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I’ANALYSE HARMONIQUE DANS LES GROUPES
ABELIENS

Premiére partie
PAR

Jean BrRACONNIER, Lyon

INTRODUCTION.

On sait que I’étude de la représentation des fonctions au
moyen de séries trigonométriques ou d’intégrales de Fourier
constitue un chapitre essentiel de I'analyse fonctionnelle. Les
premiers résultats relatifs a ce qu’on appelle aujourd’hui la
transformation de Fourier furent énoncés au début du x1x¢ siecle
par L. Fourier, S. Poisson, A. Cauchy et P.-L. Dirichlet en vue
de résoudre des problémes soulevés par D. Bernoulli, L.. Euler
et J. d’Alembert dans leurs travaux sur les solutions des équa-
tions différentielles. La période de 1825 a 1925 vit paraitre une
immense littérature consacrée aux séries et intégrales de Fourier
et 1l ne saurait étre question de donner 1c1 des indications biblio-
graphiques a ce sujet; quant aux résultats obtenus, on pourra
se reporter aux traités et monographies classiques parmi les-
quels on peut citer, sans étre exclusif, les ouvrages de A. Zyg-
mund [35] 1, S. Bochner [2] et N. Wiener [34].

L’étude moderne des structures fondamentales de 1’analyse
qui commencait a se développer vers 1925 se devait d’opérer
une syntheése de la théorie ainsi édifiée en reconstruisant I’ana-
lyse harmonique a partir de quelques principes généraux, en

1 Les chiffres entre crochets renvoient a la bibliographie placée a la fin de cet
article.
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élucidant le caractére mystérieux de certains résultats et en
établissant entre eux des liens jusqu’alors peu visibles ou incon-
nus. Les progrés de la théorie des groupes topologiques et les
travaux de H. Weyl, L. Pontrjagin et J. von Neumann indi-
quaient la voie & suivre et, en 1940, dans son magistral traité [33],
A. Weil pouvait dire que «les groupes abéliens, localement
compacts, forment le domaine naturel de I’analyse harmonique »,
définir la transformation de Fourier dans ces groupes et démon-
trer des généralisations du théoréme d’inversion de Fourier, du
théoreme de Parseval-Plancherel et du théoréme de Hergoltz-
Bochner. Un peu plus tard, I. Gelfand et D. A. Raikov [10]
démontraient les mémes résultats en suivant une voie un peu
différente; enfin, en 1945, des versions probablement définitives
et d’ailleurs trés proches 1'une de Pautre, furent publiées,
d’une part, par H. Cartan et R. Godement [7] et par D. A.Rai-
kov [26], d’autre part. Les monographies et traités publiés
depuis ne font que reprendre et compléter les idées fondamentales
exposées par les auteurs qu’on vient de nommer; parmil eux,
outre les travaux qu’on vient d’indiquer, il faut signaler les
articles et monographies de G. W. Mackey [21], M. H. Stone [32]
et L. H. Loomis [19]. L’analyse harmonique apparait alors
comme 1’étude de la réalisation, au moyen de la transformation
de Fourier, de ’algébre d’un groupe (algebre qui, a volonté, peut
étre formée de fonctions, de mesures, voire de distributions,
définies dans le groupe) comme une algebre de fonctions numeé-
riques, ou de mesures, définies dans un objet dual du groupe,
et qui est en quelque sorte le spectre de son algébre. Les résultats
qu’on obtient ainsi font I'objet du présent article; une partie de
ces résultats s’étend, au prix d’assez grandes difficultés, aux
groupes non abéliens que nous n’examinerons pas icl.

On s’est efforcé de décrire les résultats avec la plus grande
précision, ce qui a conduit parfois & quelque lourdeur, dont le
lecteur voudra bien nous excuser. D’autre part, chaque fois que
cela a semblé utile, on a donné de bréves indications sur les
démonstrations. Enfin, afin de conserver I’aspect concret du
sujet, on a volontairement évité 'emploi systématique de la
théorie des algebres normées, qui s’avérerait indispensable dans
un exposé plus dogmatique que celui-ci.
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Dans le paragraphe 1, on trouvera un rappel de notions fon-
damentales, relatives aux mesures et intégrales et aux algebres
normées. Au paragraphe 2, on donne la définition et quelques
propriétés de l'intégrale de Haar dans un groupe localement
compact G, de lalgebre de G et des fonctions de type positif
dans G, qui permettent de construire les formes positives,
continues dans I'algébre de G. Au paragraphe 3 sont définis les
caracteres du groupe G, supposé abélien, et ceux de son algebre.
Dans le paragraphe 4, on trouvera la définition de la transforma-
tion de Fourier ainsi que ses propriétés fondamentales. Au
paragraphe 5 se trouve exposée la théorie de la dualité dans les
groupes abéliens et au paragraphe 6 l’essentiel de la théorie
spectrale des fonctions mesurables et bornées.

Dans la seconde partie, qui débute avec le paragraphe 7, on
trouvera des compléments relatifs a la transformation de
Fourier-Laplace et a la théorie spectrale des fonctions continues.
Enfin, au paragraphe 8, on expose quelques propriétés fonda-
mentales des représentations des groupes et des rapports étroits
qui existent entre ces représentations et la transformation de
Fourier. Enfin, cet article est complété d’une bibliographie
volontairement limitée aux travaux essentiels cités dans le texte.

§ 1. Préliminaires.

1. Nous allons d’abord rappeler quelques définitions rela-
tives aux intégrales, dont il sera fait un constant usage dans la
suite 1. Soit E un espace localement compact. On appelle support
d’une fonction f & valeurs complexes, définie dans E le plus petit
ensemble fermé de E en dehors duquel f s’annule; on désigne
par K (E) Pespace vectoriel sur le corps € des nombres complexes,
que forme, lorsqu’on le munit des opérations usuelles sur les
fonctions numériques, I’ensemble des fonctions complexes,
définies et continues dans E, dont le support est compact. On

1 On utilisera ici 1a théorie de 'intégration telle qu’elle est exposée par N. Bour-
BAKI [Hh]; cette théorie est, entre autres, particulierement adaptée a notre propos.
Pour les éléments de topologie générale et de théorie des espaces vectoriels topologiques,
on consultera [3] et [4].
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désigne par K (E) Despace vectoriel formé des fonctions com-

plexes f, continues dans E et nulles a I'infini, ¢’est-a-dire telles

que, pour tout nombre ¢ > 0, il existe un ensemble compact

K C E tel que 'on ait ‘f(:c) [< e si # nappartient pas a K.

JC(E) sera toujours muni de la norme Hf H = sup []‘(x)
X

?

JC(E) est alors un espace de Banacu dans lequel JC (E) est
partout dense.

Désignons par JCRr (E) Pensemble des fonctions de JC(E) a
valeurs réelles; JCr (E) est un espace vectoriel sur le corps R
des nombres réels. On appelle mesure de RaponN dans E une
forme linéaire f — w (f) sur KR (E) telle que, pour tout ensemble
compact K C E, il existe un nombre c¢x > 0 tel que 'on ait
| () | < ek || f|| pour toute fonction f€ KR (E) dont le sup-
port est contenu dans K. Une mesure p est dite positive si
w(f) > 0 pour toute fonction f>0 de KR(E); une telle
mesure p. se prolonge canoniquement en une forme linéaire sur
un espace de fonctions intégrables (pour p.) et ce prolongement
posseéde les propriétés des intégrales usuelles. Une forme linéaire
complexe sur J{ (E), qui est combinaison linéaire (& coefficients
complexes) de mesures de RAponN s’appelle une mesure de
RADON complexe; toutes les mesures considérées dans la suite
seront de cette espece. S1 p est une mesure, on désignera souvent
par [f(x) dp (z) ou [f dp sa valeur pour une fonction f € K (E)
et on désignera par 1L (E) Pespace vectoriel formé par les mesures
sur E.

Toute forme linéaire u continue dans 'espace J€ (E) muni
de la norme Hf J est évidemment une mesure dans E, mesure
quon dit bornée; p se prolonge alors par continuité en une
forme linéaire continue dans I'espace de Banacu JC (E) qui sera
encore notée p. On peut ainsi identifier I’espace 1! (E) formé
des mesures bornées dans E au dual de I'espace JC (E), la norme
d’une mesure bornée p étant ][ m |’ = sup ’ w (f) ’

i<t

On appelle support d’une mesure w dans E le plus petit
ensemble fermé FE€E tel que [fdu = 0 pour toute fonction
J€ Kr(E) dont le support ne rencontre pas F. Toute mesure a
support compact est une forme linéaire continue dans Pespace
vectoriel JC (E) lorsqu’on munit cet espace de la topologie de




16 J. BRACONNIER

convergence compacte; comme J{(E) est partout dense dans
I'espace @ (E) des fonctions complexes continues dans E, muni
de la topologie de convergence compacte, toute mesure dans E
dont le support est compact se prolonge par continuité en une
forme linéaire continue dans € (E) et on identifiera 'espace
N, (E) des mesures a support compact au dual de € (E). Remar-
quons enfin qu'une mesure a support compact est évidemment
bornée.

Si z € E, on désigne par ¢, la mesure f— f (z); son support
est le point z; de plus x—¢, est un homéomorphisme de E
dans chacun des espaces ! (E) ou J1(, (E) muni de la topologie

n
faible. La mesure X c¢; e, , oules ¢; sont des nombres complexes

1 Xi’
_ i=1
et les x; des points de E (1 << 1 < n), est dite définte par les masses
¢; placées aux points z; € E.

2. Nous allons maintenant rappeler quelques définitions
moins classiques, relatives aux algébres. Toutes les algebres que
I’on considérera sont des algebres sur le corps des nombres
complexes; une telle algébre A est un espace vectoriel sur C,
muni d’un produit (x,y)—>xy, associatif et distributif par
rapport a l'addition, et tel que (Ax) y = A (xy) = x (hy) quels
que soient les éléments z et y de A et le nombre complexe A. Un
idéal bilatére a de A est dit régulier si I'algébre quotient A/a
posséde une unité. Une représentation f d’une algébre A dans
une algébre A; est une application linéaire de A dans A, telle
que l'on ait f (zy) = f (x) f (y) quels que soient x € A et y € A.
Une représentation de A sur C s’appelle un caractére de A; le

noyau 3(1 (0) d’un caractére y de A est un idéal bilatére régulier

maximal de A.

On dit que A est une algébre involutive si A est une algebre
pourvue dune application z - z* de A dans elle-méme,
appelée involution, et telle que (z 4 y)* = 2* + y*, (\x)* = Ar*,
(xy)* = y* x* et x** = x quels que soient les éléments x et y
de A et le nombre complexe A. Une représentation f d’une
algébre involutive A dans une algébre involutive A; est une
représentation de 1'algebre A dans Dalgébre A, telle que
f (x*) = f (x)* quel que soit z € A. Un caractére y, d’une algebre
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involutive A est dit unitaire si Uon a y (z*) =  (x) pour tout
z€ A. Une forme linéaire f sur A est dite positive si I'on a
f(x*x) >0 et f(z*) = f(z) pour tout x€ A. Par exemple, si
E est un espace localement compact, J (E), muni des opérations
usuelles et de linvolution f—f est une algébre involutive;
toute mesure positive dans E est une forme linéaire positive dans
JC(E); si z € E, la mesure ¢, est un caractere unitaire de K (E).

On dit qu’une algébre A est une algébre normée si A est un
espace vectoriel normé par une norme x- H x H telle que
lzy || < ||z ||-[ly ]l quels que soient z€ A et y€A. Toute
algébre normée qui est un corps est isomorphe a G (théoréme de
‘GELFAND-MAZUR ). Si A est compléte et si a est un idéal régu-
lier distinct de A, il en est de méme de I’adhérence de a; tout
idéal régulier maximal de A est ainsi fermé; si de plus A est
commutative, le théoréme de GELFAND-MazUR montre que tout
idéal régulier maximal est le noyau d’un caractére bien déter-
miné de A. On appelle approximation de.I’'unité dans A une base
de filtre ¥ dans A telle que chacun des ensembles de §§ soit
formé d’éléments y € A tels que H Yy H =1 et que l'on ait
limz 2y = x pour tout x € A; st A possede une unité e, la base
de filtre réduite & {e} est évidemment une approximation de
I'unité. Si E est un espace localement compact, JC (E) muni des
opérations usuelles sur les fonctions numériques et de la norme
introduite au n° 1 est une algebre involutive, normée et complete
(et évidemment commutative); si K est un ensemble compact
de E, les fonctions positives de JC(E), égales a 1 dans K et < 1
ailleurs, forment un ensemble By ; lorsque K varie, B décrit une
approximation de I'unité dans _J{TE, on remarquera que J (E)
ne possede d’unité que dans le seul cas ou E est compact. Tout
caractére continu de JC (E) est une mesure de la forme ¢ ot
x € E; tout idéal régulier maximal de J (E) est donc formé des
fonctions qui s’annulent en un point bien déterminé de E. Plus
généralement, si F est un ensemble fermé de E, ’ensemble N (F)
des fonctions f € JC (E) telles que f(z) = 0 si 2 € F est un idéal
fermé de JC (E) (régulier dans le seul cas ou F est compact); tout
idéal fermé de K (E) est de cette forme. Soit A une algébre

1 Cf. par exemple {8], [12] et aussi E. II1LLE, Functional analysis and semi-groups,
§ R2-12, Amer. Math. Soc Coll. Publ., X XXI (1948).

[ Enseignement mathém., t. IT, fasec. 1-2. 2
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commutative normée et o I’ensemble des caractéres continus
de A; o muni de la topologie faible (du dual de A) est un espace
localement compact (et compact si A posséde une unité) qu’on
appelle le spectre de A; si z€ A, y -y (x) est une fonction
z € K (s) et —~ z est une représentation continue de A dans
'algébre normée K (g). Supposons maintenant A compléte;
on a ||z || =sup |y (z)|= lim [[z"||'; de plus, le noyau
X

n—

de z—x est Dintersection des idéaux réguliers maximaux
de A ou, comme on dit, le radical de A; on dit que A est semi-
stmple si ce radical se réduit & 0, c¢’est-a-dire si x — z est biuni-
voque, ou sl A est séparée par ses caractéres. Si E est un espace
localement compact, E s’identifie au spectre de K (E) au moyen

de z —-¢, et f—>]? est simplement l'application identique de
S (E) sur lui-méme.

On dit enfin qu'une algébre normée A est une algébre invo-
luttve normée st A est munie d’une involution x — z* telle que
H x* H — H x H pour tout z € A. S1 A est une algebre involutive
complete, tout caractére unitaire de A est continu; inversement,
s1 tout caractére continu est unitaire, on dit que A est une
algébre symétrique.

Si E est un espace localement compact, J{ (E), munie de
I'involution f—f, est une algébre symétrique; on remarquera
que les formes linéaires positives et continues dans JK (E) sont
simplement les mesures bornées et positives dans E. St A est
une algebre symétrique commutative et s1 ¢ est son spectre,
x — z est une représentation continue de A sur une sous-algébre
partout dense de 1'algébre involutive J (5), d’aprés le théoréme
de WEIERSTRASS-STONE 1; s1 p est une mesure positive et
bornée dans o, f(r) = [z dw est une forme linéaire positive
et continue dans A qui satisfait a ’ f (x) ‘2 < ]| W || f (x* x); réci-
proquement, toute forme linéaire positive f dans A qui satisfait
a ’ f (x) '2 < k f (* ) pour tout x € A (condition qui est satis-
faite lorsque f est contimue et lorsque A posséde une approxima-
tion de I'unité) est de la forme ci-dessus; mais c¢’est déja la faire
de ’analyse harmonique, puisque celle-c1 n’est autre que I’étude

1 Cf, [31, § 13, n° 23.
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de la transformation de Fourier z—z lorsque A est une
algebre de groupe.

Pour de plus amples renseignements sur la théorie des
algébres normées, on pourra consulter le magistral exposé de
M. Neumark [23] et aussi [8, 11. 14].

TR IR

§ 2. L’intégrale de Haar et le produit de composition.

Dans tout ce qui suit, on désignera par G un groupe topologique
localement compact; la loi de composition de G sera notée mul-
tiplicativement et ’élément neutre de G sera désigné par e.
Toutes les fonctions définies dans G que I'on considére prennent
leurs valeurs dans l’ensemble C des nombres complexes, sauf
mention expresse du contraire.

1. Soit f une fonction définie dans G; s1 s€ G, la fonction
z—f (s x) sappelle la franslatée (& gauche) de f par s et se
note U,-f; les éléments s € G tels que U,-f = f s’appellent les
périodes de f et forment un sous-groupe de G, fermeé si f est
continue; le support de U,-f est I'image du support de f par
x — sx. 1l en résulte que U, est un automorphisme de I'espace
vectoriel K (G), ce qui permet de faire opérer G dans I'espace
des mesures dans G: st s € GG est s1 p est une mesure dans G, on
désigne par Ug-p la mesure v définie par v (f) = [f(sz) du (),
que 'on appelle la translatée (a gauche) de p. par s. On montre
qu’il existe une mesure sur G, positive et non nulle, invariante par
toutes les translations (a gauche); cette mesure est, en outre,
unique & un facteur multiplicatif preés et s’appelle la mesure de
Haar dans G. On choisit une fois pour toutes cette mesure et
on désigne alors par [f(z) dz sa valeur pour f€ Ky (G); on a
ainsi  [f(sz)dx = [f(x)dx et [f(as™')dx = p(s)[f(x)dw
pour tout s € G, ou p est une représentation continue de G dans
le groupe multiplicatif des nombres réels > 0, égale & 1 si G
est abélien ou compact. Le support de la mesure de Haar est G
tout entier et on identifiera toujours deux fonctions définies
dans G qui sont égales presque partout pour la mesure de HaAR:
st deux fonctions continues dans G sont égales presque partout,
elles sont égales.
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S1 p est un nombre réel > 1, on désignera par L? (G) 'espace
des fonctions de p*™¢ puissance intégrable dans G pour la
mesure de Haar; cette mesure se prolonge en une forme linéaire
dans L (G) et on désigne par ff (x) dx la valeur de ce prolon-
gement pour f€ LY (G); LP? (G) est un espace de Banacu pour
la. morme N, (f) = ([|[f(z) |Pdx)V?. Si p>1, le dual de
L? (G) est LY(G) avec 1/p + 1/¢g = 1: toute forme linéaire
continue dans LP? (G) s’écrit en effet sous la forme

<f,g> = [f(x) g (x) dw (1)

ou f€ LP (G) et g€ L4 (G). En particulier, L2 (G) est un espace
hilbertien si on le munit du produit scalaire défini par (1). Le
dual de L1 (G) est Pespace L™ (G) des fonctions mesurables dans
(r et bornées en mesure de Haar: toute forme linéaire continue
dans L! (G) est encore donnée par la formule (1) avec f € L (G)
et g€ L” (G); Nw(g) désignera la borne supérieure en mesure
de Haar d’une fonction g € L™ (G); on définit alors facilement
la topologie faible dans L™ (G), qui sera largement utilisée dans
la suite. .

Si 1 <p<+ o, et st fELP(G), on a U,-f€L?(G) et
N, U(s-f) = N, (f). Il en résulte que s— U; est une repré-
sentation biunivoque de G dans le groupe des automor-
phismes de L? (G) et, si f€ LP (G), s— U,-f est une application
continue de G dans LP? (G). Si p est fini, le transposé de 'auto-
morphisme U, de LP (G) est 'automorphisme U,—1 de L4 (G)
(1/p + 1/qg = 1). Enfin, par extension de la définition donnée
ci-dessus, les éléments s de G tels que U,-f = f s’appellent les
périodes de la fonction f€ L? (G) et forment un sous-groupe
fermé de G.

Si f€ L1 (G), on désignera par ]‘ la fonction z — f(x 1) /o (z
de L (G); de plus on identifiera souvent f a la mesure p bornee
dans G, définie par dp(x) = f(x)dz; on a Ny (f) = | ull.
Plus généralement, si p est une mesure dans G, on désignera
par @ la mesure définie par di. (x) = dp (z') ou  estla mesure
conjuguée de u; cette convention est évidemment compatible
avec la précédente.

Pour que G soit compact, il faut et il suffit que la mesure de
Haar de G soit une mesure bornée; on choisit alors cette mesure
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de facon que sa norme soit 1; pour toute fonction f continue
dans G, ff (z) dx est alors la valeur moyenne de f dans G.

Si G est discret, la mesure de Haar de G est évidemment
définie par une masse constante, qu’on choisit le plus souvent
égale 4 1, placée en chaque point de G; L (G) est alors I'ensemble
des fonctions f telles que la famille de terme général f (x) soit
sommable et on a [f(z)dr = % f(x). On a d’ailleurs
L1 (G) = I (G).

La mesure de Haar sur le groupe R™ est la mesure de
LeBEsGUE usuelle. D’autre part, a toute fonction f continue sur
le groupe compact T des nombres réels modulo 1 correspond une
fonction f* définie sur R et de période 1; 1’intégrale de Haar
sur T est alors définie par [f (z) dz = [f* (1)

Soit enfin H un sous-groupe dlstlngue et ferme de G et

g— fu g (y) dy (resp. h~ fG/H )dx) la mesure de Haar de
H (resp. G/H); si f€ L (G) = [gf (zy) dy ne dépend
que de la classe z dans G/H de xz € G et f est une fonction

intégrable dans G/H; on peut choisir (et on fera toujours ce
choix) la mesure de Haar dans G/H de facon que [f(z)dz =

fG,Hf d:c pour toute f€ L1(G) - f— f est alors une représenta-
tion continue de L' (G) sur L! (G/H), dont le noyau K (H) est
formé des fonctions orthogonales aux fonctions de g€ L” (G)
telles que g (zy™!) = g (z) pour tout y € H ..

2. Soient u et v deux mesures bornées dans G; la formule

= [f(zy) du () dv (y)  (f€ KR (G) (1)

définit une mesure bornée A dans G qu’on appelle le produit de
composttion de u et v et qu'on désigne par w*v. On a
le*v|| <|lw]| v]]- Muni du produit de composition et de
Pinvolution y— @, 'espace de Banacu 01Ut (G) est une algébre
normée involutive. Remarquons maintenant que L! (G), identifié
comme on I’a vu & une partie de N (G), est un idéal (bilatére)
fermé de 011! (G), le produit de composition de w€ I (G) et de

L Cf.[33, 27] et aussi H. REITER, Monatshefte fiir Math., 58, 73-78 (1954), et les
rectifications & cet article,
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f€ L (G) étant la fonction intégrable dans G définie presque
partout par p * f (z) = [f(y~' ) dp (y); on peut en particulier
définir le produit de composition de deux fonctions f et g de
L (G) par la formule

frg(@ = [f) e z)dy. 2)

Plus généralement on appellera produit de composition de deux
fonctions f et g définies dans G la fonction f * g définie par (2)
lorsque cette formule a un sens. On appelle algébre du groupe G
I’algebre involutive normée et compléte L (G). Si f et g appar-
tiennent a J¢ (G), il en est de méme de f * g, de sorte que K (G) -
est une sous-algebre partout dense de Lt (G), que certains
auteurs appellent encore algebre de G (K (G) est, si 'on veut,
I'« algébre étroite » du groupe G). Remarquons encore que l'en-
sernble N, (G) des mesures sur G, dont le support est compact,
est une sous-algebre de 011! (G). Pour que I'une des algebres que
I'on vient de définir soit commutative, il faut et 1l suffit que G
soit abélien; pour que L! (G) ou S (G) posséde un élément unité
(qui est alovs ¢,) 1l faut et 1l suffit que G soit discret. Remarquons
enfin que, s1 H est un sous-groupe distingué fermé de G, f—>;‘
est une représentation de I’algebre involutive L (G) sur L (G/H).
Le produit de composition u * f garde un sens si p € U (G)
et fELP(G)(1 <p <+ o) et on a alors pwrfeLP(G) et
Np(w * f) < ||| |[Ny(f). En particulier, on a N, (f » g) < Ny(/)N,(g)
st fELL(G) et g€ P (G)(1 < p < + ®); on voit ainst que
g—f* g est un endomorphisme continu de L? (G) et que
Iapplication qui a f € L' (G) associe cet endomorphisme est une
représentation biunivoque et continue de 'algebre L (G) dans
I’algebre des endomorphismes continus de LP (G); le transposé
de I'endomorphisme g—f* g de L? (G) est ’endomorphisme
g— f*g de LE(G) (1)p + 1/g = 1). Enfin LP(G) N L*(G)
est un i1déal a gauche partout dense de L! (G). D’autre part, pour
qu’un sous-espace fermé de LP (G) soit stable par toutes les
translations U, (s € G), il faut et 1l suffit qu’il soit stable par
tous les endomorphismes g—f* g (f€ Lt (G)); en particulier,
les idéaux a gauche fermés de 1.2 (G) sont identiques aux sous-
espaces fermés de 1.1 (G), stables par toutes les translations.
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Lorsque U parcourt 'ensemble des voisinages compacts de e
dans G, P'ensemble des fonctions positives de K (G), dont le
support est contenu dans U et dont I'intégrale de Haar est 1,
décrit une base de filtre ® (G) dans JK (G). Pour toute fonction
g € L? (G), Papplication f—f* g de K (G) dans LP(G) a g
comme hmite suivant la base de filtre @ (G) (principe de régu-
larisation). En particulier, ® (G) est une approximation de
Punité dans L1 (G). De méme, si g est une fonction continue
dans G, f* g converge uniformément sur tout compact de G
vers g suivant la base de filtre @ (G) 1.

Lorsque le groupe G est compact, on a L? (G)C Lt (G) et
Ny (f) < N, (f) st p>1 et f€LP(G); en particulier L2 (G) est
un idéal bilatére de L' (G) et on a N, (f * g) << N, (f) N, (g).
L2 (G), muni du produit de composition et de 'involution fﬂ>~]‘,
devient une algébre normée involutive, dont la structure est
lite & la structure d’espace hilbertien de L2 (G) par la formule

~

<f*rg h> = <g frh>. Cest cette algébre qui permet
d’ailleurs d’étudier le plus facilement les groupes compacts.

3. On dit qu'une fonction ¢ continue dans G est de fype
positif si elle vérifie les inégalités

\%

127 ¢ [ (xj__l z;) = 0 (3)
quels que solent les nombres complexes ¢; et les éléments z,
de G (1 <7 < n). On désigne par & (G) 'ensemble des fonctions
continues de type positif. Toute fonction ¢ € &% (G) est unifor-
mément continue et bornée dans G et satisfait a || ¢ || = o (e)
et ¢ (z7') = @ (). Il sera commode de considérer ¢ (G) comme
une partie de L* (G); & (G) est d’ailleurs un cone convexe
fermé de L™ (G). De plus, le produit de deux fonctions de type
positif est encore une fonction de type positif. Si p est la mesure
discrete définie par les masses ¢; aux points z; de G (1 < i < n),
Pinégalité (3) s’écrit sous la forme

w*r w(e) =>0. (4)

1 Cf.[12]. On remplace souvent, dans la pratique, ® (G) par une base de filtre plus
fine, dont les ensembles sont constitués par des fonctlions ayant des propriétés données,
formant souvent un ideal de K (G).
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On vérifie facilement que pour qu’une fonction continue ¢ soit
de type positif, il faut et il suffit qu’elle vérifie (4) pour toute
mesure & support compact, ou pour toute mesure p de la forme
du (x) = fdz (f € K (G)), c’est-a-dire que Pon ait

[fxf(x)e@dz=>=0 (5)

st f€ I (G); on a alors aussi (5) pour toute f€ L' (G) (Piné-
galité (5) signifie que la forme sesquilinéaire (f, g)
[g * f(x) ¢ (x) dx est hermitienne et positive; nous reviendrons
sur ce point au paragraphe 8). Toute fonction ¢ € < (G) définit
au moyen de la formule P (f) = <f, o> une forme linéaire P
positive et continue dans l'algéebre L1 (G). Réciproquemment,
toute fonction de L*” (G) qui définit une forme positive dans
L1 (G) est presque partout égale a une fonction de <« (G) a
laquelle on I'identifie. Ceci reste évidemment exact si on substi-
tue a l'algébre L (G) l'algebre K (G). On dira de méme qu’une
mesure p sur G est de type positif si on a [f * f(z) du (z) > 0
pour toute f € JC (G); w est ainsi une forme linéaire positive (mais
non continue) sur 'algebre J¢ (G).

On désignera par ) (G) espace vectoriel formé par les
combinaisons linéaires de fonctions de < (G); ) (G) est une
algébre normée (mais non compléte) avec le produit usuel des
fonctions et la norme N_ (9) = || ¢||. On désignera par 3P (G)
le sous-espace LP (G)N 17( ) de LP(G) (1 <p< + ®);
V' (G) est contenu dans tous les QP (G).

Si f€L(G), f [ appartient & < (G); il en résulte que les
fonctions g * f (g et f étant dans L! (G)) appartiennent a Q! (G).
Ces fonctions forment un idéal partout dense de L!(G). Plus
généralement les fonctions g * f sont partout denses dans L? (G),
de telle sorte que 1 (G) et VP (G) sont partout denses dans
L? (G). Il n’est peut-étre pas inutile de signaler que les fonctions
de type positif vont jouer un réle considérable dans notre
propos.

Pour tout ce qui est dit dans ce paragraphe, et pour de plus
amples informations, le lecteur se reportera au traité de A. WEIL
[33] (cf. aussi [12]).
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§ 3. Caractéres d’un groupe abélien.

Dans tout ce qui suit, on supposera que le groupe G que Uon
considere est abélien.

1. Une représentation continue de G dans le groupe multi-
plicatif des nombres complexes de valeur absolue 1 s’appelle un
caractére de G. On désignera par G lensemble des caractéres de
G. G est ainsi une partie de L~ (G) et, comme I’ensemble

Gu {0} de L” (G) est faiblement compact, G est localement
compact pour la topologie faible de L™ (G); en outre, on voit
facilement que, dans G cette topologie coincide avec la topologle
de convergence compacte dans G. Enfin, il est clair que, si z
et y sont des caractéres de G, il en est de méme de zy et que,
muni de la loi de composition (z,y)— zy et de la topologie
décrite ci-dessus,'é est un groupe abélien localement compact,

que ’on nomme dual de G. Remarquons que, si z € G, z — z (z)
est un caractére ' de G; on verra au paragraphe 4, n® 4, que
x — 2’ est un 1somorphisme de G sur le dual du groupe G. Les

groupes G et G vont jouer des roles symétriques et il sera com-
mode de désigner par <z, z> la valeur que prend au point

x € G le caractére z € G.

Par exemple, tout caractére du groupe additif R™ est de la
forme x —exp (2inx-y) ou x-y est le produit scalaire des
vecteurs x et y de R™; on voit ainsi qu’on peut identifier le dual
de R™ & R" lui-méme en posant <x, y> = exp (2inx-y). De
méme tout caractére du groupe additif T des nombres réels
modulo 1 est de la forme x— exp (2tmnz’) ou n est un entier
rationnel et ot 2z est un représentant dans R de 2 € T; on peut
ainsi identifier le dual de T au groupe additif Z des entiers
rationnels en posant <z, n> = exp (2iwnz’). On voit d’ailleurs
facilement que le dual de Z s’identifie & T en posant <n, z> =
<, n>. Ces identifications sont bien entendu compatibles
avec les topologies des différents groupes considérés.

Pour tout z € é la formule

= [f(x) ) <z, 2> du (f € L1 (G)) (1)
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définit un caractere continu de Dalgébre involutive normée
L1 (G); réciproquement, on montre facilement [10, 13] que tout
caraetére continu de L' (G) est défini par la formule y (f) =
[f () @ () dz ou ¢ est une fonction de L* (G) égale presque
partout a un caractere de G auquel on I'identifie. On obtient

A~

ainsi une correspondance biunivoque z — y; entre G et le
spectre de L' (G), correspondance qui est naturellement un
homéomorphisme. On notera que L' (G) est ainsi une algébre
symétrique au sens du paragraphe 1, no 2.

Le caractére de Lt (G) défini par la formule (1) se prolonge
naturellement en un caractére continu de I’algébre involutive
normée ' (G) au moyen de la formule y; (1) = [<z, 2> du(x)
(mais on n’obtient pas ainsi tous les caracteres de J1U' (G)).

On démontre le résultat suivant, par un procédé dia a
I. GELFaND et D. A. Raikov [10, 26]: Palgébre LY (G) est séparée
par ses caractéres (i.e. L' (G) est semi-simple): pour toute fonc-

tion f £ 0 de L1 (G), il existe # € G tel que %< (f) # 0. Ce résultat
entraine que G est séparé par ses caracteres, ¢’est-a-dire que pour

tout élément x # e de G, il existe € G tel que <z, 2> = 1.

2. 1l sera commode d’appeler polynome trigonométrigue dans
G toute combinaison linéaire & coefficients complexes de carac-
teres de G; les exemples donnés au n° 1 montrent que cette
définition est la définition usuelle des polynomes trigonomé-
triques st G =T ou G = R. Dans le cas ou G est compact,
comme (G est séparé par ses caracteres, le théoreme de WEIER-
STRASS-STONE prouve immédiatement que Von peut approcher
untiformément toute fonction conlinue dans un groupe compact par

des polynomes trigonométriques (i.e. que G est un ensemble total
dans € (G), muni de la topologie de convergence uniforme).

Tout caractere de G est évidemment une fonction de type positif
dans G; par suite tout polynome trigonométrique appartient a U (G).

De plus, on montre facilement que G est I'ensemble des points
extrémaux distincts de O de I'ensemble convexe ‘T, (G) formé des
fonctions ¢ de type positif telles que ¢ (¢) = sup [p (z)| << 1.
Comme <%, (G) est faiblement compact, le théoréme de KREIN-
Mitman 1 permet alors d’énoncer le théoréeme d’approximation

1 Cf. [4], Ch. II, § 4, no 2.
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suivant: toute fonction o € % (G) peut étre faiblement .approché'e
(dans L° (G)) par des polynomes irigonoméiriques a coeffictents post-
tifs, coefficients dont la somme est égale a ¢ (e) [7, 12]; ce résultat. se
compléte d’ailleurs facilement de la fagon suivante: toute fonction
de %7 (G) peut étre approchée uniformément sur tout compact par
des polynomes trigonométriques; il en est par suite de méme pour
toute fonction continue dans G. On verra au paragraphe 4, n° 3,
d’importants compléments & ces résultats.

§ 4. La transformation de Fourier.

1. Il est maintenant facile de définir la transformée de Fou-

riER d’une fonction f € L1 (G): c¢’est la fonction } définie dans G
par la formule f(x) = y; (f); autrement dit, on pose

flz) = [ <z, 2> f(v) dz; (1)

f est alors une fonction continue et nulle & l'infini1 dans G en

vertu de la définition de la topologie de G (généralisation du
classique théoréme de RiEmMANN-LEBESGUE). Plus précisément,
on voit facilement, d’apres la formule (1), que la transformation
de FOUuRIER [— | est une représentation continue de Ualgébre

involutive normée L (G) sur une sous-algébre ¢ (G) de K (G).

Le fait que G est séparé par ses caractéres signifie alors que
f— 7 est biunivoque (c’est-a-dire que toute fonction intégrable
est déterminée par sa transformée de Fourrer). La définition (1)
montre de plus que les fonctions de @ (é) séparent G; le théoréme

de WEIERSTRASS-STONE prouve alors que @ (G) est partout

dense dans I (G), ¢’est-a-dire que 1’on peut approcher unifor-
mément toute fonction continue, nulle a Iinfini, dans G par
des transformées de Fourier de fonctions de L1 (G).

La définition de la transformation de Fourier s’étend natu-

rellement & O (G): la transformée de Fourier de p € 0 (G)
est la fonction F, continue et bornée dans G définie par

F (%) = [<z, &> du (z) . (2)
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On voit encore facilement que w— F, est une représenta-
tion continue F de 'algebre involutive normée J1! (G) sur une
sous-algebre de 'algébre des fonctions uniformément continues

et bornées dans G. Si la mesure yu est positive, on voit immeédia-
tement que F, est une fonction de type positif, en sorte que F

applique I (G) dans 20 (G).
Remarquons enfin que, si w € M (G) et 2€ G, p * x est le
polynéme trigonométrique F, (z) et que la transformée de

Fourier de U,-p est la fonction <z, z> F, () de z.
On peut naturellement définir par des formules analogues

la transformation de Fourier F’ dans le groupe G (en fait, la
formule que P'on va lire n’est autre que la formule (2) écrite

pour G lorsqu’on aura pu identifier G au dual de é): la trans-

formée de FouriEr de la mesure p’ € I1! (G) est la fonction F,
continue, bornée et définie dans G par la formule

F, (z) = f<x, > dy’ () (3)

v

Comme f— f est une application linéaire continue de Lt (G)

dans K (G), sa transposée est une application linéaire faiblement

continue du dual T (G) de K (G) dans le dual L™ (G) de L1 (G),
application qui est liée a F’ par la formule

[t @) du' (z) = [f (2) F,, (2) da. (4)

Comme L (G) est dense dans K (G), cecl montre que F’ est
bruntvoque, et faiblement continue.

Les exemples indiqués au paragraphe 3, n® 1, permettent
d’écrire des formules normalisées pour la transformation de
Fourier usuelle: la transformée de Fourier d’une fonction f
intégrable de période 1 (i.e. appartenant a L1 (T)), est la suite
de terme général } (n) = f f () exp (— 2Ziwnz) dx (n € Z) qu’on,
appelle suite des coefficients de Fourier de f. De méme, la trans-
formée de Fourier de fe€ L'(Z) est la fonction }‘(x) ==
2f (n) exp (2ixnz) de période 1. La transformée de FoURIER

d’une mesure p € I (R") est l'intégrale de Fourier F, (y) =
[exp (— 2inx-y) dp (x).
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2. Nous allons maintenant voir les propriétés fondamentales
de la transformation de Fourier. Tout d’abord, il est clair que
la transformée de Fourier d’une mesure positive et bornée

dans G est une fonction de type positif dans G. Réciproquement,

st @ € (G), il existe une mesure positive (unique) w’ € I (G)
telle que |
¢ (2) = [<wx, z>dy' (x) pour toutxz € G (5)

(théoréme de BocHNER).

Ce résultat a été démontré par G. HEreorrz pour G = Z, par
S. BocunEiR [2] pour G = R et par A. WEIL [33] pour G quelconque.
Nous pensons qu’il est intéressant de donner quelques indications
sur la démonstration de cet important résultat. Si o € € (G), on

montre, par un artifice di a D. A. Raikov [25, 26] que }‘ —>ff (z) @ () dx

A

est une forme linéaire positive et continue dans €U (G); comme €L (G)

A~

est partout dense dans K (G), cette forme se prolonge par continuité
en une mesure positive u’ € I (G) telle que 'on ait ff () @ (2) dx =
ff () dp” (z) pour toute f € L1 (G); en développant le second membre,

on voit que la mesure <z, 2> dy.” (£) égale ¢ (z) dx d’ou le résultat
(cf. la fin du n° 2 du paragraphe 1). Signalons aussi une autre démons-
tration due & H. CartaN et R. GopEMENT [7]: comme la transformée

de Fourier de la masse 1 au point £ € G est le caractére £ de G,
I’ensemble convexe et faiblement compact des mesures positives de

norme < 1 dans G est appliqué biunivoquement, et par suite biconti-
nument, sur un ensemble convexe et faiblement compact de € (G),
qui contient O et G; cet ensemble est, d’apreés le théoréme d’approxi-
mation cité au paragraphe 3, n° 2, égal a %, (G), ce qui entraine le
théoreme de BocHuNER.

Remarquons encore que, s1 " est positive, on a H w | =TF, (e
de telle sorte que F’ est un homéomorphisme sur & (G) de I’en-
semble des mesures positives et bornées dans G.

Il résulte du théoréme de Bochner que F’ est une représenta-

~

tion biunivoque et continue del’algébre M (G) sur Palgébre 2 (G).
Ceci permet de voir que, si G n’est pas compact, il existe des
fonctions uniformément continues et bornées dans G qu’on ne
peut pas approcher uniformément par des fonctions de Q7 (G);
c’est par exemple le cas s1 G = R 1,

L Cf. J. DieunbonnNg, Sur le produit de composition. Comp. Math., 12, 17-34 (1954),
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On peut de plus choisir la mesure de Haar dans le groupe G
de facon que toute fonction f € V! (G) soit de la forme F, ou p

est la mesure définie par dy’ (z) = f(z) dz dans G; cela signifie

A~

que, la mesure de Haar étant convenablement choisie dans G

?

A A~

F appliqgue M (G) dans ' (G) et que, dans UV (G), Papplication
réciproque de F est F’ ou, en explicitant, que 'on a

f(x) = [f(z) <z.2>dz pour toute <€ ' (G) (6)

(formule d'inversion de FoURIER).

La mesure de Haar étant ainsi choisie dans é, F est de plus

A~

une isoméirie du sous-espace L' (G) N L2(G) de L2(G) sur L2 (G),
autrement dit, on a

[EEEN P

J f(x)2de=[f(z)2dz pour toute f € L (G) n L2 (G)

/-\
~
A

(théoreme de PLaNcHEREL-WEIL).

Cette 1soméirie se prolonge par continuité en un tsomorphisme

de lespace hilbertien 1.2 (G) sur lespace hilbertien 12 (G), tso-
morphisme dont le réciproque, ou l'adjoint, est le prolongement a

~ A~ -~

L2 (G) de la restriction de F' a 1.1 (G) n L2 (G). Pour G =T, ce
résultat est le classique théoreme de BEsseEL-PArsEvaL-Riesz;
1l est di & M. PraxcuereL pour G = R et a A. WEeIL [33] pour
G quelconque (et indépendamment a M. Krein [18]). Des
démonstrations diverses ont été publiées par H. Carranx et
R. GopeEMENT [7] et D. A. Raikov [25, 26]. On peut en déduire
la démonstration du théoréeme d’inversion de Fourier. Signalons
enfin qu’un théoréeme général sur la représentation des formes
linéaires positives dans une algébre involutive et commutative
quelconque (théoreme d & R. GopEMENT [14] et s’inspirant de
techniques utilisées par M. NeEumark [9, 23] et analogues a
celles utilisées par D. A. Raikov) permet de démontrer d’un
seul coup le théoreme de BocHNER, celul de PLANCHEREL-WEIL
et la formule d’inversiont de Fourier (cf. § 8).

Depuis les travaux de L. ScawarTz relatifs a la transforma-
tion de Fourier des distributions, le calcul des transformées de
Fotrier a l'aide des procédés de sommation (dans le cas de
G = T ou G = R) a perdu la plus grande partie de son intérét
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théorique; d’ailleurs lorsque de tels procédés s’avérent néces-
saires, il relevent de la régularisation par des fonctions conve-
nablement choisies.

3. Nous allons maintenant indiquer un théoréme d’approxi-
mation (complétant celui du paragraphe 3, n° 2) qui sera géné-
ralisé au paragraphe 6, no 4. Tout d’abord, si ¢ €27 (G) est la
transformée de FouriEr d’une mesure @’63111((}), on appelle
spectre de o le support Sp (o) de u'; Sp (o) est ainsi un ensemble

fermé de G, égal a I'ensemble des caracteres de G que I'on peut
approcher faiblement dans L. (G) par des combinaisons linéaires
de translatées de o. De plus, 'ensemble des € G tels que
<, > =1 pour tout z € Sp (¢) est le sous-groupe des périodes
de o.

Si o €< (G), on peut approcher o faiblement dans L” (G)
au moyen de polyndmes trigonométriques Zc¢, x; tels que

z, € Sp (v) et que les ¢; soient des nombres réels positifs de
somme inférieure & o (e). Plus généralement, on peut approcher
faiblement dans L% (G), et méme uniformément sur tout
compact, toute fonction de 7 (G) au moven de polyndémes trigo-
nométriques formeés avec les caractéres appartenant a son spectre.

Remarquons enfin que toute fonction de Q7 (G) peut étre
approchée uniformément sur tout compact par des fonctions de
VL (G) et que toute fonction de ¢ (G) peut étre approchée uni-
formément sur tout compact par des fonctions de la forme f* f

ou f €K (G)[7].

4. En utilisant les résultats du n° 2, on montre alors I'impor-
tant théoreme suivant de L. PoxTryacix [14]: si pour tout

r € G, on désigne par ' le caractére x— <z, 2> de G, z — 2’
est un isomorphisme du groupe G sur le dual du groupe G: on
identifiera ces deux groupes au moyen de cet isomorphisme (la

formule (3) qui définit la transformation de Fourier dans G se

réduit a la formule (2) écrite dans le groupe G). On peut alors
préciser les propriétés de F et F' de la maniére suivante:

a) F est une représentation biunivoque et continue de Ualgébre
wnvolutive normée N (G) sur ) (G);

?
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b) La restriction de I a V' (G) appliqgue V' (G) sur Ot (é) et a
pour application réciproque la restriction de F' a 1 (G);

A

c) I est une wsométrie de 1.2 (G) n LY (G) sur 2% (G) et se pro-
longe par continuité en un tsomorphisme de L2 (G) sur L2 (é)7

dont le réciproque est l'application de 1.2 (ér) sur L2 (G) qu’on
obtient en prolongeant par continuité la restriction de F' a

[.2 (G) n L! (G)
d) F appliqgue L (G) sur une sous-algébre partout dense & (é) de

K (G) et on a sup | f@) | = lim N, (3 H'"

x n— -+ oo

?? (G) est done dense par rapport a J¢ (G), mais en général,
si G n’est pas compact, 'adhérence de Q) (G) est distincte de

JC (G). On obtient ainsi une généralisation des propriétés fonda-
mentales de l'intégrale de Fourier usuelle.

Pour que G soit compact, il faut et il suffit que G soit discret.
On choisit alors les mesures de HAAR comme il a été dit au para-
graphe 2, n° 1. Les résultats précédents peuvent alors s’inter-
préter comme une extension de la théorie des séries de FOURIER:

a) La transformation de FOoUuRIER définte par (2) est une repré-
sentation biunivoque et continue de U'algebre NU (G) (formée
de toutes les mesures sur G) sur l'algébre (é) des fonctions
de type positif sur G;

b) F applique 0 (G) sur l'algébre 1.} (f}) des fonctions sommables
dans G et application réciproque de ¥ est la transformation

de Fourier F’ dans G, transformation qut a f' € L (G) associe

la fonction x — X<z, x>f (r) (la convergence du second
X
membre étant normale); ¢’est-a-dire que I'on a en particulier

f(x) = Z<x, 2> f(x) 8)
X
si € (G) et flz) = [<a, 2>f (x) dz; 2 (G) est partout
dense dans e (G) et on peul ainsi approcher uniformément
toute fonction continue dans G par des polyndmes trigono-
métriques.
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¢) Comme L2(G) C L1 (G), F est un tsomorphisme de Uespace

hilbertien 1.2 (G) sur L2 (é); le réciproque de F est le prolonge-

ment de F' ¢ L2 (G); c’est U'application qur & [ € L2 (G) faut

correspondre la fonction x—~ X<z, x> (), la convergence
X

A

ayant lieu cette fois dans L? (G). Ce résultat se précise encore
en disant que G est une base orthonormale de L? (G) et que
le développement de f € L2 (G) suivant cette base est donné
par (8).

Signalons pour terminer que I'application des résultats qu’on
vient d’indiquer a des groupes moins usuels que R™ T" ou Z"
conduit & d’intéressants résultats dont on ne connait malheu-
reusement pas d’exposé systématique.

§ 5. La théorie de la dualité.

1. On a vu que le dual de G était canoniquement isomorphe
a G; on peut alors développer une théorie de la dualité dans les
groupes abéliens localement compacts, au moyen de la forme

bilinéaire <z, x> définie dans G x G.
Si A est une partie de G, le sous-groupe fermé AL de G formé

des caractéres € G tels que <=z, 2> =1 si z€ A est dit
orthogonal & Aj; on définit de la méme maniére le sous-groupe

fermé A’L de G orthogonal & une partie A’ de G. Si H est un
sous-groupe de G, on a (H1)1 = H.
a) Ainst H — HL est une application biunivoque, involutive et

décrotssante de ['ensemble des sous-groupes fermés de G
(ordonné par inclusion) sur l'ensemble des sous-groupes fermés
de G, dont la correspondance réciproque est H' — H'L: de

plus le sous-groupe orthogonal & Iintersection d’une
famille § de sous-groupes fermés de G est le sous-groupe

de G engendré par les orthogonaux des sous-groupes de J.
b) Si H est un sous-groupe fermé de G, tout caractére z € HL
définit par passage au quotient modulo H un caractére 2

de G/H et z— 2 est un isomorphisme de HY sur le dual de

L’Enseignement mathém., t. II, fasc. 1-2. 3
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G/H, que Pon identifie alors & HL; de méme on peut identifier

canoniquement le dual de H au groupe quotient G/HJ- Pour
que H soit ouvert, il faut et il suffit que HZL soit compact; il

en résulte que le sous-groupe de G orthogonal a la compo-
sante connexe de e dans G est la réunion des sous-groupes

compacts de G, la torsion de G.

c) Soient G et G, deux groupes abéliens localement compacts
et u une représentation continue de G dans G;; pour tout
caracteére x; de G,, x — <u (x), £,> est un caractére ‘u (z,)

de G et z; —'u (r,) est une représentation continue de G,

A

dans G, dite transposée de u; le sous-groupe orthogonal au
noyau de u est ’adhérence de 'u (él); on a Yvou) = tuoty
s1 ¢ est une représentation continue de G; dans un groupe
abélien localement compact G,. Pour que 'u soit un homo-
morphisme, il faut et il suffit que u soit un homomorphisme; en
particulier, s1 u est un isomorphisme de G sur Gy, 'u est un

isomorphisme de (‘;1 sur G.
Pour tous ces résultats, on pourra consulter [16] ou [33].

2. Soit H un sous-groupe fermé de G. S1 f € L1 (G), on a vu
au paragraphe 2, n° 1, que la fonction f qui a la classe x de
z modulo H associe f(z) = [y f(xy) dy appartient a L1 (G/H) et
que f-f est une représentation de I’algebre involutive normée
L (G) sur L1 (G/H). On voit alors facilement que la transformée
de FoURIER ¢ — [qu<a, y> f(z)dz de f (y€ HL) est la
restriction a HL de la transformée de Fourier f de f; en
particulier I'idéal fermé de L1 (G), noyau de [ — | est formé des
fELL(G) telles que f(y) = 0 si y€ HL [27]. Ce résultat se
précise ainsi: f— f applique V' (G) dans ! (G/H) et la formule
d’inversion de FouRrieEr appliquée & f montre alors que 'on a
[/ @) dy = [g1] () dy (formule sommatoire de Poissox).

3. On peut déduire de la théorie de la dualité des précisions
sur la structure de G. Signalons les deux résultats suivants (qui
sont d’ailleurs équivalents) [24, 16, 33]:

a) Il existe dans G un sous-groupe fermé G, ayant un supplémen-
taire isomorphe a R™ et G, a un sous-groupe ouvert et compact;
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b) On dit quun groupe localement compact est élémentaire s1l
est isomorphe & un groupe de la forme R" X TP X Z% X F
ou F est un groupe abélien fini; alors G contient un sous-
groupe ouvert H, limite projective de groupes élémentaires;
autrement dit, il existe dans H une base de filtre P qui
converge vers e, qui est formée de sous-groupes compacts
et telle que H/N soit un groupe élémentaire pour tout

NePL

§ 6. Idéaux dams les algebres de groupes

et théorie spectrale.

1. La théorie des idéaux de l'algebre L!(G) présente de
grandes difficultés et elle est encore assez peu avancée (méme
pour G = R) sauf dans le cas des groupes compacts. Elle se fait
essentiellement au moyen de la représentation de L1 (G), au
moyen de la transformation de Fourier, sur la sous-algébre
L (G) de K (G).

Soit H une partie de L' (G); on appelle cospectre de H et on

désigne par Cosp (H) Iensemble des caractéres x € G tels que

A

f(x) = 0 pour toute f€ H. Cosp (H) est un ensemble fermé

de G, égal au cospectre de I'idéal fermé de L' (G) engendré
par H. On remarquera que 'intérieur du cospectre de f.€ L (G)
est simplement le complémentaire du support de 7.

Soit maintenant A’ une partie de G et Z (A") 'ensemble des
fonctions de L (G) dont les transformées de Fourier s’annulent
dans A’, c¢’est-a-dire dont le cospectre contient A’. Z (A’) est
un idéal fermé de 11 (G) et on a Z (A') =7Z (A) A’ étant
Padhérence de A’. De plus, pour tout ensemble fermé A’ de G
on a Cosp (Z (A")) = A’; cela tient essentiellement au fait que,
pour tout compact K’ de G et tout voisinage U’ de K’ dans G,
on peut trouver une fonction f € 11 (G) telle que f égale 1 dans

1 Pour de plus amples détails sur la théorie de 1a dualité et la structure des groupes
abeliens, cf. J. BRACONNIER, Sur les groupes topologiques localement compacts. Journal
Math. pures et appl., 27, 1-85 (1948).
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K’ et s’annule dans (U’; on résume souvent cette propriété en
disant que L!(G) est une algébre réguliére (cf. [11, 13)).

A cette propriété se rattache la suivante: soit K’ un ensemble
compact de G el [ une fonction de 1.1 (G); si le cospectre de f ne
rencontre pas K’ 1l existe une fonction g € L1(G) telle que
g (z) = 1/f (z) si € K’ (résultat dtt & N. WieNer pour G = R
ou Z [34] et a R. GopeEMENT [13] pour G quelconque); plus
généralement, st h est une fonction holomorphe dans K' N ]?((i),
il existe une fonction g € L2 (G) telle que g (x) = h (f(:i)) pour tout
z € K’; ce résultat, dt & T. CARLEMAN [6] pour G = R a été
démontré par I. SEcaL [20], puis par H. J. Reirer [27] pour G

quelconque. Il peut s’interpréter comme une propriété de

A

cloture de I'algebre normée, non complete, A (G).

2. On a déja remarqué que tout idéal régulier maximal de
LY (G) est de la forme Z (x) ot x est un caractére de G; de plus
L (G) est semi-simple, puisque séparée par ses caractéres
(§ 3, n° 1).

Tout idéal fermé 1 de Lt (G), distinct de L1 (G), est contenu dans
un 1déal régulier maximal au moins. Autrement dit, pour qu’un
idéal fermé I de L1 (G) soit égal a Lt (G), il faut et il suffit que,
pour tout # € G, il existe f € I telle que f () % 0; en particulier,
pour que ['ensemble des translatées de f € 12 (G) soit total dans
LY (G), U faut et il suffit que f ne s’ annule en aucun point de G.
On a la une des formes du célébre théoréme taubérien de WiENER
(la démonstration pour G = R est due a N. WIENER [34] et,
pour G quelconque & R. GopeEMENT [13]; cf. aussi [30]. On en
déduit une autre forme du théoreme taubérien, qui est la sui-
vante: supposons que G ne soit pas compact et que f soit une

fonction de L (G) telle que ]?ne s’annule pas; si g est une fonc-
tion de L” (G) telle que f » g s’annule & Dinfini, alors &z » g
s’annule a l'infini pour toute fonction A € L' (G) (il suffit de
voir que I’ensemble des 2 € L! (G) ayant la propriété indiquée
est un idéal fermé de L1 (G) contenant f, donc égal a Lt (G)
d’apres la premiére forme du théoréme taubérien).

3. Pour tout idéal fermé I de 1! (G), on a I CZ (Cosp (I));
mais il existe en général des 1déaux fermés I pour lesquels I est
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distinct de Z (Cosp (I)): c’est par exemple ce qui se passe si
G = R", avec n > 31 Il est intéressant de connaitre des
conditions suffisantes pour qu’une fonction f€ Z (Cosp (I))
appartienne a I: le théoréme taubérien peut, par exemple,
s’exprimer en disant que Pon a I = Z (Cosp (I)) st Cosp (I) est
vide. Une des conditions les plus simples est la suivante, qui

généralise le théoréme taubérien: st f est une fonction de L' (G)

A

telle que le support de | ne rencontre pas le cospectre de ['idéal
fermé 1 de L1 (G), alors f appartient a 1 [30] (cela signifie que
toute fonction de Z (Cosp (1)) appartient «localement» a I).
Ce résultat suffit déja pour faire la théorie des idéaux de L (G)

lorsque G est compact: G est alors discret et on voit alors immeé-
diatement que I — Cosp (I) est une application birunivoque et

décroissante de Densemble des idéaux fermés de L (G) sur B (G),
application dont la réciproque est 7; autrement dit, tout 1déal
fermé de l'algebre d’un groupe compact G est formé des fonc-
tions de L' (G) dont les transformées de Fourier s’annulent

sur une partie bien déterminée de G.

S1 I est un idéal fermé de L1 (G) et si f€ Z (Cosp (1)), on
voit facilement que le support de f rencontre Cosp (I) suivant
un ensemble contenu dans la frontiere de Cosp (I) (donc rare);
st, de plus, cet ensemble est clairsemé (i.e. ne contient aucun
ensemble parfait qui ne soit déja vide), alors f € 1. Ce résultat,
qui généralise visiblement tous les précédents, est dit & S. Acyon
et S. MANDELBROJT [22] si G = R et & H. Herson [15] et
H. J. ReiTER [27] pour G quelconque.

La démonstration utilise essentiellement une technique de
Drrkin 2 et le fait suivant: il existe dans G une base de filtre ¥ (G)
dont les ensembles sont formés de fonctions f intégrables, positives,

de type positif et telles que}ff () dz = 1 et que le support de [ soit
compact, IA)ase de filtre suivant laquelle f — / (Z) converge vers 1 pour

tout z € G; suivant cette base de filtre, f -~ f * g converge vers g
(resp. 0) dans I!(G) pour toute g¢ 11 (G). (resp. telle que

1 Cf. L. ScuwARrTz, Sur une propriété de synthese spectrale dans les groupes non
compacts. C. R. Acad. Sci. Poris, 227, 424-426 (1948) et Analyse et svnthése harmo-
niques dans les espaces de distributions, Can. Journ. of Math., 3, 503-512 (1951).

2 Cf. V. DITKkIN, On the structure of ideals in certain normed rings. Ucenye Zapiski
Moskov, Gos. Univ. Mat., 30, 83-130 (1939).
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fg dr = 0); en particulier, on voit que les fonctions & support
compact forment dans A (G) un 1déal partout dense [13].

En particulier, st 1 est un idéal fermé de 11 (G) tel que la
frontiére de Cosp (1) soit clairsemée (par exemple si Cosp (I) est
discret), on a 1 = Z (Cosp (I)). Remarquons que dire que
Cosp (I) se réduit & un point z € G revient & dire que I'idéal
fermé I est contenu dans le seul idéal maximal Z (z) (i.e. que I
est primaire); le résultat précédent montre qu'on a alors
I = Z (z), ¢’est-a-dire que I est maximal. Ce résultat avait déja
eté prouvé par I. Secar [30] pour G = R et par J. Riss [28]
et I. KapLansky [17] pour G quelconque. Remarquons encore
que, si I est un 1déal fermé de L' (G) dont le cospectre est fini,
I = Z (Cosp (I)) est de codimension finie égale au nombre
d’éléments de Cosp (I); plus généralement, si Cosp (I) est dis-
cret, on peut donner des précisions supplémentaires sur la
structure de l'algébre quotient L' (G)/I [27].

4. Soit maintenant H une partie de L™ (G); on désigne par
J (H) le sous-espace faiblement fermé de L™ (G) invariant par
les translations de G et engendré par H, c’est-a-dire I’ensemble
des fonctions de L™ (G) que on peut approcher faiblement dans
L* (G) par des combinaisons linéaires de translatées de fonc-
tions de H. On appelle specire de H I'ensemble fermé Sp (H) =
GnlJ (H) de G. On dit que H est moyenne périodigue si J (H)
est distinet de L” (G). L’idéal fermé I de L! (G) constitué par
les fonctions orthogonales aux fonctions de J (H) est évidem-
ment aussi formé des fonctions f € Lt (G) telles que ?* g =20
pour toute fonction g € H; pour que H soit moyenne périodique,
il faut et il suffit que I 5= 0; de plus le spectre de H est le cospectre
de 1. On peut ainsi associer & chacun des résultats ci-dessus une
proposition de théorie spectrale qui apparaitra le plus souvent
comme un théoréme d’approximation dans L* (G).

Tout d’abord, si A’ est une partie fermée de G, elle est égale
a son spectre et 1'idéal orthogonal a J (A’) est Z (A’). D’autre
part, si g € Q2 (G), le spectre de g est celui qu'on a déja défini
au n® 3 du paragraphe 4, c’est-a-dire le support de la mesure
de Ot (AG) dont g est la transformée de Fourikr; enfin, 1l est
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clair que, si g est intégrable et bornée dans G, le spectre de G
est le support de g.

Le théoréme taubérien de WIENER signifie que, s1 H cL” (G)
est telle que J (H) ne soit pas réduit a 0, le spectre de H n’est
pas vide (théoréme de BEurring [1]). En général, J (H) contient
évidemment J (Sp (H)), mais ces deux espaces sont distincts.
Toutefois, si U’ est un voisinage de Sp (H) dans G, on a
H C J (U"), c’est-a-dire qu’on peut approcher faiblement dans
L” (G), et méme uniformément sur tout compact, toute fonction
de H par des polynomes trigonométrigues formés avec les éléments
de U’. Dans le cas ou G est compact, on voit ainsi que J (H) =
J (Sp (H)) pour toute partie H de L (G). Plus généralement,
si la frontiere de Sp (H) est clairsemée (par exemple si Sp (H)
est discret), on a H  J (Sp (H)). St Sp (H) est discret, on peut
alors associer a chaque fonction de H wun développement
formel canonique suivant Sp (H); st de plus f € H est uniformé-
ment continue, f est presque périodique [27]; la théorie des
fonctions presque périodiques permet d’ailleurs de préciser de
nombreuses propriétés spectrales [27], mais il n’existe pas a
Pheure actuelle d’étude systématique des rapports qui existent
entre la théorie spectrale et la théorie ergodique. Il est permis
de croire qu’on pourra encore préciser considérablement les
critéres indiqués ci-dessus pour qu'un idéal I de L (G) soit égal
a Z (Cosp (I)).
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