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suivant: toute fonction <p £ L% (G) peut être faiblement approchée

{dans L00 (G)) par des polynômes trigonométriques à coefficients positifs,

coefficients dont la somme est égale à (p (e) [7, 12]; ce résultat se

complète d'ailleurs facilement de la façon suivante: toute fonction
de V (G) peut être approchée uniformément sur tout compact par
des polynômes trigonométriques; il en est par suite de même pour
toute fonction continue dans G. On verra au paragraphe 4, n° 3,

d'importants compléments à ces résultats.

§ 4. La transformation de Fourier.

1. Il est maintenant facile de définir la transformée de Fourier

d'une fonction / GL1 (G): c'est la fonction / définie dans G

par la formule f (x) — Xx (/)î autrement dit, on pose

f (x) J <x, x> f {x) dx ; t1)

/ est alors une fonction continue et nulle à l'infini dans G en

vertu de la définition de la topologie de G (généralisation du

classique théorème de Riemann-Leresgue). Plus précisément,
on voit facilement, d'après la formule (1), que la transformation
de Fourier /->/ est une représentation continue de Valgèbre

involutive normée L1 (G) sur une sous-algèbre cl (G) de <71 (G).
Le fait que G est séparé par ses caractères signifie alors que

/ -> / est biunivoque (c'est-à-dire que toute fonction intégrable
est déterminée par sa transformée de Fourier). La définition (1)

montre de plus que les fonctions de cT (G) séparent G; le théorème
de Weierstrass-Stone prouve alors que cX (G) est partout
dense dans JC (G), c'est-à-dire que l'on peut approcher
uniformément toute fonction continue, nulle à l'infini, dans G par
des transformées de Fourier de fonctions de L1 (G).

La définition de la transformation de Fourier s'étend
naturellement à Jll1 (G) : la transformée de Fourier de p G OU1 (G)
est la fonction F^ continue et bornée dans G définie par

y
UU) !<x>£> d\L (x) (2)
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On voit encore facilement que p. -> est une représentation

continue F de l'algèbre involutive normée JTt1(G) sur une
sous-algèbre de l'algèbre des fonctions uniformément continues

et bornées dans G. Si la mesure fx est positive, on voit immédiatement

que est une fonction de type positif, en sorte que F

applique Jll1 (G) dans -ï? (G).

Remarquons enfin que, si p. G J111 (G) et x G G, \i * x est le

polynôme trigonométrique F^ (x) x et que la transformée de

Fourier de Ux- p est la fonction <x, x> F^ {x) de x.
On peut naturellement définir par des formules analogues

la transformation de Fourier F' dans le groupe G (en fait, la
formule que l'on va lire n'est autre que la formule (2) écrite

pour G lorsqu'on aura pu identifier G au dual de G): la
transformée de Fourier de la mesure yf G J111 (G) est la fonction F'^

continue, bornée et définie dans G par la formule

Fj (x) J<£, x> dyf (x) (3)

Comme / -> f est une application linéaire continue de L1 (G)

dans JC (G), sa transposée est une application linéaire faiblement
continue du dual Jll1 (G) de (G) dans le dual L°° (G) de L1 (G),
application qui est liée à F' par la formule

J/ (x)d\L(x) jf (x) F^, (.r) (4)

Comme cl (G) est dense dans JC (G), ceci montre que F' est

biunivoque, et faiblement continue.
Les exemples indiqués au paragraphe 3, n° 1, permettent

d'écrire des formules normalisées pour la transformation de

Fourier usuelle: la transformée de Fourier d'une fonction /
intégrable de période 1 (i.e. appartenant à L1 (T)), est la suite
de terme général f (n) J*/ (x) exp (— 2iiznx) dx (n G Z) qu'on,
appelle suite des coefficients de Fourier de /. De même, la
transformée de Fourier de / G L1 (Z) est la fonction f (x)

S/ (n) exp (2innx) de période 1. La transformée de Fourier
d'une mesure y G JTt1 (Rn) est l'intégrale de Fourier F^ (y)
Jexp (— 2Ï7rx-y) d\x (x).
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2. Nous allons maintenant voir les propriétés fondamentales
de la transformation de Fourier. Tout d'abord, il est clair que
la transformée de Fourier d'une mesure positive et bornée

dans G est une fonction de type positif dans G. Réciproquement,
si 9 G (G), il existe une mesure positive (unique) p/ G OTi1 (G)
telle que

cp (x) J<x) xS>d[L (x) pour tout x G G (5)

(théorème de Bochner).
Ce résultat a été démontré par G. Hergoltz pour G Z, par

S. Bochner [2] pour G Rn et par A. Weil [33] pour G quelconque.
Nous pensons qu'il est intéressant de donner quelques indications

sur la démonstration de cet important résultat. Si 9 G G? (G), on

montre, par un artifice dû à D. A. Raïkov [25, 26] que / ~*jf(x) 9 {x) dx
est une forme linéaire positive et continue dans Ct (G) ; comme CT (G)

est partout dense dans JC (G), cette forme se prolonge par continuité
en une mesure positive p/ G Tlt1 (G) telle que l'on ait Jf (x) 9 (x) dx =»

jf (x) d[i' {x) pour toute / G L1 (G) ; en développant le second membre,
on voit que la mesure <#,.£> d\x (x) égale 9 (x) dx d'où le résultat
(cf. la fin du n° 2 du paragraphe 1). Signalons aussi une autre démonstration

due à H. Cartan et R. Godement [7]: comme la transformée
de Fourier de la masse 1 au point x G G est le caractère x de G,
l'ensemble convexe et faiblement compact des mesures positives de

norme < 1 dans G est appliqué biunivoquement, et par suite biconti-
nûment, sur un ensemble convexe et faiblement compact de Lf (G),
qui contient 0 et G; cet ensemble est, d'après le théorème d'approximation

cité au paragraphe 3, n° 2, égal à ?T0 (G), ce qui entraîne le
théorème de Bochner.

Remarquons encore que, si p/ est positive, on a || p/ [| F^ (e)
de telle sorte que F' est un boméomorphisme sur (G) de

l'ensemble des mesures positives et bornées dans G.

Il résulte du théorème de Bochner que F' est une représentation

biunivoque et continue de Valgèbre Jft1 (G) sur Valgèbre V (G).
Ceci permet de voir que, si G n'est pas compact, il existe des
fonctions uniformément continues et bornées dans G qu'on ne
peut pas approcher uniformément par des fonctions de ^(G);
c'est par exemple le cas si G R h

1 Cf. J. Dieu donné. Sur le produit de composition. Comp. Math., 1 2, 17-34 (19544.
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On peut de plus choisir la mesure de Haar dans le groupe G
de façon que toute fonction / G y1 (G) soit de la forme où [F

est la mesure définie par dp (x) j(x) dx dans G; cela signifie

que, la mesure de Haar étant convenablement choisie dans G,

F applique 'G1 (G) dans ^ (G) et que, dans sp1 (G), Vapplication
réciproque de F est F' ou, en explicitant, que l'on a

f (x) J f (x) <x\ x> dx pour toute f G V1 (G) (6)

(formule d'inversion de Fourier).
La mesure de Haar étant ainsi choisie dans G, F est de plus

une isométrie du sous-espace L1 (G) n L2 (G) de L2 (G) sur V2 (G),
autrement dit, on a

J \f (x) 2 dx= J j / (.r)j2 dx pour toute f £ L1 (G) n L2 (G) (7)

(théorème de Plancherel-Weil).
Cette isométrie se prolonge par continuité en un isomorphisme

de Vespace hilbertien L2 (G) sur Vespace hilbertien L2 (G),
isomorphisme dont le réciproque, ou Vadjoint, est le prolongement à

L2 (G) de la restriction de F' à L1 (G) fl L2 (G). Pour G T, ce

résultat est le classique théorème de Bessel-Parseval-Riesz;
il est dû à M. Plancherel pour G R et à A. Weil [33] pour
G quelconque (et indépendamment à M. Krein [18]). Des

démonstrations diverses ont été publiées par H. Cartan et
R. Godement [7] et D. A. Raïkov [25, 26]. On peut en déduire
la démonstration du théorème d'inversion de Fourier. Signalons
enfin qu'un théorème général sur la représentation des formes
linéaires positives dans une algèbre involutive et commutative
quelconque (théorème dû à R. Godement [14] et s'inspirant de

techniques utilisées par M. Neumark [9, 23] et analogues à

celles utilisées par D. A. Raïkov) permet de démontrer d'un
seul coup le théorème de Bochner, celui de Plancherel-Weil
et la formule d'inversiorî de Fourier (cf. § 8).

Depuis les travaux de L. Schwartz relatifs à la transformation

de Fourier des distributions, le calcul des transformées de

Fourier à l'aide des procédés de sommation (dans le cas de

G T ou G R) a perdu la plus grande partie de son intérêt
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théorique; d'ailleurs lorsque de tels procédés s'avèrent
nécessaires, il relèvent de la régularisation par des fonctions
convenablement choisies.

3. Nous allons maintenant indiquer un théorème d'approximation

(complétant celui du paragraphe 3, n° 2) qui sera
généralisé au paragraphe 6, n° 4. Tout d'abord, si 9 G G (G) est la

transformée de Fourier d'une mesure g/GJIl^G), on appelle

spectre de 9 le support Sp (9) de g/; Sp (9) est ainsi un ensemble

fermé de G, égal à l'ensemble des caractères de G que l'on peut
approcher faiblement dans L°° (G) par des combinaisons linéaires
de translatées de 9. De plus, l'ensemble des x G G tels que

<x, x> 1 pour tout x G Sp (9) est le sous-groupe des périodes
de 9.

Si 9 G (G), on peut approcher 9 faiblement dans 13° (G)

au moyen de polynômes trigonométriques xi tels que

x-% G Sp (9) et que les ci soient des nombres réels positifs de

somme inférieure à 9 (e). Plus généralement, on peut approcher
faiblement dans L°° (G), et même uniformément sur tout
compact, toute fonction de 4/ (G) au moyen de polynômes
trigonométriques formés avec les caractères appartenant à son spectre.

Remarquons enfin que toute fonction de G/ (G) peut être
approchée uniformément sur tout compact par des fonctions de

'G1 (G) et que toute fonction de L% (G) peut être approchée
uniformément sur tout compact par des fonctions de la forme f * /
où / G JC (G) [7].

4. En utilisant les résultats du n° 2, on montre alors l'important

théorème suivant de L. Poxtrjagin [14]: si pour tout

x G G, on désigne par x' le caractère x • > <j;. x> de G, x -> x'
est un isomorphisme du groupe G sur le dual du groupe G; on
identifiera ces deux groupes au moyen de cet isomorphisme (la
formule (3) qui définit la transformation de Fourier dans G se

réduit à la formule (2) écrite dans le groupe G). On peut alors
préciser les propriétés de F et F' de la manière suivante :

a) F est une représentation biunivoque et continue de Valgèbre
involutive normée DM1 (G) sur V (G);
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Jo) La restriction de F à ip1 (G) applique V1 (G) sur V1 (G) et a

pour application réciproque la restriction de F' à %^(G);

c) F est une isométrie de L2 (G) fi L1 (G) sur (G) et se pro¬

longe par continuité en un isomorphisme de L2 (G) sur L2 (G),

dont le réciproque est Vapplication de L2 (G) sur L2 (G) qu'on
obtient en prolongeant par continuité la restriction de F' à

L2 (G) n L1 (G) ;

d) F applique L1 (G) sur une sous-algèbre partout dense CT (G) de

JC (G) et on a sup | f (x) | lim Nx (* /)1/n.
n-> + oo

V (G) est donc dense par rapport à JC(G), mais en général,
si G n'est pas compact, l'adhérence de LV (G) est distincte de

JC (G). On obtient ainsi une généralisation des propriétés
fondamentales de l'intégrale de Fourier usuelle.

Pour que G soit compact, il faut et il suffit que G soit discret.
On choisit alors les mesures de Haar comme il a été dit au
paragraphe 2, n° 1. Les résultats précédents peuvent alors s'interpréter

comme une extension de la théorie des séries de Fourier:

a) La transformation de Fourier définie par (2) est une repré¬
sentation biunivoque et continue de Valgèbre DTi (G) (formée
de toutes les mesures sur G) sur l'algèbre %"> (G) des fonctions
de type positif sur G;

b) F applique LV (G) sur l'algèbre L1 (G) des fonctions sommables

dans G et Vapplication réciproque de F est la transformation
de Fourier F' dans G, transformation qui à f G L1 (G) associe

la fonction x%><x, x>f (x) (la convergence du second
.X

membre étant normale) ; c'est-à-dire que l'on a en particulier

f (x) Z<X, x> f(x) (8)
X

si / G LV (G) et f (x) J<^, x>f (x) dx\ V (G) est partout
dense dans C (G) et on peut ainsi approcher uniformément
toute fonction continue dans G par des polynômes trigono-
métriques.
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c) Comme L2 (G) c L1 (G), F est isomorphisme de l'espace

hilbertien L2 (G) sur L2 (G); le réciproque de F est le prolongement

de F' à L2 (G); c'est V appqui L2 (G)

correspondre la fonction la convergence
X

ayant lieu cette fois dans L2 (G). Ce résultat se précise encore

en disant que G est une base orthonormale de L2 (G) et que
le développement de / GL2 (G) suivant cette base est donné

par (8).

Signalons pour terminer que l'application des résultats qu'on
vient d'indiquer à des groupes moins usuels que Rn, Tn ou Zn

conduit à d'intéressants résultats dont on ne connaît
malheureusement pas d'exposé systématique.

§ 5. La théorie de la dualité.

1. On a vu que le dual de G était canoniquement isomorphe
à G; on peut alors développer une théorie de la dualité dans les

groupes abéliens localement compacts, au moyen de la forme

bilinéaire <#, x> définie dans G X G.

Si A est une partie de G, le sous-groupe fermé A1 de G formé
des caractères x G G tels que <x1 x> 1 si x G A est dit
orthogonal à A; on définit de la même manière le sous-groupe
fermé A'1 de G orthogonal à une partie A' de G. Si H est un

sous-groupe de G, on a (H1)1 H.

a) Ainsi H H1 est une application biunivoque, involutive et

décroissante de Vensemble des sous-groupes fermés de G

(ordonné par inclusion) sur Vensemble des sous-groupes fermés
de G, dont la correspondance réciproque est H' -> H'1; de

plus le sous-groupe orthogonal à l'intersection d'une
famille % de sous-groupes fermés de G est le sous-groupe
de G engendré par les orthogonaux des sous-groupes de

b) Si H est un sous-groupe fermé de G, tout caractère iGH1
définit par passage au quotient modulo H un caractère x
de G/H et x-> x est un isomorphisme de H1 sur le dual de

L'Enseignement mathém., t. II, fasc. 1-2. 3
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