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clair que, si g est intégrable et bornée dans G, le spectre de G

est le support de g.
Le théorème taubérien de Wiener signifie que, si H C L°° (G)

est telle que J (H) ne soit pas réduit à 0, le spectre de H n'est

pas vide (théorème de Beurling [1]). En général, J (H) contient
évidemment J (Sp (H)), mais ces deux espaces sont distincts.
Toutefois, si U' est un voisinage de Sp (H) dans G, on a

H C J (U/), c'est-à-dire qu'on peut approcher faiblement dans
L°° (G), et même uniformément sur tout compact, toute fonction
de H par des polynômes trigonométriques formés avec les éléments
de U/. Dans le cas où G est compact, on voit ainsi que J (H)
J (Sp (H)) pour toute partie H de L°° (G). Plus généralement,
si la frontière de Sp (H) est clairsemée (par exemple si Sp (H)
est discret), on a H c: J (Sp (H)). Si Sp (H) est discret, on peut
alors associer à chaque fonction de H un développement
formel canonique suivant Sp (H); si de plus / G H est uniformément

continue, / est presque périodique [27]; la théorie des

fonctions presque périodiques permet d'ailleurs de préciser de

nombreuses propriétés spectrales [27], mais il n'existe pas à

l'heure actuelle d'étude systématique des rapports qui existent
entre la théorie spectrale et la théorie ergodique. Il est permis
de croire qu'on pourra encore préciser considérablement les
critères indiqués ci-dessus pour qu'un idéal I de L1 (G) soit égal
à Z (Cosp (I)).
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