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SOME PROBLEMS ON FINITE REFLECTION GROUPS
by '

G. C. SuepHARD, Birmingham

§ 1. InTRODUCTION.

Let V" be an r dimensional vector space over some field £
of zero characteristic. By a hyperplane we mean a linear
subspace of V" of r — 1 dimensions. A linear transformation
on V" that is not the identity is called a reflection if it leaves some
hyperplane pointwise invariant and is of finite order. If £ = R,
the real numbers, then every reflection must be of order 2.
Let W be a finite group of linear transformations on V" such that
the elements of W which are reflections generate W. Then W
1s said to be a finite r dimensional group generated by reflections
or, more briefly, a reflection group.

The purely geometrical properties of reflection groups over
R have been discussed at length by H. S. M. CoxETER and other
authors (see the bibliography of [5]) and some of these have been
extended by the author [8] to the case &k = C, the complex
numbers. The irreductible reflection groups over C have been
enumerated, the complete list is given 1n [9; p. 301].

In this note we are primarily concerned with the algebraic
properties of reflection groups. The first theorem due to
Chevalley (see (1) of §3) states that every polynomial that is
invariant under the transformations of a reflection group can
be expressed as a polynomial in a set of r basic tnvariant forms
I;, Iy, ..., 1. Writing m; 4 1 for the degree of I, the r integers
m; are called the exponents of the group W. The remaining
theorems of § 3 are, in effect, properties of these integers.
Several of these were first noticed by CoxeTer [6] for £ = R
and further ones (together with the extension of CoXETER’s
results to the complex numbers) are due to J. A. Topp and the
author [9]. More recently the work of Borr [2] has given a
new interpretation ((iv) of § 3) to the exponents of a crystallo-
graphic group of reflections over R, connecting them with the
diagram of the corresponding Lie Group.
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In stating the theorems in § 3, we give explicitly the restric-
tions that must be placed on the ground field & and also on the
group W. For each theorem it is briefly indicated how the
result may be proved. Sometimes a proof in general terms is
known, but in the majority of cases it has been necessary to
verify the properties one by one for all the irreducible groups
over C and then show that (with the exception of (vi)) they
extend to the reducible groups. These two distinct methods will
be referred to as proving and verifying respectively. Perhaps
the most remarkable fact is that the result (iv) of § 3 which
appears to concern itself entirely with discrete infinite groups
generated by reflections has been proved only by topological
methods (spectral sequences and Morse theory). A direct
proof, avoiding the topology, would be interesting. Further
outstanding problems are the discovery of proofs for those
properties that have so far only been verified, and the extension
of these theorems to more general fields &, especially to the case
where £ 1s of finite characteristic.

§ 2. Tue CONNECTION BETWEEN LIE GROUPS
AND REeFLEcTION GROUPS.

Let G be an n dimensional compact semi-simple Lie Group.
A maximal connected abelian subgroup of G forms a submanifold
of G which 1s a torus of dimension r (the rank of G) [10]. This
is called a maximal torus T of G. The inner automorphisms
of G by elements of N, the normaliser of T, induce a finite group
of automorphisms of T. These in turn induce linear transforma-
tions of the tangent space V" to T at the identity e. It can
be shown that this group of linear transformations forms a
reflection group over R called the Weyl group W of G. This
group has the further property that it is crystallographic, 1.e. by
suitable choice of coordinates it is represented by a set of ma-
trices whose coefficients are integers, or, alternatively, if the
coordinates are chosen so that the matrices are orthogonal (so
that W is then a group of congruent transformations acting on
a Euclidean space R") then the angle between any two hyper-
planes of reflection of W is an integral multiple of ¥/, or /.
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The converse 1s also true, namely that any crystallographic
reflection group over R corresponds to some compact semi-
simple Lie Group.

It can be shown that T may be covered by a Euclidean
space R" in such a way that the singular elements of T (i.e. those
whose normalisers are of dimension strictly greater than r) map
into hyperplanes of R”, and further, if the identity of G maps
into the origin O of R, then those planes passing through O are
precisely the hyperplanes of reflection of the Weyl group W. The
whole set of hyperplanes form a configuration known as the dia-
gram of the Lie Group G and it has the property that reflection
in any one of the planes leaves the diagram, as a whole invariant.

Now let W be any reflection group over R expressed In
orthogonal form, then W may be considered as operating on
some sphere S whose centre is at O. The hyperplanes of
reflection divide the surface of the sphere into spherical poly-
topes and it has been shown [5; p. 190] that each of these is
necessarily a simplex or a direct product of simplexes. Further,
the r hyperplanes that cut the sphere in the faces of one of these
polytopes form a fundamental set in that the corresponding
reflections generate the group. Furthermore, the volume
bounded by these hyperplanes forms a fundamental region for
W. A property of this fundamental set 1s given in (vi) of § 3.

Considering again the diagram of the Lie Group G, pick out
a fundamental set of hyperplanes through O, defining a funda-
mental region of the Weyl group. Then the part of the diagram
of G that lies within this fundamental region is called a Weyl
chamber. The Weyl chamber of the group G, (the group of
automorphisms of the Cayley matrix algebra) is illustrated in
(iv) of § 3, where, for the present, the numerals are to be ignored.

§ 3. PROPERTIES OF THE EXPONENTS.

(i) The ring of polynomial invariants of an r dimensional
reflection group W over k is the ring k[1,, I,, ..., I,] where I, is
a polynomial invariant of degree (m; + 1). The I, are uniquely
determined by this property and are called the basic invariants
of the group W. The m,; are called the exponents of W.
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This theorem was proved by CueEvaLLEY for % of characte-
ristic zero [4] and a partial converse (for £ = C) by Topp [9;

p. 282].
From this result we can draw several conclusions. Firstly
it implies a formal identity in power series In ¢:

0
H N =it~ _ 1
tmwl) P J WSE—X-VH*I!S[

where w is the order of W, and g; 1s the number of linearly
independent polynomial invariants of W of degree j (which, by
the above result, is the number of monomials in the I, of total
degree j, and hence 1s the coefficient of # in the expansion of the
product on the left). The identity on the right is the classical
result of Morien [3; p. 300]. Considering only the first and
last terms of this identity, after a small amount of manipulation
we deduce

(a) 111(1 +.m) = w
(b) N m; = b, = number of reflections in W.
(i1) More generally there is an identity

i=1

where b; 1s the number of transformations in W that leave
pointwise invariant a linear subspace of V" of exactly (r — j)
dimensions. Putting? = 1 we obtain (a) above, and () merely
states the equality of coefficients of ¢ on both sides. No general
proof 1s known, but this result has been verified for all reflection
groups over C.

(i)  Writing H* (X, R) for the cohomology ring of a space X
with coefficients in R, S™ for the n-sphere, and A (2, z,, ..., x,)
for the graded exterior algebra on r generators, then for any
compact semi-simple Lie group G, we have

H* (G, R) — H* (SQm1~+—l % SQ?’)’L2+1 X X Ser+1’ R),
= A(a:l,xg,...,xr), Nz, = 2m; + 1.
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This 1s the celebrated Hopr theorem [7] except for the number
and dimensions of the spheres (or of the generators of A). The
relation between the dimensions and the exponents of W is due

to CHEVALLEY [4]. An independent proof has been given by
A. Borer [1].

(iv) Consider the Weyl chamber of a connected semi-simple
Lie group G, whose vertex is O. Then each simplex A, of the
chamber 1s to be labelled with an integer equal to the number
of intersections with the hyperplanes of a line joining O to an
interior point of A.. It is trivially verified that such an integer
is uniquely defined, i.e. is independent of the interior point
chosen. Then we have

1o — Set

where ¢, 1s the number of simplexes in the Weyl chamber labelled
with the integer i.

By way of example the Weyl chamber of G, 1s illustrated
below. Here,

(?0::()1:02:—_03::()4:’17

CE’)ZCGZCTZCS:CQ:ZyetJ'

The exponents are m; = 1 and m, = 5.

The statement of this result is only meaningful if £ = R
and W 1s crystallographic, and then it can be proved as follows:
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From (iii) by the theory of spectral sequences
H* (Qg, R) = Rlus, us, -..; %] Nu;, = 2m,
where the right side is the graded ring of polynomials over R
and Q, is the space of loops on G. Hence if we write P (€25, )
(the Poincaré polynomial of Qg in ¢) for i;‘O tt dim H' (Qg, R)

we have

P(QG,t):ﬁ L

iop (1 — ¢#mi)

Borr, by the use of Morse theory [2] proved that

N ¢, * = P (Qg, 1)

1=

(=]

from which the given result follows immediately.

(v) The Jacobian of the basic invariants I,

o (I, Iy« I,)

0 (xl, Bp 5 vieg xr)

J =

factorises into Xm; linear forms, which, when equated to zero,
oive the hyperplanes of reflection of- W, and each hyperplane 1s
repeated p — 1 times where p is the order of the corresponding
reflection. ‘

Where all the reflections are of order 2, a very simple argu-
ment proves this result in a more rigorous manner than that of
Racan [6; p. 775]. For (b) of (1) implies that the degree of J
1s equal to the number of reflections, and the fact that J changes
sign when operated on by a reflection in W implies that the
equation of each hyperplane 1s a factor of J. This proves the
result. More generally it can be proved over any field of zero
characteristic for reflections of any order.

An interesting conjecture extends this result. In (i1) we
defined b, as the number of transformations in the group that
leave a linear subspace of n — ; dimensions invariant. The
set of all these linear subspaces forms a reducible algebraic
variety of dimension n — j and of degree b;, and it is conjectured
that this is given by equating to zero all the (n — j 4+ 1)-rowed
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minors of the functional matrix d1I,/>x; This conjecture has
neither been proved or verified.

(vi) This final property is the only one that holds for irre-
ducible groups only. Suppose that r reflections in W serve to
generate W (this is always the case for £ = R, but not for £ = C).
Then 1t 1s possible to pick this set of generating reflections so
that their product has characteristic roots

2T im,
exp( 7 ]>,j:1,2,...,r;h:max(mj)+1

When k£ = R it suffices to choose the reflections as those of a
fundamental set and then take their product in any order [6;
p. 765]). In this case also A has geometric significance as the
number of sides of the PETrIE polygon [5; p. 223]. For k = C
no general rule for the selection of the correct set of reflections
has been given.

This result has been verified for &£ = C, and general proofs
are known for £k = R, r = 2, 3 [6; p. 772].
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