einem Schreiben vom

13.VII.1702 (vermutlich an Varignon). Im Grunde ist die vorgenommene Entwicklung
eine Variante des in Art. 178 der Med.128 eingeschlagenen Verfahrens.

365 Jakob kannte diese Arbeit aus dem MS. Sie wurde erst in den AE VIII 1703,
S. 345/51 gedruckt.

366 Opera II124, S. 384. Es handelt sich um die Stelle aus dem ersten Brief Newtons
an Oldenburg für Leibniz über die höhere Analysis vom 23.VI.1676 (LMG I, S. 107).
Newton bezeichnet den Kreisdurchmesser mit d und die dem Peripheriewinkel a
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gegenüberliegende Sehne mit x - d sin a, die dem Peripheriewinkel na gegenüberliegende

Sehne mit y d sin na. Er drückt y aus x aus wie folgt:
1 — nn 9 — nn

rix + —^xxA + r-TFX7 xxB + * ' ' '
2x3 dd 4 x 5 ad

^ — 77,77,

Dabei ist A das vorhergehende Glied rix, B das vorhergehende Glied
2 x 3 ddxxA usw-

Er bemerkt, dass die Reihe für ungerade n endlich bleibt und alsdann in die aus der

gewöhnlichen Algebra entnehmbare Formel übergeht.
Überraschenderweise sagt Jakob nichts davon, dass schon A. de Moivre in

den PT 20, Nr. 240 vom Y 1698, S. 190/93 einen interessanten Beweis für die New-
TONSche Formel gegeben hatte. Dieser Beweis beruht auf dem Ansatz in unbestimmten

% ï
Koeffizienten, angewendet auf die aus I — n —. folgenden Reihen-

V a2 — y2 ,1 \ a'2 — x2
o o

Entwicklungen (um Verwechslungen zu vermeiden, ist Newtons d durch a ersetzt).
Wir würden nach zweimaliger Differentiation auf die noch zweckmässigere Form
reduzieren (a2 — x2) y" — xy' + n2 y 0. Jetzt führt der Ansatz y HbkX* auf

bh 9
—(fe2 ~~n2) bk— Vielleicht war dies der Weg, auf dem Newton selbst zum1 + 2
(fe r 1) (/i I- 2) a-

Ziel gekommen ist ; die Form des Ergebnisses legt das nahe. Unwahrscheinlich ist, dass

Jakob die MoivRESche Abhandlung nicht gekannt hat ; denn wir finden in Art. 265 der
Med. eine Studie über die vorhergehende Arbeit Moivres in den PT 19, Nr. 230 vom

VII 1697, S. 619/25, worin ^ S akxh^jn unter Verwendung eines Ansatzes in un¬

bestimmten Koeffizienten ausgerechnet wird.
In dieser Aufzeichnung (Nachlass, Stück 1 BKC, S. 993/98) verwendet Jakob

drei verschiedene Methoden zur Herstellung der Moivuesehen Ergebnisse. Die erste
beruht auf Koeffizientenvergleich, nachdem beiderseits logarithmisch differenziert
wurde (nicht im Druck) ; die zweite stützt sich auf den polynomischen Lehrsatz, den
Jakob in Teil II, Kap. VIII der Ars conjectandi von 1713, S. 132 in vorbildlicher Kürze
behandelt hatte. Jakob verweist ausdrücklich auf diese Stelle. Auch die dritte Methode
hängt mit der logarithmischen Differentiation zusammen, angewendet auf die etwas

allgemeinere Reihe | 2 uk (x)j

36' Jakob war über Leibniz verärgert, weil er (irrtümlich) annahm, dieser stelle
sich in der Angelegenheit mit den isoperimetrischen Problemen grundsätzlich auf die
Seite Johanns. Er überschätzte den Einfluss LEiBNizens auf Mencke und glaubte,
das in den AE übliche Verfahren, polemische Bemerkungen zu unterdrücken oder
wenigstens abzuschwächen, sei einseitig gegen ihn angewendet worden, um ihn zu
benachteiligen. Über dieses Verfahren beklagt er sich heftig im Brief an N. Fatio vom
2.X.1700 (MS). Dieser hebt im Brief vom 22.III.1701 (MS) die Verdienste Newtons um
die Erfindung der höheren Analysis besonders hervor. Dort wird auch auf den vollen
Wortlaut der beiden Briefe Newtons über die höhere Analysis in J. Wallis, Opera
III124, 1699 hingewiesen, aus dem hervorgehe, dass Newton seine Methoden bereits
entdeckt hatte, als Leibniz noch unwissender Anfänger war. Ob Jakob diesen Wallis-
Band eingesehen hat, wissen wir nicht. Es gibt keine Stelle, aus der sich mit Sicherheit
ein Zitat aus diesem Werk entnehmen lässt. Hypochondrisch veranlagt, wie er nun
einmal war, fühlte sich Jakob von Leibniz zurückgesetzt. Er brach deshalb den an
sich nur losen Briefwechsel mit Leibniz ab, indem er dessen Brief vom 25.III.1697
(LMG III, S. 56/62) unbeantwortet liess. Erst als er zu seiner völligen Überraschung
auf LEiBNizens Veranlassung hin am 11.VII.1701 in die Berliner Akademie der
Wissenschaften aufgenommen wurde und das Diplom mit einem Begleitschreiben des
Akademie-Sekretärs J. Th. Jablonski vom 26.IX.1702 (LMG III, S. 62) erhielt, knüpfte
er den Briefwechsel durch das Schreiben vom 15.XI.1702 (LMG III, S. 62/66) wieder
an.

368 Art. 258 der Med. (Nachlass, Stück 22 BKC, S. 1088/97), Art. 259 (Nachlass,
Stück 23 BKC, S. 1098/99) und Art. 260 (Nachlass, Stück 24 BKC, S. 1099-1100).
In Art. 258 mahnt Jakob zunächst (BKC, S. 1088) zur Vorsicht bei Vernachlässigung
infinitesimaler Glieder höherer Ordnung (vgl. Th. 7 der Epimetra zur 5. Reihendissertation

vom 8.IV.1704 =& BKC, S. 975). Dann folgt die hübsche Bemerkung (BKC,
S. 1091), in einem Extrempunkt sei die Kurvenkrümmung besonders einfach bestimmbar,

weil dort y' 0 ist. Art. 266 (Nachlass, Stück 25 BKC, S. 1101/05) bezieht sich
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auf die Bestimmung des Krümmungsradius bei Fadenkurven. Das MS. trägt das Datum
1701. Von fremder Hand ist vermerkt, die Abhandlung sei niedergeschrieben worden,
nachdem Jakob das MS. eines HERMANNschen Aufsatzes zum nämlichen Thema gesehen
habe, der erst in den AE XI 1702, S. 501/04 zum Abdruck kam.

369 BKC, S. 888/91.
370 BJC I, S. 381/86. Hier bemerkt Johann, falls eine Kurve durch eine

Differentialgleichung y' / (x, y) gegeben sei, lasse sich p am zweckmässigsten aus der Form
S/1 bestimmen. Noch etwas weiter geht Hermann, der in einer Studie
für Leibniz (Beilage zum Brief vom 15.X.1704 LMG III, S. 261/63) die Ausgangsgleichung

M (x, y) dx N (x, y) dy zugrundelegt.
371 Von diesem Gegenstand, dessen sich Leibniz schon gegen Ende der Pariser

Zeit bemächtigt hatte (vgl. Leibniz an Jakob, April 1703 LMG III, S. 67), handeln
die Aufsätze in den AE V 1702 (LMG V, S. 350/61, Zerlegung in Partialbrüche mit
nur einfach zählenden Nennern) und I 1703 (LMG V, S. 361/66, Auftreten mehrfach
zählender Nennerfaktoren). Zur nämlichen Frage war Johann unabhängig von Leibniz
gelangt. Er hatte bei der kritischen Durchsicht der Arbeit Jakobs in den AE II 1699 351

über die loxodromische Skala bemerkt, dass man zur Ermittlung von /
-, nichtJ a2 — x2
52

der bis dahin von den Brüdern benutzten umständlichen Transformation x a —
o2 + t2

bedarf, sondern zweckmässiger ———~ ** [~—-— -| -—1 verwendet. Am
a2 — x2 2 La + x a — xj

10.VI.1702 (LMG III, S. 702) behauptete er bereits, das Integral über eine rationale
Funktion könne keine anderen transzendenten Bestandteile als Kreisbögen und
Logarithmen enthalten. Am 5.VIII.1702 sandte er ein diesbezügliches MS. nach Paris, wo
es in der LIMP 1702 (BJC I, S. 393/400, lateinischer Auszug in den AE I 1703)
abgedruckt wurde.

Leibniz hielt die Behauptung Johanns für unrichtig und glaubte, Integrale wie

/ a4Ax4 könnten weder durch Kreisbögen noch durch Logarithmen dargestellt
werden (LMG V, S. 359/61). Johann gab jedoch später die Zerlegung a4 + x4

(a2 4~ x2)2 — 2a2 x2 (a2 + x2 + ax\/2) («2 - x2 — ax an, vermittels deren
die behauptete Darstellung auch in diesem Falle bestätigt werden konnte: AE VI 1719
(BJC IT, S. 403/04). Jakob, der von Leibniz am 3.XII.1703 (LMG III, S. 79/80) auf
das Integral hingewiesen worden war, durchschaute den Sachverhalt nicht, sondern
trat in der Antwort vom 20.IV.1704 (LMG III, S. 86/87) der unrichtigen Meinung
LEiBNizens bei.

372 Jakob deutet am 2.VIII.1704 (LMG III, S. 90/91) an, er besitze ein Verfahren,
um JuV dx (p gebrochen) auf eine Normalform zu reduzieren, falls u ein Polynom
m-ten und v ein Polynom n-ten Grades in x sei (m > n) und sich aus v kein Faktor
(p — l)-ten Grades abspalten lasse. Leibniz versteht zunächst nicht, um was es sich
handelt (Antwort vom 28.XI.1704 LMG III, S. 93/94) und erhält hierauf am
28.11.1705 (LMG III, S. 97) ein Erläuterungsbeispiel.

Aus diesem geht hervor, dass Jakob an einen Ansatz der Form juvp
1

dx Evv +
-f Jvr>p—'1 dx (U, V Polynome in x) in unbestimmten Koeffizienten denkt. Er behauptet,
dass der Grad von V kleiner als n — 1 gemacht werden kann. Die Einzelheiten gehen aus
den Aufzeichnungen in Art. 261/64 und 276 hervor (Nachlass, Stück 3 BKC, S. 1007/17).
Eine frühere Studie dieser Art findet sich in Art. 220. Sie ist im Anschluss an Art. 219 214

entstanden und bringt hübsche Einzelsätze über elementar ausdrückbare irrationale
Integrale, dringt jedoch noch nicht zu allgemeineren Gesichtspunkten vor.

Jetzt weiss Leibniz, was Jakob meint. Er sendet diesem eine ältere Aufzeichnung
(LMG III, S. 104/08) als Beilage zum Brief vom April 1705 (LMG III, S. 98/103). Wir
kennen noch einen andern Entwurf dieser Art (LMG V, S. 366/77), der jedoch als zu
umfänglich nicht übersendet wurde. Leibniz verwendet im Grunde Jakobs Verfahren,
erweitert es jedoch, indem er u (x) nicht mehr als Polynom, sondern als beliebige rationale

Funktion von x ansieht.
Als Leibniz dieses MS. niederschrieb, kannte er wohl bereits Newtons Tractatus

de quadratura curvarum (Opera 1s4 i)? der als Anhang zur Optik (London 1704) gedruckt
ist. Das dortige Verfahren, stark verwandt mit dem Vorgehen Jakobs und LEiBNizens,
stammt im wesentlichen aus der erst 1736 zum Druck gekommenen Methodus fluxionum
et serierum infinitarum (Erstdruck nach dem lateinischen Original Opera I, S. 389/518),
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Kap. 10 (etwa S. 483/87). Die LEiBNizsche Darstellungsweise ist umfassender und
durchsichtiger als die der beiden Partner.

373 Schon im Brief vom April 1703 (LMG III, S. 71) erkundigt sich Leibniz nach
der Spieltheorie Jakobs, von deren Existenz er einmal gehört habe. Am 3.X.1703
(LMG III, S. 77/78) berichtet Jakob über das vor langen Jahren begonnene Buch,
dem nur mehr die Anwendung der Wahrscheinlichkeitstheorie auf das bürgerliche
Leben fehle. Dann folgt ein Hinweis auf das Haupttheorem, das Gesetz der grossen
Zahlen, wonach mit der Anzahl der Beobachtungen auch die Sicherheit der Ergebnisse
wächst. Gegen diesen Gedanken wendet sich Leibniz in mehreren Briefen und lässt
sich von Jakob nicht überzeugen.

374 Basel 1704 BKC, S. 955/75.
375 Prop. 53 bezieht sich auf Art. 174 der Med. 12L prop. 56 auf Art. 175 125, prop. 58

auf Art. 217 17o} prop. 59 auf Art. 177 i27 und 150 97 und prop. 60 auf Art. 170 n7.
376 Jakob gibt die Reihe für (1 + n)v mit dem Bemerken, sie sei den Geometern

allgemein bekannt, und unterdrückt den Beweis, „um nicht zu ausführlich werden zu
müssen". Das Interpolationsverfahren und die Erhebung zu einer unbestimmten
Potenz, sagt er, lassen sich auf die nämliche Grundlage stützen.

377 Jedoch ohne Hinweis auf die LEiBNizsche Abhandlung in den AE IV 1693 2+2.
378 Hier wird zwar nicht Leibniz zitiert, wohl aber dessen vorhin erwähnte Abhandlung

in den AE IV 1693. Dazu tritt das in Art. 177 der Med. i27 angedeutete Verfahren
durch Grenzübergang aus der binomischen Entwicklung, jetzt allerdings wesentlich
verbessert und beinahe im modernen Sinne streng durchgeführt.

379 Erwähnt sei etwa (prop. 53 *= BKC, S. 960) der Nachweis dafür, dass
1 3 5 9n 1

p2n
2

' ï 6
' ' ' '

2n
mit °° gegen strel3t* JAK0B betrachtet nebenher

2 4 6 2nauch q2n ö • F '
n

' ' ' ' ö—TT uncl stellt durch gliedweisen Vergleich der Faktoren
o o / Zyl + 1

fest, dass ps«, < ®». Wäre nun lim p2» > 0, so auch lim q%t > 0. Es ist aber P2nd2>i
n oo n oo

1

9yi ^
also lim P2nq2n 0 und folglich auch lim p-2» =- lim q2n 0.

n -> oo n -> oo oo
380 Jakob denkt hier nicht an unsere Tafeln, sondern an die damals üblichen, bei

denen Sinus und Tangens als Streckenverhältnisse mit dem Nenner 10 10 aufgefasst
werden. Deshalb fügt er hinzu: lg sin cp bezw. lg tg cp ^ 0, falls arc cp 10-10, also cp

im Gradmass 4 • 60-5 + 27 • 60-6. Für noch kleinere Winkel sind die fraglichen
Logarithmen negativ.

381 in BKC, S. 974 wird darauf hingewiesen, dass Jakob an die Unbestimmtheit
d'/
dx

111 e^nem singulären Punkt der aus F (x, y) 0 gekennzeichneten Kurve gedacht
MF MF

haben könnte, falls —:— —— 0.
Mx My

382 Das wissen wir aus dem Brief Jakobs an Leibniz vom 2.VIII.1704 (LMG III,S. 91/92). Leibniz sah die neue Reihe als bedeutsam an, konnte aber die Umrechnung
nicht nacherfinden: Brief an Hermann vom 24.XI.1704 (LMG IV, S. 265) und an
Jakob vom 28.XI.1704 (LMG III, S. 94).

383 Brief an Leibniz vom 21.1.1705 (LMG IV, S. 267/68).
384 Brief an Leibniz vom 28.11.1705 (LMG III, S. 96).
385 Brief an Hermann vom 7.IV.1705 (LMG IV, S. 271/72) und an Jakob vom

April 1705 (LMG III, S. 103).
386 Eulers Methode wird erstmals entwickelt in der Abhandlung De seriebus

divergentibus (in der Berliner Akademiegelesen am 27.X.1746, der Petersburger Akademie
vorgelegt am 12.III.1753, gedruckt in den Novi commentarii ac. sc. Petrop. 5, 1754/55
S. 205/37, ausgegeben 1760 Opera I, 14, Leipzig 1924, S. 585/617) und ist von hier
übergegangen in die Institutiones calculi difjerentialis, Petersburg 1755 Opera I, 10,
Leipzig 1913, Teil 2, Kap. 1. Euler geht, um es kurz modern zu sagen, von einer
alternierenden Potenzreihe y a± x — ct2 v2 ^3 x3 — ci4 x4 aus. Er setzt
ä t: (1 — t) und entwickelt nach Potenzen von t :

V «i t p (a1 — a2) t2 + (at — 2a2 -f a3) U -f
Indem er sich das Koeffizientenschema der ak angeschrieben denkt, kann er

a 1 «2 Aai, ai — 2a2 + a3 A2ai usw. setzen. Sein Vorgehen ist rein formalerNatur. Mit x 1, t - 1:2 erhält er 111ai a2 + a3 ' a4 ± * — TT ai ai F — A'2 a1 P • • •
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Sein Verfahren führt auf eine Konvergenzverstärkung, falls die Glieder ak der
alternierenden Reihe unbeschränkt abnehmen.

Es kann sein, dass Euler von Hermann, neben dem er 1727/31 in Petersburg
wirkte und mit dem ihn auch verwandtschaftliche Bande verknüpften, eine Anregung
für seine Untersuchungen empfangen hat.

387 Art. 269 der Med. handelt von der Schwerpunktsbewegung zweier Körper,
die gleichförmig bewegt werden, Art. 270 von der Schwerpunktsbewegung beim Zusam-
menstoss zweier vollkommen unelastischer bezw. elastischer Körper, Art. 271 von der
dabei statthabenden Erhaltung der lebendigen Kraft. Art. 272 (Nachlass, Stück 9

BKC, S. 1031/32) ergänzt das in Art. 251 347 Gesagte. Art. 277 bezieht sich auf die
Ruhelage einer beschwerten Rolle, die an einem in den Endpunkten festgehaltenen
Faden hängt. Art. 278 handelt von der Ruhelage einer Schnur, die über zwei feste
Rollen A und B gelegt ist und einerseits von zwei gleichgrossen Gewichten a und b

an den Schnurenden, andererseits von einem an loser Rolle zwischen A und B hängenden
Gewicht C < a + b) gespannt wird.

Art. 281 enthält eine Studie über die Zentralbewegung. Unter der Annahme, dass
y als die unabhängige Veränderliche gilt, wird aus einer Infinitesimalbetrachtung die

' d^ xProportionalität zwischen der Zentripetalbeschleunigung und Vx2 + ^2 ^2 fest~

gestellt. Als Erläuterungsbeispiel dient die Rechnung an der Ellipse. Daraus ermittelt
Jakob bei gegebener Zentripetalbeschleunigung unter Mitverwendung des Flächensatzes

die zugehörige Kurvengleichung. Veranlasst ist diese Untersuchung durch das
in Newtons Philosophiae naturalis principia mathematica 15U Buch I, Abschnitt VIII,
prop. 40 Gesagte. Später haben sich Hermann (Brief an Johann vom 12.VII.1710
BJC I, S. 469/70) und Johann (Antwort vom 7.X.1710 BJC I, S. 470/80) mit dem
nämlichen Problem befasst.

Schliesslich bestimmt Jakob in Art. 286 (Nachlass, Stück 30 BKC, S. 1124/28),
der vom 12.XII.1704 datierten letzten Aufzeichnung der Med., die Wirkungslinie und
den Gesamtimpuls von unendlich vielen Stössen (in einer Ebene), die aus verschiedenen
Richtungen auf einen starren Bogen in dieser Ebene ausgeübt werden.

388 Art. 273 (Nachlass, Stück 26 - BKC, S. 1105/08) handelt vom Spannungszentrum.

Art. 280 gibt Jakobs abschliessende Ansicht über die Biegung eines
ausgedehnten elastischen Bandes wieder. Auf ihn stützt sich die Akademie-Abhandlung von
1705 (BKC, S. 976/89). Eine interessante Anwendung findet sich in Art. 282 (Nachlass,

Stück 28 BKC, S. 1115/18) : Eine Uhrfeder soll so auf einen Conus aufgewickelt
werden, dass die Spannkraft der Feder für die Uhrbewegung immer gleich gross bleibt.
Welche Form hat der Conus

389 Art. 274 handelt von der Stelle, an der uns auf der Erde der Planet Mars im
hellsten Licht erscheint. Art. 275 bezieht sich auf ein Problem von J. K. Eisenschmidt :

Einem gegebenen Vieleck ein anderes so umzubeschreiben, dass entsprechende Seiten
parallel sind und die Abstände zusammengehöriger paralleler Seiten zu den äusseren
Seiten in gegebenem Verhältnis stehen. In Art. 283 (datiert 1.XI.1704) wird eine von
Ph. Naudé stammende bewegungsgeometrische Aufgabe gelöst, die auf eine Kurve
4. Ordnung führt. Art. 284 (datiert : 28.XI. 1704) befasst sich mit einem von J. Chr. Fatio
stammenden Problem über Kreisbögen, das vermittels der Sinus-Uinie gelöst wird.
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Bernoulli, Nikiaus der Neffe (1687—1759) : Z. 1, 22. -> Jak. Bern. (1713) : A. 1.

Bibliothèque universelle et historique BUH (seit 1686): A. 165.
Bie, Alexander de (1620—1690): Z. 4.

Billy, Jacques de (1602—1679): A. 9.

Bischoff, Johann Jakob (um 1700): Z. 19.
BJC ~ Bernoulli, Joh., Opera (1742, eig. 1743): A. 43.
BJS Bernoulli, Joh., Briefe (1955) (selbständige Erwähng.): A. 5, 14,

29, 59, 84, 103, 118/19, 122, 132, 134/35, 137/39, 186, 189, 194, 204, 235,
271, 301, 333.

BKC «w Bernoulli, Jak., Opera (1744): A. 1.

Bockelmann, Johann Friedrich (1633—1681): A. 20.
Bodenhausen, Rudolph Christian Freiherr v. (|1698): A. 104, 158.
Bosse, Abraham de (1611—1678): (1648): A. 18.
Bossut, Charles (1730—1814): (1792): A. 303.
Boyle, Robert (1627—1691): Z. 4; A. 65.
Brahe, Tyges (1546—1601): (1573): A. 16.
BUH Bibliothèque universelle et historique: A. 165.
Cantor, Moritz (1829—1920): (1901): A. 61.
Cardano, Geronimo (1501—1576): Z. 7.

Carruccio, Ettore: (1955): A. 178.
Catelan, François, Abbé (17. Jh.): Z. 5; A. 102, 194.
Cavalieri, Bonaventura (1598 ?—1647): (1632): A. 115.
Clairaut, Alexis Claude (1713—1765): Z. 20; (1733): A. 340.
Clavius, Christoph (1537—1612): (1591): A. 21.
Clerselier, Claude (1614—1686): -> Descartes (1657/67): A. 48, 182.
Cluver, Detlev (1650 ?—1708): Z. 4; A. 25, 262.
Collins, John (1625—1683): A. 190; (1664): A. 197.
Comiers, Claude de (f 1690): A. 18.

Coppernicus, Nikolaus (1473—1543): A. 12, 15.

Craig, John (1660 ?—1731): (1685): A. 152.

Cramer, Gabriel (1704—1752): Z. 1; - BJC (1742): A. 43; -> BKC (1744):
A. 1, 177, 308, 329, 333/35, 353.

Debeaune, Florimond (1601—1652): Z. 14, 16; A. 182/83, 193.

Desargues, Girard (1591—1661): A. 18.

Descartes, René (1596—1650): Z. 3/4, 7/10, 23; A. 21, 48, 82, 178, 182/84;
Géométrie (1637): Z. 4; A. 28.
lat. Fassg. (Geometria) (1659/61): Z. 8, 15; A. 28, 47, 83
Lettres (1657-67): A. 48, 182.

Dierckens, (um 1695): Z. 17; A. 269.
D.T. =î Tschirnhaus: A. 152.
Dutens, Louis (1730—1812): -> Leibniz (1768): A. 7a.

Euklid von Alexandria (um 300 v. Chr.): Z. 16; A. 21.
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Eisenschmidt, Johann Kaspar (1656—1712): A. 389.

Euler, Leonhard (1707—1783): Z. 22; A. 386.
Eutokios von Askalon (* 480): A. 47.
Faesch, Sebastian (1647—1712): A.63.
Fatio de Duillier, Johann Christoph (1656—1720): Z. 22; A. 118, 389.
Fatio de Duillier, Nikolaus (1664—1753) : Z.l, 8, 21 ; A. 75, 120, 311, 367.

Fermât, Pierre de (1601—1665): (1657): A. 83; (1679): A. 82/83, 133, 264;
Œuvres (1891—1910): A. 180.

Fleckenstein, Otto Joachim: (1949): A. I9.
Florentiner Aufgabe: Z. 13; A. 115, 172.
Fontenelle, Bernard Le Bovier de (1657—1757): A. 289.
Fritz, Johann Jakob (1671—1716): Z. 8.

Fullenius, Bernhard (1640—1707): Z. 4.

G*** L'Hospital: A. 183.
Galilei, Galileo (1564—1642): A. 11, 172; (1638): A. 107, 272.
Geometria Descartes, Géométrie, lat. (1659/61) : Z. 8; A. 28, 50, 54, 57,

61, 79/81, 83/84; (1695): A. 61, 74. -> Jak. Bernoulli (1695).
Gerhardt, Carl Immanuel (1816—1899): A. 328. -> Leibniz (1849/63):

A. 3; (1875/90): A. 102; (1899): A. 183.
Giornale dedetterati GdL (seit 1668): A. 108.
Girard, Albert (1595—1632): (1629): A. 115.
Grandi, Guido (1671—1742): (1699): A. 172; (1728): A. 172.
Gregorius a Sancto Yincentio (1584—1667): A. 120.
Gregory, David (1661—1708): Z. 21; A. 172, 353.
Gregory, James (1638—1675) : Z. 13, 16; A. 120, 190; Vera quadr. (1667):

A. 100, 151; Geom. (1668): A. 111/12, 120; Exerc. geom. (1668):
A. 113, 120; Mem. vol. (1939) GT : A. 190.

Guldin, Paul (1577—1643): (1635/41): A. 94.
Halley, Edmond (1656—1742): A. 127.
Harscher, Nikolaus (1683—1742): Z. 21.
Harsdörffer, Georg Philipp (1607—1658): (1651): A. 18.
Haussner, Robert (1863—1948): Jak. Bernoulli (1899): A. 2.

Henry, Charles (1859—1927): -* Fermât (1891/1910): A. 180.
Hermann, Jakob (1678—1733): Z. 16, 20/22; A. 7a, 272, 311, 316, 365, 368,

370, 382/83, 385/86.
Hevelius, Johann (1611—1687): (1668): A. 16.
Hippokrates von Chios (um—400): Z. 12.
Histoire de V académie Royale des sciences... avec les Mémoires de mathéma¬

tique et de physique e= HMP (seit 1699): Z. 19; A. 266.
Histoire des ouvrages des sçavans & HOS (seit 1687): Z. 14; A. 121.
Hobbes, Thomas (1588—1679): A. 112.
Hofmann, Johann Jakob (1635—1706): Z. 2.
Hofrnann, Joseph Ehrenfried: (1931): A. 151, 221; (1942): A. 41; (1943):

A. 124; (1944): A. 83; (1949): A. 92, 120, 132, 239; (1954): A. 133;
-> Wieleitner (1933/34): A. 153.

IJooke, Robert (1638—1703): Z. 4, 15.
Horsley, Samuel (1733—1806): Newton (1779/85): A. 154.
HOS Histoire des ouvrages des sçavans: Z. 14; A. 121.
Hudde, Jan (1628—1704): Z. 4, 7; A. 54, 57, 81/83, 136.
Huygens, Christiaan (1629—1695): Z. 4/5, 8/9, 14/15; A. 65, 76/80, 102,

106/07, 121, 157/58, 165, 172/73, 183, 191/92, 194, 198, 206, 209, 212,
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219; 322; Œuvres <*= HO (1888/1950): A. 65; (1673): A. 180, 355; (1690) :

A. 164; (1724): A. 100.
Jablonski, Johann Theodor (1654—1731): A. 367.
Jallabert, Jean (1712—1768): A. 29.
Journal des sçavans JS (seit 1666): Z. 5; A. 9.

Jungius, Joachim (1587—1657): (1627): A. 107.
Justel, Henri (1620—1693): Z. 4.

Klingenstierna, Samuel (1698—1765): A. 344.
Kowalewski, Gerhard (1876—1950) : ~>- Jak. Bernoulli (1909) : A. 1, 87, 177;

-> Joh. Bernoulli (1914): A. 101; ^ Leibniz (1908): A. 110.
La Hire, Philippe de (1640—1718): Z. 17; A. 270.
LB G Leibniz, Briefwechsel (1899): A. 183.
LD Leibniz, Opera (1768): A. 7a.

Leclerc, Daniel (1652—1728): A. 118.
Lefèvre-Gineau, Louis (1751—1829): > L'Hospital (1781): A. 138.
Leibniz, Gottfried Wilhelm (1646-1716): Z. 1, 4/5, 8/12, 15/18, 20/23; A. 3,

7A 9, 21, 25, 45, 60, 63, 84, 92/93, 96, 102, 104, 107/08, 110, 114, 120/21,
124/125, 129, 132, 136, 141, 149, 151/53, 157/58, 160, 165, 167, 169, 172,
181, 183/87, 191/94, 198, 203/04, 206/09, 212, 214, 219/21, 225/26,
230/31, 237, 239,242/44,251/52, 254/55, 260,262/69, 271/76, 280,284/85,
287, 289, 291/92, 311, 322, 328, 337, 344, 349, 353, 355/57, 362, 364,
366/67, 370/73, 377/78, 382/85.
Opera LD (1768): A. la\ Briefwechsel LB G (1899): A. 183; Math.

Sehr. LMG (1849/63): A. 3; Philos. Schriften LPG (1875/90):
A. 102; Scientia infiniti (beabsichtigtes Werk): Z. 12; A. 124/25,
149, 214.

Lemoine, Etienne (1624—1689): A. 19.
Léotaud, Vincent (1596—1672): (1654): A. 153.
L'Hospital, François-Guillaume Marquis de (1661—1704): Z. 11, 14/18,

20/21 ; A. 63, 99, 101, 133, 138, 141, 158, 172, 183, 185/86, 191, 193/95,
198/200, 203/04, 209, 223, 225, 230/31, 233, 235/37, 239, 241, 254,
268/72, 276, 278, 292, 332/34, 336, 362; (1696): Z. 16; A. 63, 138, 181,
194,198,203,225,229/31.

Linsenbarth, A. (urn 1900): (1910): A. 1.

Lionne, Artus de (1583—1663): (1654): A. 153, 158.

Lipstorp, Daniel (1631—1684): (1653): A. 12.
LMG Leibniz, Math. Sehr. (1849/63): A. 3.

Loria, Gino (1862—1954): (1903): A. 74; Torricelli (1919): A. 178.
Lostanges, Claude, Marquis de (f 1690): Z. 3.

LPG Leibniz, Philos. Sehr. (1875/90): A. 102.
Mahnke, Dietrich (1884—1939): (1926): A. 221.
Malebranche, Nicolas (1638—1715): Z. 3, 11.

Malfatti, Gian Francesco (1731—1807): A. 21.
Masères, Francis (1731—1824): •••> Jak. Bernoulli (1795, 1796): A. 2.

Maubuisson, M. de (17. Jh.): A. 77.
Med. Jak. Bernoulli, Meditationes et annotationes (1677/1705) : Z. 1 ; A. 6.

Megerlin, Peter (1623—1686): Z. 3, 7; (1680): A. 15; (1682): A. 15.
Mémoires de mathématique et de physique MMP (1692/93): A. 194.

Mencke, Otto (1644—1707): Z. 1, 17, 23; A. 63, 120, 135, 185,198, 273, 276,
284, 367.

Mengoli, Pietro (1625—1686): Z. 8; (1650): A. 89, 91; (1659): A. 89.
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Mercator, Nikolaus (1620—1687): Z. 16; (1668): A. 73, 123.

Merian, Paul (1795—1883): (1860): A. ld.
Mersenne, Marin (1588—1648): A. 48.

Middendorf, Lubert von (1593—1648): (1648): A. 18.

MMP Mém. math, phys.: A. 194.

Moivre, Abraham de (1667—1754): A. 366.

Naudé, Philipp (1654—1729): A. 389.

Neper, John (1550—1617): (1620): A. 18, 51.

Newton, Isaac (1643—1727) : Z. 10, 12, 16/18, 21 ; A. 93, 121, 124, 157, 258,

276, 366/67; Opera (1779/85): A. 154, 267, 372; (1687): Z. 12; A. 154,

387; (1704): A. 372; (1736): A. 372.
Nicole, Pierre (1625—1695): (1662): A. 37.
Nouvelles de la république des lettres — NRL (seit 1684): A. 102.

Oldenburg, Heinrich (1615 ?—1677): Z. 10; A. 121, 366.

Ostwalds Klassiker OKI. Nr. 46 Stäckel (1894): A. 1; Nr. 107/08
-> Haussner (1899) : A. 2; Nr. 162 Kowalewski (1908) : A. 110; Nr. 171

-> Kowalewski (1909): A. 1, 87; Nr. 175 -> Linsenbarth (1910): A. 1;
Nr. 194 -> Kowalewski (1914): A. 101; Nr. 211 -> Schafheitlin (1924) :

A. 138.
Oughtred, William (1574—1660): (1677): A. 58.

Ozanam, Jacques (1640—1717): (1691): A. 9, 21.

Papin, Denis (1647—1712 : Z. 5.

Pascal, Biaise (1623—1662): A. 120.
Paulian, Aimé-Honoré (1722—1802 : ->• L'Hospital (1768): A. 138.

Peletier, Jacques (1517—1582): A. 21.

Perrault, Claude (1613—1688): A. 192.
Philosophical Collections : A. 25.

Philosophical Transactions — PT (seit 1666): A. 9.

Procissi, Angelo: (1934): A. 74.

Ptolemaios, Klaudios (85 ?—165 : A. 12.

Renaldini, Carlo (1615—1698): Z. 16; (1668): A. 61.
Renau d'Eliçagary, Bernard (1652—1719): (1689): A. 165.
Ricci, Michelangelo (1619—1682): (1668): A. 73.

Richter, Johann (1557—1616): (1598): A. 58.

Roberval, Giles Persone de (1602—1675): A. 112.
Sauveur, Joseph (1653—1716): Z. 15, 17; A. 234, 268.
Scaliger, Joseph Justus (1540—1608): (1606): A. 9.

Schafheitlin, Paul (1861—1924): -> Joh. Bernoulli (1922, 1924): A.'138.
Scherfïer, Karl (1716—1783): L'Hospital (1764): A. 138.
Schönauer, Emanuel (1626—1673): Z. 2.

Schooten, Frans van (1615—1660): Z. 8; A. 21, 54, 57, 83; -> Viète (1646):
A. 21 ; Descartes, Geometria (1659/61): Z. 8; A. 28, 47, 54, 57; (1657):
A. 18,53, 61.

Schwenter, Daniel (1585—1636): Z. 2; (1636): A. 8, 18.
Sluse, René-François (1622—1685): (1668): A. 111.
Speiser, Andreas: (1939): A. 7e, 12/13, 15; (1945): A. 89.
Spiess, Otto: Z. 1 ; A. 333; -> BJS (1955): A. 4; siehe weiter unter BJS;

(1944): A. 29; (1945): A. 89; (1948): A. 7/, 213.
Spleiss, Stephan (1623—1693): A. 52.
Spon, Jakob (1647—1685): A. 10.
Stäckel, Paul (1862—1919): (1894) A. 1.
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Stone, Edmond (1700 ?—1768): -> L'Hospital (1730): A. 138.
Sturm, Johann Christoph (1635—1703): Z. 8; (1689): A. 94.
Syllabus controversiarum (1662): Z. 3.
Tannery, Paul (1843—1904): -» Fermât (1891/1910): A. 180.
Taylor, Brook (1685—1731): Z. 19; (1715): A. 313/14.
Tenca, Luigi: (1953): A. 172.
Torricelli, Evangelista (1608—1647): Opere TO (1919): A. 178, 180.
Tschirnhaus, Ehrenfried Walter Freiherr von (1652—1708): Z. 12, 16;

A. 135, 151, 153, 158, 248, 251, 276.
Turnbull, Herbert Westren: -> J. Gregory (1939): A. 190.
Ursinus, Benjamin (1587—1633 : (1624): A. 18.

Yarignon, Pierre (1654—1722): Z. 18, 21; A. 186, 262, 289, 293, 310, 364.
Vassura, Giuseppe: -> Torricelli (1919): A. 178.
Vastel, L. G. F. (um 1800): Jak. Bernoulli (1801): A. 2.

Viète, François (1540—1603): Z. 7; A. 61; SuppL geom. (1593): A. 21, 53,
55; Varia responsa (1593): A. 90, 128; Sect. ang. (1615): A. 362; Opera
(1646): A. 21, 53, 55, 90, 128, 362.

Ville, Antoine de (17. Jh.): (1628): A. 61.
Viviani, Yincenzo (1622—1703): (1692): A. 172/73.
Vlacq, Adriaen (1600 ?—1667): (1633): A. 18.
Voider, Bernhard de (1643—1709): Z. 4; (1681): A. 23.

Yooght, Nikolaus (17. Jh.): (1682): A. 21, 58.
Vossius, Isaac (1618—1689): Z. 4.

Waldkirch, Esther Elisabeth (* 1660): Z. 3.

Wallis, John (1616—1703) : Z. 4, 7/8, 10, 16, 21/23; A. 93, 172, 259; (1655) :

A. 98; (1656): Z. 7; A. 26, 124; (1659): Z. 7; A. 26, 112; (1670/71):
Z. 7; A. 26, 67, 123; (1685): Z. 8; A. 93, 124, 172; (1693) : Z. 21 ; A. 124,
172, 258, 366; (1699): A. 124, 366/67; ^ Oughtred (1677): A. 58.

Wieleitner, Heinrich (1874—1931): (1931): A. 151, 221; (1933/34): A. 153.

Witt, Jan de (1625—1672): (1661): A. 50.

Wittich, Christoph (1625—1687): A. 19.

Wolf, Rudolf (1816—1893): (1858): A. 7<*.

Zwinger, Theodor (1658—1734): (1684): Z. 7; A. 52«.
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CHRONOLOGISCHES VERZEICHNIS

Das nachfolgende chronologische Verzeichnis der benutzten
Zeitschriftenaufsätze und Briefe des 17. Jh. ist nach dem

Gregorianischen Kalender geordnet, auf den sich auch die
sämtlichen im Text und in den Anmerkungen gemachten
Angaben beziehen. Der Leser soll in möglichster Kürze bei
Briefen über Absender und Empfänger, bei Zeitschriften über
das Erscheinen orientiert werden. Links oben erscheint das

Gregorianische Datum, rechts oben die am leichtesten zugängliche

Stelle des betreffenden Stückes im Druck. Ferner folgen
die Angaben über das Auftreten im Haupttext (unter alleiniger
Benennung des Art. nach vorgesetztem Z.) und in den Anmerkungen

(unter alleiniger Benennung der Anmerkungsnummer
nach vorgesetztem A.). Ferner sind Bezugnahmen auf die Medi-
tationes von Jakob Bernoulli und auf die Abdrucke einzelner
Artikel der Meditationes in den Stücken des Nachlasses
aufgenommen. In den anhangsweise beigefügten Registern folgen die
zu den einzelnen Artikeln der Meditationes und die zu den
Nachlass-Stücken gehörenden Anmerkungsnummern. Verwendete
Abkürzungen mit Hinweisen auf die Stellen in den Anmerkungen,

wo die genauen Titel zu finden sind:

AE Acta eruditorum (seit 1682): A. 1, 120, 272, 275, 312, 367.
BJC Joh. Bernoulli, Opera (1742): A. 43.
BJS Joh. Bernoulli, Briefwechsel (1955): A. 4.
BKC Jak. Bernoulli, Opera (1744): A. 1.
BUH M Bibl. unie, et hist, (seit 1686): A. 165.
DO R. Descartes, Œuvres, ed. Gh. Adam/P. Tannery, Paris

1897/1910 (12 Bde).
GdL Giornale de' letterati (seit 1668): A. 108.
Geometria Descartes, Géométrie, 2. lat. Ausgabe (1659/61): A. 28.
GT J. Gregory, Mem. vol. (1939): A. 190.
HMP H ist. ac. sc. + Mém. (seit 1699): A. 266.
HOS Hist. ouvr. sçav. (seit 1687): A. 121.
HO Huygens, Œuvres (1888/1950): A. 65.
JS Journal des sçavans (seit 1666): A. 9, 312.
LBG Leibniz, Briefwechsel (1899): A. 183.
LD Leibniz, Opera (1768): A. 7a.
EMG — Leibniz, Math. Sehr. (1849/63): A. 3.
LPG Leibniz, Philos. Sehr. (1875/90): A. 102.
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Med. Jak. Bernoulli, Meditationes et annotationes (1677/1705):
A. 6 (wird nach den Artikeln zitiert).

MMP ^ Mém. math. phys. (1692/93): A. 194.
NRL Nouvelles de la rèp. des lettr. (seit 1684): A. 102.
PT Philosophical Transactions (seit 1666): A. 9.

12.IX.
IX.

20.11.

1638

Descartes—Mersenne A. 48
Debeaune—Descartes A. 182

Descartes—Debeaune

1639

A.182/83

1645

VI. Descartes—X A. 182

14.VII. Hudde—Schooten

26.1. Hudde—Schooten

1657

A. 54

1658

A. 57

1666

23.IX. JS (Billy) A. 9

l.XI. PT (Billy) A. 9

1670
15. IX. Gregory—Collins A. 190
29. XI I. Gregory—Collins A. 190

27.V. Gregory—Collins

1671

A. 190

1676

23.VI. Newton—Oldenburg für Leibniz
A. 93, 124, 366/67

17.VIII. JS (Comiers) A. 18

27.VIII. Leibniz-Oldenburg Z. 10; A. 132
3.XI. Newton—Oldenburg für Leibniz

A. 93, 121, 124, 367

1678

28.11. JS, Nr. 7 (Leibniz) A. 184
23.V. JS, Nr. 18 (Leibniz) A.355

1680

25.111. JS (Spon) A.HO

1682

II. AE (Leibniz) A. 25, 92

VI. AE (Leibniz) A.184, 264

XI. AE (Tschirnhaus) A. 135

DO II, S. 352/62
DO II, S. 514/17

DO II, S. 510/19

DO IV, S. 227/31

Geometria I, S. 407/506

Geometria I, S. 507/16

Nr. 26
1, Nr. 1

GT, S. 102/04
GT, S. 148/50

GT, S. 187/91

EMG I, S. 100/13

Nr. 16
EMG I, S. 114/22

LMG I, S. 122/47

EMG VII, S. 119/20
LMG Y, S. 116/17

Nr. 8

LMG Y, S. 118/22
LD III, S. 145/50
S. 364/65
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1683

16.VIII. JS, Nr. 21 (Jak. Bernoulli) A. 30

X. AE (Leibniz) A. 96

AE (Tschirnhaus) Z. 12; A. 151

29.XI. JS, Nr. 22 (Jak. Bernoulli) A. 30

1684

25.1. (Jak. Bernoulli) Dissertation
Z. 5; A. 9, 15, 18, 21, 24, 30, 34/41;
Med. 1, 28/29, 39/40, 49

24.IV. JS, Nr. 12 (Jak. Bernoulli) A. 32

V. AE (Leibniz) Z. 12; A. 152
31.VII. JS, Nr. 28 (Jak. Bernoulli) A. 30

IX. AE (Jak. Bernoulli) A. 32
X. AE (Leibniz), A. 110
XII. AE (Leibniz) A. 152

1685

18.VI. JS, Nr. 19 (Jak. Bernoulli) A. 30
26.VIII. JS, Nr. 25 (Jak. Bernoulli) A. 60
17.IX. JS, Nr. 29 (Jak. Bernoulli) A. 30
19.IX. (Jak. Bernoulli) Dissertation

Z. 6/7; A. 27, 30, 32, 37, 42, 60;
Med. 35, Zusatz zu 8 nach 40, 77

19.XI. JS, Nr. 31 (Jak. Bernoulli)
A. 10, 30; Med. 11

1686

22.11. (Jak. Bernoulli) Dissertation
Z. 7; A. 10, 42, 60, 62, 64, 67;
Med. 52, 77, 91, 138

II. AE (Jak. Bernoulli) A. 31

19.IV. (Jak. Bernoulli) Dissertation Z. 6; A. 65
VI. AE (Leibniz) A. 141, 152
VII. AE (Jak. Bernoulli) A. 32

IX. AE (Jak. Bernoulli) A. 66
XII. AE (Jak. Bernoulli) A. 33

1687

I. AE (Tschirnhaus) A. 135
14.11. (Jak. Bernoulli) Probevorlesung

Z. 7; A. 12, 18, 21, 33, 52, 58, 60, 67;
Med. 12, 28/29, 34,38,52,58,62,72,138

VI AE (Jak. Bernoulli) A. 33
IX AE (Tschirnhaus) A. 153
IX NBL (Leibniz) A. 102
X NBL (Huygens) A. 102
XI. AE (Jak. Bernoulli) A. 74/76; Med. 108

BKC, S. 168/70
EMG VII, S. 125/32
S. 433/37
BKC, S. 172/73

BKC, S. 174/92
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