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SOME PROBLEMS ON FINITE REFLECTION GROUPS
by '

G. C. SuepHARD, Birmingham

§ 1. InTRODUCTION.

Let V" be an r dimensional vector space over some field £
of zero characteristic. By a hyperplane we mean a linear
subspace of V" of r — 1 dimensions. A linear transformation
on V" that is not the identity is called a reflection if it leaves some
hyperplane pointwise invariant and is of finite order. If £ = R,
the real numbers, then every reflection must be of order 2.
Let W be a finite group of linear transformations on V" such that
the elements of W which are reflections generate W. Then W
1s said to be a finite r dimensional group generated by reflections
or, more briefly, a reflection group.

The purely geometrical properties of reflection groups over
R have been discussed at length by H. S. M. CoxETER and other
authors (see the bibliography of [5]) and some of these have been
extended by the author [8] to the case &k = C, the complex
numbers. The irreductible reflection groups over C have been
enumerated, the complete list is given 1n [9; p. 301].

In this note we are primarily concerned with the algebraic
properties of reflection groups. The first theorem due to
Chevalley (see (1) of §3) states that every polynomial that is
invariant under the transformations of a reflection group can
be expressed as a polynomial in a set of r basic tnvariant forms
I;, Iy, ..., 1. Writing m; 4 1 for the degree of I, the r integers
m; are called the exponents of the group W. The remaining
theorems of § 3 are, in effect, properties of these integers.
Several of these were first noticed by CoxeTer [6] for £ = R
and further ones (together with the extension of CoXETER’s
results to the complex numbers) are due to J. A. Topp and the
author [9]. More recently the work of Borr [2] has given a
new interpretation ((iv) of § 3) to the exponents of a crystallo-
graphic group of reflections over R, connecting them with the
diagram of the corresponding Lie Group.
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In stating the theorems in § 3, we give explicitly the restric-
tions that must be placed on the ground field & and also on the
group W. For each theorem it is briefly indicated how the
result may be proved. Sometimes a proof in general terms is
known, but in the majority of cases it has been necessary to
verify the properties one by one for all the irreducible groups
over C and then show that (with the exception of (vi)) they
extend to the reducible groups. These two distinct methods will
be referred to as proving and verifying respectively. Perhaps
the most remarkable fact is that the result (iv) of § 3 which
appears to concern itself entirely with discrete infinite groups
generated by reflections has been proved only by topological
methods (spectral sequences and Morse theory). A direct
proof, avoiding the topology, would be interesting. Further
outstanding problems are the discovery of proofs for those
properties that have so far only been verified, and the extension
of these theorems to more general fields &, especially to the case
where £ 1s of finite characteristic.

§ 2. Tue CONNECTION BETWEEN LIE GROUPS
AND REeFLEcTION GROUPS.

Let G be an n dimensional compact semi-simple Lie Group.
A maximal connected abelian subgroup of G forms a submanifold
of G which 1s a torus of dimension r (the rank of G) [10]. This
is called a maximal torus T of G. The inner automorphisms
of G by elements of N, the normaliser of T, induce a finite group
of automorphisms of T. These in turn induce linear transforma-
tions of the tangent space V" to T at the identity e. It can
be shown that this group of linear transformations forms a
reflection group over R called the Weyl group W of G. This
group has the further property that it is crystallographic, 1.e. by
suitable choice of coordinates it is represented by a set of ma-
trices whose coefficients are integers, or, alternatively, if the
coordinates are chosen so that the matrices are orthogonal (so
that W is then a group of congruent transformations acting on
a Euclidean space R") then the angle between any two hyper-
planes of reflection of W is an integral multiple of ¥/, or /.
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