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suivant: toute fonction o € % (G) peut étre faiblement .approché'e
(dans L° (G)) par des polynomes irigonoméiriques a coeffictents post-
tifs, coefficients dont la somme est égale a ¢ (e) [7, 12]; ce résultat. se
compléte d’ailleurs facilement de la fagon suivante: toute fonction
de %7 (G) peut étre approchée uniformément sur tout compact par
des polynomes trigonométriques; il en est par suite de méme pour
toute fonction continue dans G. On verra au paragraphe 4, n° 3,
d’importants compléments & ces résultats.

§ 4. La transformation de Fourier.

1. Il est maintenant facile de définir la transformée de Fou-

riER d’une fonction f € L1 (G): c¢’est la fonction } définie dans G
par la formule f(x) = y; (f); autrement dit, on pose

flz) = [ <z, 2> f(v) dz; (1)

f est alors une fonction continue et nulle & l'infini1 dans G en

vertu de la définition de la topologie de G (généralisation du
classique théoréme de RiEmMANN-LEBESGUE). Plus précisément,
on voit facilement, d’apres la formule (1), que la transformation
de FOUuRIER [— | est une représentation continue de Ualgébre

involutive normée L (G) sur une sous-algébre ¢ (G) de K (G).

Le fait que G est séparé par ses caractéres signifie alors que
f— 7 est biunivoque (c’est-a-dire que toute fonction intégrable
est déterminée par sa transformée de Fourrer). La définition (1)
montre de plus que les fonctions de @ (é) séparent G; le théoréme

de WEIERSTRASS-STONE prouve alors que @ (G) est partout

dense dans I (G), ¢’est-a-dire que 1’on peut approcher unifor-
mément toute fonction continue, nulle a Iinfini, dans G par
des transformées de Fourier de fonctions de L1 (G).

La définition de la transformation de Fourier s’étend natu-

rellement & O (G): la transformée de Fourier de p € 0 (G)
est la fonction F, continue et bornée dans G définie par

F (%) = [<z, &> du (z) . (2)
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On voit encore facilement que w— F, est une représenta-
tion continue F de 'algebre involutive normée J1! (G) sur une
sous-algebre de 'algébre des fonctions uniformément continues

et bornées dans G. Si la mesure yu est positive, on voit immeédia-
tement que F, est une fonction de type positif, en sorte que F

applique I (G) dans 20 (G).
Remarquons enfin que, si w € M (G) et 2€ G, p * x est le
polynéme trigonométrique F, (z) et que la transformée de

Fourier de U,-p est la fonction <z, z> F, () de z.
On peut naturellement définir par des formules analogues

la transformation de Fourier F’ dans le groupe G (en fait, la
formule que P'on va lire n’est autre que la formule (2) écrite

pour G lorsqu’on aura pu identifier G au dual de é): la trans-

formée de FouriEr de la mesure p’ € I1! (G) est la fonction F,
continue, bornée et définie dans G par la formule

F, (z) = f<x, > dy’ () (3)

v

Comme f— f est une application linéaire continue de Lt (G)

dans K (G), sa transposée est une application linéaire faiblement

continue du dual T (G) de K (G) dans le dual L™ (G) de L1 (G),
application qui est liée a F’ par la formule

[t @) du' (z) = [f (2) F,, (2) da. (4)

Comme L (G) est dense dans K (G), cecl montre que F’ est
bruntvoque, et faiblement continue.

Les exemples indiqués au paragraphe 3, n® 1, permettent
d’écrire des formules normalisées pour la transformation de
Fourier usuelle: la transformée de Fourier d’une fonction f
intégrable de période 1 (i.e. appartenant a L1 (T)), est la suite
de terme général } (n) = f f () exp (— 2Ziwnz) dx (n € Z) qu’on,
appelle suite des coefficients de Fourier de f. De méme, la trans-
formée de Fourier de fe€ L'(Z) est la fonction }‘(x) ==
2f (n) exp (2ixnz) de période 1. La transformée de FoURIER

d’une mesure p € I (R") est l'intégrale de Fourier F, (y) =
[exp (— 2inx-y) dp (x).
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2. Nous allons maintenant voir les propriétés fondamentales
de la transformation de Fourier. Tout d’abord, il est clair que
la transformée de Fourier d’une mesure positive et bornée

dans G est une fonction de type positif dans G. Réciproquement,

st @ € (G), il existe une mesure positive (unique) w’ € I (G)
telle que |
¢ (2) = [<wx, z>dy' (x) pour toutxz € G (5)

(théoréme de BocHNER).

Ce résultat a été démontré par G. HEreorrz pour G = Z, par
S. BocunEiR [2] pour G = R et par A. WEIL [33] pour G quelconque.
Nous pensons qu’il est intéressant de donner quelques indications
sur la démonstration de cet important résultat. Si o € € (G), on

montre, par un artifice di a D. A. Raikov [25, 26] que }‘ —>ff (z) @ () dx

A

est une forme linéaire positive et continue dans €U (G); comme €L (G)

A~

est partout dense dans K (G), cette forme se prolonge par continuité
en une mesure positive u’ € I (G) telle que 'on ait ff () @ (2) dx =
ff () dp” (z) pour toute f € L1 (G); en développant le second membre,

on voit que la mesure <z, 2> dy.” (£) égale ¢ (z) dx d’ou le résultat
(cf. la fin du n° 2 du paragraphe 1). Signalons aussi une autre démons-
tration due & H. CartaN et R. GopEMENT [7]: comme la transformée

de Fourier de la masse 1 au point £ € G est le caractére £ de G,
I’ensemble convexe et faiblement compact des mesures positives de

norme < 1 dans G est appliqué biunivoquement, et par suite biconti-
nument, sur un ensemble convexe et faiblement compact de € (G),
qui contient O et G; cet ensemble est, d’apreés le théoréme d’approxi-
mation cité au paragraphe 3, n° 2, égal a %, (G), ce qui entraine le
théoreme de BocHuNER.

Remarquons encore que, s1 " est positive, on a H w | =TF, (e
de telle sorte que F’ est un homéomorphisme sur & (G) de I’en-
semble des mesures positives et bornées dans G.

Il résulte du théoréme de Bochner que F’ est une représenta-

~

tion biunivoque et continue del’algébre M (G) sur Palgébre 2 (G).
Ceci permet de voir que, si G n’est pas compact, il existe des
fonctions uniformément continues et bornées dans G qu’on ne
peut pas approcher uniformément par des fonctions de Q7 (G);
c’est par exemple le cas s1 G = R 1,

L Cf. J. DieunbonnNg, Sur le produit de composition. Comp. Math., 12, 17-34 (1954),
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On peut de plus choisir la mesure de Haar dans le groupe G
de facon que toute fonction f € V! (G) soit de la forme F, ou p

est la mesure définie par dy’ (z) = f(z) dz dans G; cela signifie

A~

que, la mesure de Haar étant convenablement choisie dans G

?

A A~

F appliqgue M (G) dans ' (G) et que, dans UV (G), Papplication
réciproque de F est F’ ou, en explicitant, que 'on a

f(x) = [f(z) <z.2>dz pour toute <€ ' (G) (6)

(formule d'inversion de FoURIER).

La mesure de Haar étant ainsi choisie dans é, F est de plus

A~

une isoméirie du sous-espace L' (G) N L2(G) de L2(G) sur L2 (G),
autrement dit, on a

[EEEN P

J f(x)2de=[f(z)2dz pour toute f € L (G) n L2 (G)

/-\
~
A

(théoreme de PLaNcHEREL-WEIL).

Cette 1soméirie se prolonge par continuité en un tsomorphisme

de lespace hilbertien 1.2 (G) sur lespace hilbertien 12 (G), tso-
morphisme dont le réciproque, ou l'adjoint, est le prolongement a

~ A~ -~

L2 (G) de la restriction de F' a 1.1 (G) n L2 (G). Pour G =T, ce
résultat est le classique théoreme de BEsseEL-PArsEvaL-Riesz;
1l est di & M. PraxcuereL pour G = R et a A. WEeIL [33] pour
G quelconque (et indépendamment a M. Krein [18]). Des
démonstrations diverses ont été publiées par H. Carranx et
R. GopeEMENT [7] et D. A. Raikov [25, 26]. On peut en déduire
la démonstration du théoréeme d’inversion de Fourier. Signalons
enfin qu’un théoréeme général sur la représentation des formes
linéaires positives dans une algébre involutive et commutative
quelconque (théoreme d & R. GopEMENT [14] et s’inspirant de
techniques utilisées par M. NeEumark [9, 23] et analogues a
celles utilisées par D. A. Raikov) permet de démontrer d’un
seul coup le théoreme de BocHNER, celul de PLANCHEREL-WEIL
et la formule d’inversiont de Fourier (cf. § 8).

Depuis les travaux de L. ScawarTz relatifs a la transforma-
tion de Fourier des distributions, le calcul des transformées de
Fotrier a l'aide des procédés de sommation (dans le cas de
G = T ou G = R) a perdu la plus grande partie de son intérét
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théorique; d’ailleurs lorsque de tels procédés s’avérent néces-
saires, il relevent de la régularisation par des fonctions conve-
nablement choisies.

3. Nous allons maintenant indiquer un théoréme d’approxi-
mation (complétant celui du paragraphe 3, n° 2) qui sera géné-
ralisé au paragraphe 6, no 4. Tout d’abord, si ¢ €27 (G) est la
transformée de FouriEr d’une mesure @’63111((}), on appelle
spectre de o le support Sp (o) de u'; Sp (o) est ainsi un ensemble

fermé de G, égal a I'ensemble des caracteres de G que I'on peut
approcher faiblement dans L. (G) par des combinaisons linéaires
de translatées de o. De plus, 'ensemble des € G tels que
<, > =1 pour tout z € Sp (¢) est le sous-groupe des périodes
de o.

Si o €< (G), on peut approcher o faiblement dans L” (G)
au moyen de polyndmes trigonométriques Zc¢, x; tels que

z, € Sp (v) et que les ¢; soient des nombres réels positifs de
somme inférieure & o (e). Plus généralement, on peut approcher
faiblement dans L% (G), et méme uniformément sur tout
compact, toute fonction de 7 (G) au moven de polyndémes trigo-
nométriques formeés avec les caractéres appartenant a son spectre.

Remarquons enfin que toute fonction de Q7 (G) peut étre
approchée uniformément sur tout compact par des fonctions de
VL (G) et que toute fonction de ¢ (G) peut étre approchée uni-
formément sur tout compact par des fonctions de la forme f* f

ou f €K (G)[7].

4. En utilisant les résultats du n° 2, on montre alors I'impor-
tant théoreme suivant de L. PoxTryacix [14]: si pour tout

r € G, on désigne par ' le caractére x— <z, 2> de G, z — 2’
est un isomorphisme du groupe G sur le dual du groupe G: on
identifiera ces deux groupes au moyen de cet isomorphisme (la

formule (3) qui définit la transformation de Fourier dans G se

réduit a la formule (2) écrite dans le groupe G). On peut alors
préciser les propriétés de F et F' de la maniére suivante:

a) F est une représentation biunivoque et continue de Ualgébre
wnvolutive normée N (G) sur ) (G);

?
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b) La restriction de I a V' (G) appliqgue V' (G) sur Ot (é) et a
pour application réciproque la restriction de F' a 1 (G);

A

c) I est une wsométrie de 1.2 (G) n LY (G) sur 2% (G) et se pro-
longe par continuité en un tsomorphisme de L2 (G) sur L2 (é)7

dont le réciproque est l'application de 1.2 (ér) sur L2 (G) qu’on
obtient en prolongeant par continuité la restriction de F' a

[.2 (G) n L! (G)
d) F appliqgue L (G) sur une sous-algébre partout dense & (é) de

K (G) et on a sup | f@) | = lim N, (3 H'"

x n— -+ oo

?? (G) est done dense par rapport a J¢ (G), mais en général,
si G n’est pas compact, 'adhérence de Q) (G) est distincte de

JC (G). On obtient ainsi une généralisation des propriétés fonda-
mentales de l'intégrale de Fourier usuelle.

Pour que G soit compact, il faut et il suffit que G soit discret.
On choisit alors les mesures de HAAR comme il a été dit au para-
graphe 2, n° 1. Les résultats précédents peuvent alors s’inter-
préter comme une extension de la théorie des séries de FOURIER:

a) La transformation de FOoUuRIER définte par (2) est une repré-
sentation biunivoque et continue de U'algebre NU (G) (formée
de toutes les mesures sur G) sur l'algébre (é) des fonctions
de type positif sur G;

b) F applique 0 (G) sur l'algébre 1.} (f}) des fonctions sommables
dans G et application réciproque de ¥ est la transformation

de Fourier F’ dans G, transformation qut a f' € L (G) associe

la fonction x — X<z, x>f (r) (la convergence du second
X
membre étant normale); ¢’est-a-dire que I'on a en particulier

f(x) = Z<x, 2> f(x) 8)
X
si € (G) et flz) = [<a, 2>f (x) dz; 2 (G) est partout
dense dans e (G) et on peul ainsi approcher uniformément
toute fonction continue dans G par des polyndmes trigono-
métriques.
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¢) Comme L2(G) C L1 (G), F est un tsomorphisme de Uespace

hilbertien 1.2 (G) sur L2 (é); le réciproque de F est le prolonge-

ment de F' ¢ L2 (G); c’est U'application qur & [ € L2 (G) faut

correspondre la fonction x—~ X<z, x> (), la convergence
X

A

ayant lieu cette fois dans L? (G). Ce résultat se précise encore
en disant que G est une base orthonormale de L? (G) et que
le développement de f € L2 (G) suivant cette base est donné
par (8).

Signalons pour terminer que I'application des résultats qu’on
vient d’indiquer a des groupes moins usuels que R™ T" ou Z"
conduit & d’intéressants résultats dont on ne connait malheu-
reusement pas d’exposé systématique.

§ 5. La théorie de la dualité.

1. On a vu que le dual de G était canoniquement isomorphe
a G; on peut alors développer une théorie de la dualité dans les
groupes abéliens localement compacts, au moyen de la forme

bilinéaire <z, x> définie dans G x G.
Si A est une partie de G, le sous-groupe fermé AL de G formé

des caractéres € G tels que <=z, 2> =1 si z€ A est dit
orthogonal & Aj; on définit de la méme maniére le sous-groupe

fermé A’L de G orthogonal & une partie A’ de G. Si H est un
sous-groupe de G, on a (H1)1 = H.
a) Ainst H — HL est une application biunivoque, involutive et

décrotssante de ['ensemble des sous-groupes fermés de G
(ordonné par inclusion) sur l'ensemble des sous-groupes fermés
de G, dont la correspondance réciproque est H' — H'L: de

plus le sous-groupe orthogonal & Iintersection d’une
famille § de sous-groupes fermés de G est le sous-groupe

de G engendré par les orthogonaux des sous-groupes de J.
b) Si H est un sous-groupe fermé de G, tout caractére z € HL
définit par passage au quotient modulo H un caractére 2

de G/H et z— 2 est un isomorphisme de HY sur le dual de

L’Enseignement mathém., t. II, fasc. 1-2. 3
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