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§ 3. Caractéres d’un groupe abélien.

Dans tout ce qui suit, on supposera que le groupe G que Uon
considere est abélien.

1. Une représentation continue de G dans le groupe multi-
plicatif des nombres complexes de valeur absolue 1 s’appelle un
caractére de G. On désignera par G lensemble des caractéres de
G. G est ainsi une partie de L~ (G) et, comme I’ensemble

Gu {0} de L” (G) est faiblement compact, G est localement
compact pour la topologie faible de L™ (G); en outre, on voit
facilement que, dans G cette topologie coincide avec la topologle
de convergence compacte dans G. Enfin, il est clair que, si z
et y sont des caractéres de G, il en est de méme de zy et que,
muni de la loi de composition (z,y)— zy et de la topologie
décrite ci-dessus,'é est un groupe abélien localement compact,

que ’on nomme dual de G. Remarquons que, si z € G, z — z (z)
est un caractére ' de G; on verra au paragraphe 4, n® 4, que
x — 2’ est un 1somorphisme de G sur le dual du groupe G. Les

groupes G et G vont jouer des roles symétriques et il sera com-
mode de désigner par <z, z> la valeur que prend au point

x € G le caractére z € G.

Par exemple, tout caractére du groupe additif R™ est de la
forme x —exp (2inx-y) ou x-y est le produit scalaire des
vecteurs x et y de R™; on voit ainsi qu’on peut identifier le dual
de R™ & R" lui-méme en posant <x, y> = exp (2inx-y). De
méme tout caractére du groupe additif T des nombres réels
modulo 1 est de la forme x— exp (2tmnz’) ou n est un entier
rationnel et ot 2z est un représentant dans R de 2 € T; on peut
ainsi identifier le dual de T au groupe additif Z des entiers
rationnels en posant <z, n> = exp (2iwnz’). On voit d’ailleurs
facilement que le dual de Z s’identifie & T en posant <n, z> =
<, n>. Ces identifications sont bien entendu compatibles
avec les topologies des différents groupes considérés.

Pour tout z € é la formule

= [f(x) ) <z, 2> du (f € L1 (G)) (1)
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définit un caractere continu de Dalgébre involutive normée
L1 (G); réciproquement, on montre facilement [10, 13] que tout
caraetére continu de L' (G) est défini par la formule y (f) =
[f () @ () dz ou ¢ est une fonction de L* (G) égale presque
partout a un caractere de G auquel on I'identifie. On obtient

A~

ainsi une correspondance biunivoque z — y; entre G et le
spectre de L' (G), correspondance qui est naturellement un
homéomorphisme. On notera que L' (G) est ainsi une algébre
symétrique au sens du paragraphe 1, no 2.

Le caractére de Lt (G) défini par la formule (1) se prolonge
naturellement en un caractére continu de I’algébre involutive
normée ' (G) au moyen de la formule y; (1) = [<z, 2> du(x)
(mais on n’obtient pas ainsi tous les caracteres de J1U' (G)).

On démontre le résultat suivant, par un procédé dia a
I. GELFaND et D. A. Raikov [10, 26]: Palgébre LY (G) est séparée
par ses caractéres (i.e. L' (G) est semi-simple): pour toute fonc-

tion f £ 0 de L1 (G), il existe # € G tel que %< (f) # 0. Ce résultat
entraine que G est séparé par ses caracteres, ¢’est-a-dire que pour

tout élément x # e de G, il existe € G tel que <z, 2> = 1.

2. 1l sera commode d’appeler polynome trigonométrigue dans
G toute combinaison linéaire & coefficients complexes de carac-
teres de G; les exemples donnés au n° 1 montrent que cette
définition est la définition usuelle des polynomes trigonomé-
triques st G =T ou G = R. Dans le cas ou G est compact,
comme (G est séparé par ses caracteres, le théoreme de WEIER-
STRASS-STONE prouve immédiatement que Von peut approcher
untiformément toute fonction conlinue dans un groupe compact par

des polynomes trigonométriques (i.e. que G est un ensemble total
dans € (G), muni de la topologie de convergence uniforme).

Tout caractere de G est évidemment une fonction de type positif
dans G; par suite tout polynome trigonométrique appartient a U (G).

De plus, on montre facilement que G est I'ensemble des points
extrémaux distincts de O de I'ensemble convexe ‘T, (G) formé des
fonctions ¢ de type positif telles que ¢ (¢) = sup [p (z)| << 1.
Comme <%, (G) est faiblement compact, le théoréme de KREIN-
Mitman 1 permet alors d’énoncer le théoréeme d’approximation

1 Cf. [4], Ch. II, § 4, no 2.
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suivant: toute fonction o € % (G) peut étre faiblement .approché'e
(dans L° (G)) par des polynomes irigonoméiriques a coeffictents post-
tifs, coefficients dont la somme est égale a ¢ (e) [7, 12]; ce résultat. se
compléte d’ailleurs facilement de la fagon suivante: toute fonction
de %7 (G) peut étre approchée uniformément sur tout compact par
des polynomes trigonométriques; il en est par suite de méme pour
toute fonction continue dans G. On verra au paragraphe 4, n° 3,
d’importants compléments & ces résultats.

§ 4. La transformation de Fourier.

1. Il est maintenant facile de définir la transformée de Fou-

riER d’une fonction f € L1 (G): c¢’est la fonction } définie dans G
par la formule f(x) = y; (f); autrement dit, on pose

flz) = [ <z, 2> f(v) dz; (1)

f est alors une fonction continue et nulle & l'infini1 dans G en

vertu de la définition de la topologie de G (généralisation du
classique théoréme de RiEmMANN-LEBESGUE). Plus précisément,
on voit facilement, d’apres la formule (1), que la transformation
de FOUuRIER [— | est une représentation continue de Ualgébre

involutive normée L (G) sur une sous-algébre ¢ (G) de K (G).

Le fait que G est séparé par ses caractéres signifie alors que
f— 7 est biunivoque (c’est-a-dire que toute fonction intégrable
est déterminée par sa transformée de Fourrer). La définition (1)
montre de plus que les fonctions de @ (é) séparent G; le théoréme

de WEIERSTRASS-STONE prouve alors que @ (G) est partout

dense dans I (G), ¢’est-a-dire que 1’on peut approcher unifor-
mément toute fonction continue, nulle a Iinfini, dans G par
des transformées de Fourier de fonctions de L1 (G).

La définition de la transformation de Fourier s’étend natu-

rellement & O (G): la transformée de Fourier de p € 0 (G)
est la fonction F, continue et bornée dans G définie par

F (%) = [<z, &> du (z) . (2)
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