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In stating the theorems in § 3, we give explicitly the restrictions

that must be placed on the ground field k and also on the

group W. For each theorem it is briefly indicated how the

result may be proved. Sometimes a proof in general terms is

known, but in the majority of cases it has been necessary to

verify the properties one by one for all the irreducible groups
over G and then show that (with the exception of (vi)) they
extend to the reducible groups. These two distinct methods will
be referred to as proving and verifying respectively. Perhaps
the most remarkable fact is that the result (iv) of § 3 which

appears to concern itself entirely with discrete infinite groups
generated by reflections has been proved only by topological
methods (spectral sequences and Morse theory). A direct
proof, avoiding the topology, would be interesting. Further
outstanding problems are the discovery of proofs for those

properties that have so far only been verified, and the extension
of these theorems to more general fields k, especially to the case

where k is of finite characteristic.

§ 2. The Connection between Lie Groups
and Reflection Groups.

Let G be an n dimensional compact semi-simple Lie Group.
A maximal connected abelian subgroup of G forms a submanifold
of G which is a torus of dimension r (the rank of G) [10]. This
is called a maximal torus T of G. The inner automorphisms
of G by elements of NT, the normaliser of T, induce a finite group
of automorphisms of T. These in turn induce linear transformations

of the tangent space Vr to T at the identity e. It can
be shown that this group of linear transformations forms a
reflection group over R called the Weyl group W of G. This
group has the further property that it is crystaliographic, i.e. by
suitable choice of coordinates it is represented by a set of
matrices whose coefficients are integers, or, alternatively, if the
coordinates are chosen so that the matrices are orthogonal (so
that W is then a group of congruent transformations acting on
a Euclidean space Rr) then the angle between any two hyper-
planes of reflection of W is an integral multiple of ~/4 or ®/6.
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The converse is also true, namely that any crystallographic
reflection group over R corresponds to some compact semi-

simple Lie Group.
It can be shown that T may be covered by a Euclidean

space Rr in such a way that the singular elements of T (i.e. those
whose normalisers are of dimension strictly greater than r) map
into hyperplanes of Rr, and further, if the identity of G maps
into the origin 0 of Rr, then those planes passing through 0 are

precisely the hyperplanes of reflection of the Weyl group W. The
whole set of hyperplanes form a configuration known as the
diagram of the Lie Group G and it has the property that reflection
in any one of the planes leaves the diagram, as a whole invariant.

Now let W be any reflection group over R expressed in
orthogonal form, then W may be considered as operating on
some sphere Sr l whose centre is at 0. The hyperplanes of
reflection divide the surface of the sphere into spherical poly-
topes and it has been shown [5; p. 190] that each of these is

necessarily a simplex or a direct product of simplexes. Further,
the r hyperplanes that cut the sphere in the faces of one of these

polytopes form a fundamental set in that the corresponding
reflections generate the group. Furthermore, the volume
bounded by these hyperplanes forms a fundamental region for
W. A property of this fundamental set is given in (vi) of § 3.

Considering again the diagram of the Lie Group G, pick out
a fundamental set of hyperplanes through 0, defining a
fundamental region of the Weyl group. Then the part of the diagram
of G that lies within this fundamental region is called a Weyl
chamber. The Weyl chamber of the group G2 (the group of

automorphisms of the Cayley matrix algebra) is illustrated in
(iv) of § 3, where, for the present, the numerals are to be ignored.

§ 3. Properties of the Exponents.

(i) The ring of polynomial invariants of an r dimensional
reflection group W over k is the ring &[IX, I2, Ir] where lt is

a polynomial invariant of degree (mi -f 1). The are uniquely
determined by this property and are called the basic invariants
of the group W. The mi are called the exponents of W.
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