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L'ANALYSE HARMONIQUE DANS LES GROUPES
ABËLIENS

Première partie

PAR

Jean Braconnier, Lyon

Introduction.

On sait que l'étude de la représentation des fonctions au

moyen de séries trigonométriques ou d'intégrales de Fourier
constitue un chapitre essentiel de l'analyse fonctionnelle. Les

premiers résultats relatifs à ce qu'on appelle aujourd'hui la
transformation de Fourier furent énoncés au début du xixe siècle

par L. Fourier, S. Poisson, A. Cauchy et P.-L. Dirichlet en vue
de résoudre des problèmes soulevés par D. Bernoulli, L. Euler
et J. d'Alembert dans leurs travaux sur les solutions des équations

différentielles. La période de 1825 à 1925 vit paraître une
immense littérature consacrée aux séries et intégrales de Fourier
et il ne saurait être question de donner ici des indications
bibliographiques à ce sujet; quant aux résultats obtenus, on pourra
se reporter aux traités et monographies classiques parmi
lesquels on peut citer, sans être exclusif, les ouvrages de A. Zyg-
mund [35] x, S. Bochner [2] et N. Wiener [34].

L'étude moderne des structures fondamentales de l'analyse
qui commençait à se développer vers 1925 se devait d'opérer
une synthèse de la théorie ainsi édifiée en reconstruisant l'analyse

harmonique à partir de quelques principes généraux, en

i Les chiiïres entre crochets renvoient à la bibliographie placée à la fin de cet
article.
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élucidant le caractère mystérieux de certains résultats et en

établissant entre eux des liens jusqu'alors peu visibles ou inconnus.

Les progrès de la théorie des groupes topologiques et les

travaux de H. Weyl, L. Pontrjagin et J. von Neumann

indiquaient la voie à suivre et, en 1940, dans son magistral traité [33],
A. Weil pouvait dire que « les groupes abéliens, localement

compacts, forment le domaine naturel de l'analyse harmonique »,

définir la transformation de Fourier dans ces groupes et démontrer

des généralisations du théorème d'inversion de Fourier, du
théorème de Parseval-Plancherel et du théorème de Hergoltz-
Bochner. Un peu plus tard, I. Gelfand et D. A. Raïkov [10]
démontraient les mêmes résultats en suivant une voie un peu
différente; enfin, en 1945, des versions probablement définitives
et d'ailleurs très proches l'une de l'autre, furent publiées,
d'une part, par H. Cartan et R. Godement [7] et par D. A.Raï¬
kov [26], d'autre part. Les monographies et traités publiés
depuis ne font que reprendre et compléter les idées fondamentales
exposées par les auteurs qu'on vient de nommer; parmi eux,
outre les travaux qu'on vient d'indiquer, il faut signaler les

articles et monographies de G. W. Mackey [21], M. H. Stone [32]
et L. H. Loomis [19]. L'analyse harmonique apparaît alors

comme l'étude de la réalisation, au moyen de la transformation
de Fourier, de l'algèbre d'un groupe (algèbre qui, à volonté, peut
être formée de fonctions, de mesures, voire de distributions,
définies dans le groupe) comme une algèbre de fonctions
numériques, ou de mesures, définies dans un objet dual du groupe,
et qui est en quelque sorte le spectre de son algèbre. Les résultats
qu'on obtient ainsi font l'objet du présent article; une partie de

ces résultats s'étend, au prix d'assez grandes difficultés, aux
groupes non abéliens que nous n'examinerons pas ici.

On s'est efforcé de décrire les résultats avec la plus grande
précision, ce qui a conduit parfois à quelque lourdeur, dont le
lecteur voudra bien nous excuser. D'autre part, chaque fois que
cela a semblé utile, on a donné de brèves indications sur les
démonstrations. Enfin, afin de conserver l'aspect concret du
sujet, on a volontairement évité l'emploi systématique de la
théorie des algèbres normées, qui s'avérerait indispensable dans
un exposé plus dogmatique que celui-ci.
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Dans le paragraphe 1, on trouvera un rappel de notions
fondamentales, relatives aux mesures et intégrales et aux algèbres
normées. Au paragraphe 2, on donne la définition et quelques
propriétés de l'intégrale de Haar dans un groupe localement
compact G, de l'algèbre de G et des fonctions de type positif
dans G, qui permettent de construire les formes positives,
continues dans l'algèbre de G. Au paragraphe 3 sont définis les

caractères du groupe G, supposé abélien, et ceux de son algèbre.
Dans le paragraphe 4, on trouvera la définition de la transformation

de Fourier ainsi que ses propriétés fondamentales. Au
paragraphe 5 se trouve exposée la théorie de la dualité dans les

groupes abéliens et au paragraphe 6 l'essentiel de la théorie
spectrale des fonctions mesurables et bornées.

Dans la seconde partie, qui débute avec le paragraphe 7, on
trouvera des compléments relatifs à la transformation de

Fourier-Laplace et à la théorie spectrale des fonctions continues.
Enfin, au paragraphe 8, on expose quelques propriétés
fondamentales des représentations des groupes et des rapports étroits
qui existent entre ces représentations et la transformation de

Fourier. Enfin, cet article est complété d'une bibliographie
volontairement limitée aux travaux essentiels cités dans le texte.

§ 1. Préliminaires.

1. Nous allons d'abord rappeler quelques définitions
relatives aux intégrales, dont il sera fait un constant usage dans la
suite L Soit E un espace localement compact. On appelle support
d'une fonction / à valeurs complexes, définie dans E le plus petit

| ensemble fermé de E en dehors duquel / s'annule; on désigne
j par JC (E) l'espace vectoriel sur le corps C des nombres complexes,
I que forme, lorsqu'on le munit des opérations usuelles sur les
j fonctions numériques, l'ensemble des fonctions complexes,
I définies et continues dans E, dont le support est compact. On

i On utilisera ici la théorie de l'intégration telle qu'elle est exposée par N. Botir-
baki [5]; cette théorie est, entre autres, particulièrement adaptée à notre propos.
Pour les éléments de topologie générale et de théorie des espaces vectoriels topologiques,
on consultera [31 et [4].
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désigne par JC(E) l'espace vectoriel formé des fonctions
complexes /, continues dans E et nulles à l'infini, c'est-à-dire telles

que, pour tout nombre s > 0, il existe un ensemble compact
K C E tel que l'on ait | f (x) |< s si x n'appartient pas à K.
JC (E) sera toujours muni de la norme || / || sup | f (x) |;

X

JC (E) est alors un espace de Banach dans lequel JC (E) est

partout dense.

Désignons par JCr (E) l'ensemble des fonctions de JC (E) à

valeurs réelles; JCr(E) est un espace vectoriel sur le corps R
des nombres réels. On appelle mesure de Radon dans E une
forme linéaire /-> p. (/) sur JCr (E) telle que, pour tout ensemble

compact K C E, il existe un nombre cK > 0 tel que l'on ait
j (/) | < cK y /|| pour toute fonction /G JCr(E) dont le

support est contenu dans K. Une mesure p est dite positive si

g (/) > 0 pour toute fonction /> 0 de JCr(E); une telle
mesure p se prolonge canoniquement en une forme linéaire sur
un espace de fonctions intégrables (pour p) et ce prolongement
possède les propriétés des intégrales usuelles. Une forme linéaire
complexe sur JC (E), qui est combinaison linéaire (à coefficients
complexes) de mesures de Radon s'appelle une mesure de

Radon complexe; toutes les mesures considérées dans la suite
seront de cette espèce. Si p est une mesure, on désignera souvent

par J/ {x) d\i (x) ou J/ d[i sa valeur pour une fonction / G JC (E)
et on désignera par JTt (E) l'espace vectoriel formé par les mesures
sur E.

Toute forme linéaire p. continue dans l'espace JC(E) muni
de la norme || / || est évidemment une mesure dans E, mesure
qu'on dit bornée; p se prolonge alors par continuité en une
forme linéaire continue dans l'espace de Banach JC (E) qui sera
encore notée p. On peut ainsi identifier l'espace JTt1 (E) formé
des mesures bornées dans E au dual de l'espace JC (E), la norme
d'une mesure bornée p étant || p || sup | p (/) |.

il / Il < 1

On appelle support d'une mesure p dans E le plus petit
ensemble fermé F G E tel que J/ d\i 0 pour toute fonction
/ £ JCr (E) dont le support ne rencontre pas F. Toute mesure à

support compact est une forme linéaire continue dans l'espace
vectoriel JC(E) lorsqu'on munit cet espace de la topologie de
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convergence compacte; comme t7C(E) est partout dense dans
l'espace £ (E) des fonctions complexes continues dans E, muni
de la topologie de convergence compacte, toute mesure dans E
dont le support est compact se prolonge par continuité en une
forme linéaire continue dans £ (E) et on identifiera l'espace
Jïlc (E) des mesures à support compact au dual de £ (E). Remarquons

enfin qu'une mesure à support compact est évidemment
bornée.

Si x G E, on désigne par la mesure /-/ (x); son support
est le point x; de plus x-+zx est un homéomorphisme de E
dans chacun des espaces Jll1 (E) ou Jllc (E) muni de la topologie

n
faible. La mesure 2 ci ex., où les ci sont des nombres complexes

i i
1

et les xz des points de E (1 < i < n), est dite définie par les masses

ci placées aux points xt G E.

2. Nous allons maintenant rappeler quelques définitions
moins classiques, relatives aux algèbres. Toutes les algèbres que
l'on considérera sont des algèbres sur le corps des nombres

complexes; une telle algèbre A est un espace vectoriel sur C,

muni d'un produit (x, y) xy, associatif et distributif par
rapport à l'addition, et tel que (Xx) y X (xy) x (Xy) quels

que soient les éléments x et y de A et le nombre complexe X. Un
idéal bilatère a de A est dit régulier si l'algèbre quotient A/ a

possède une unité. Une représentation / d'une algèbre A dans

une algèbre A± est une application linéaire de A dans A1 telle

que l'on ait f (xy) f (x) f (y) quels que soient x G A et y G A.
Une représentation de A sur C s'appelle un caractère de A; le

\
noyau x (0) d'un caractère x de A est un idéal bilatère régulier

maximal de A.
On dit que A est une algèbre involutive si A est une algèbre

pourvue d'une application x x* de A dans elle-même,
appelée involution, et telle que (x + y)* x* + y*, (X#)* s= X^r*,

(xy)* =» y* x* et x** x quels que soient les éléments x et y
de A et le nombre complexe X. Une représentation / d'une

algèbre involutive A dans une algèbre involutive Ar est une

représentation de l'algèbre A dans l'algèbre A1 telle que

f (x*). f (x)* quel que soit x G A. Un caractère x d'une algèbre
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involutive A est dit unitaire si Ton a x(x*) x(x) Pour
x G A. Une forme linéaire / sur A est dite positive si l'on a

/ (x* x) > 0 et / (x*) J(xj pour tout x G A. Par exemple, si

E est un espace localement compact, JC (E), muni des opérations
usuelles et de ^'involution /-+J est une algèbre involutive;
toute mesure positive dans E est une forme linéaire positive dans

JC (E) ; si x G E, la mesure sx est un caractère unitaire de JC (E).
On dit qu'une algèbre A est une algèbre normée si A est un

espace vectoriel normé par une norme x-> || x || telle que
Il xy y < y x y • y y H quels que soient xGA et y £ A. Toute

algèbre normée qui est un corps est isomorphe à C (théorème de

Gelfand-Mazur 1). Si A est complète et si a est un idéal régulier

distinct de A, il en est de même de l'adhérence de a ; tout
idéal régulier maximal de A est ainsi fermé; si de plus A est

commutative, le théorème de Gelfand-Mazur montre que tout
idéal régulier maximal est le noyau d'un caractère bien déterminé

de A. On appelle approximation de.l'unité dans A une base

de fdtre % dans A telle que chacun des ensembles de § s°it
formé d'éléments y G A tels que ||y|| =1 et que l'on ait
limjy xy ~ x pour tout x G A; si A possède une unité c, la base
de fdtre réduite à {e} est évidemment une approximation de

l'unité. Si E est un espace localement compact, JC (E) muni des

opérations usuelles sur les fonctions numériques et de la norme
introduite au n° 1 est une algèbre involutive, normée et complète
(et évidemment commutative); si K est un ensemble compact
de E, les fonctions positives de JC(E), égales à 1 dans K et < 1

ailleurs, forment un ensemble BK; lorsque K varie, BK décrit une
approximation de l'unité dans JC (E) ; on remarquera que JC (E)
ne possède d'unité que dans le seul cas où E est compact. Tout
caractère continu de JC (E) est une mesure de la forme sx où

x G E ; tout idéal régulier maximal de JC (E) est donc formé des
fonctions qui s'annulent en un point bien déterminé de E. Plus
généralement, si F est un ensemble fermé de E, l'ensemble N (F)
des fonctions / G JC (E) telles que / (x) 0 si x G F est un idéal
fermé de JC (E) (régulier dans le seul cas où F est compact) ; tout
idéal fermé de JC (E) est de cette forme. Soit A une algèbre

1 Cf. par exemple [81, [12| et aussi E. Hille, Functional analysis and semi-groups,
§ 22-12, Amer. Math. Soc Coll. Puhl., XXXI (1948).

L'Enseignement mal hé m., t. II, fasc. 1-2. 2
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commutative normée et er l'ensemble des caractères continus
de A; a muni de la topologie faible (du dual de A) est un espace
localement compact (et compact si A possède une unité) qu'on
appelle le spectre de A; si x G A, x^xi00) es^ une fonction
x G JC (g) et x x est une représentation continue de A dans

l'algèbre normée Jv(çj). Supposons maintenant A complète;
on a y x (I sup | y {x) | lim || xn ||1/n; de plus, le noyau

X n - * co

de x - > x est l'intersection des idéaux réguliers maximaux
de A ou, comme on dit, le radical de A; on dit que A est semi-

simple si ce radical se réduit à 0, c'est-à-dire si x -> x est biuni-
voque, ou si A est séparée par ses caractères. Si E est un espace
localement compact, E s'identifie au spectre de (E) au moyen
de x ex et / / est simplement l'application identique de

Jv (E) sur lui-même.
On dit enfin qu'une algèbre normée A est une algèbre invo-

lutive normée si A est munie d'une involution x x* telle que
Il x* (j y x y pour tout x G A. Si A est une algèbre involutive
complète, tout caractère unitaire de A est continu; inversement,
si tout caractère continu est unitaire, on dit que A est une
algèbre symétrique.

Si E est un espace localement compact, J£ (E), munie de

l'involution /-*/, est une algèbre symétrique; on remarquera
que les formes linéaires positives et continues dans J£ (E) sont
simplement les mesures bornées et positives dans E. Si A est

une algèbre symétrique commutative et si cr est son spectre,

x^x est une représentation continue de A sur une sous-algèbre

partout dense de l'algèbre involutive Jv(o-), d'après le théorème
de Weierstrass-Stone 1; si g est une mesure positive et
bornée dans cr, / (x) fx d\L est une forme linéaire positive
et continue dans A qui satisfait à | / {x) [2 < 11 p, 11 / (x* x);
réciproquement, toute forme linéaire positive / dans A qui satisfait
à | / (x) |2 < k f (x* x) pour tout x G A (condition qui est satisfaite

lorsque / est continue et lorsque A possède une approximation

de l'unité) est de la forme ci-dessus; mais c'est déjà là faire
de l'analyse harmonique, puisque celle-ci n'est autre que l'étude

i Cf, [3], § 13, n° 23.
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de la transformation de Fourier x->x lorsque A est une

algèbre de groupe.
Pour de plus amples renseignements sur la théorie des

algèbres normées, on pourra consulter le magistral exposé de

M. Neumark [23] et aussi [8, 11, 14].

§ 2. L'intégrale de Haar et le produit de composition.

Dans tout ce qui suit1 on désignera par G un groupe topologique
localement compact; la loi de composition de G sera notée mul-

tiplicativement et l'élément neutre de G sera désigné par e.

Toutes les fonctions définies dans G que l'on considère prennent
leurs valeurs dans l'ensemble C des nombres complexes, sauf

mention expresse du contraire.

1. Soit / une fonction définie dans G; si s G G, la fonction

xf {s~l x) s'appelle la translatée (à gauche) de / par s et se

note Ut-f; les éléments s £ G tels que Us-f f s'appellent les

périodes de / et forment un sous-groupe de G, fermé si / est

continue; le support de Us-f est l'image du support de / par
x sx. Il en résulte que Us est un automorphisme de l'espace
vectoriel JÇ (G), ce qui permet de faire opérer G dans l'espace
des mesures dans G: si s G G est si p est une mesure dans G, on
désigne par Us-[i la mesure v définie par v (/) «=* J/ (sx) d\i (x)9

que l'on appelle la translatée (à gauche) de p par 5. On montre
qu'il existe une mesure sur G, positive et non nulle, invariante par
toutes les translations (à gauche)\ cette mesure est, en outre,
unique à un facteur multiplicatif près et s'appelle la mesure de

Haar dans G. On choisit une fois pour toutes cette mesure et
on désigne alors par J/ (x) dx sa valeur pour / G Xr (G); on a
ainsi J/ {sx) dx J/ (x) dx et J / (xs~1) dx p (s) J/ {x) dx

pour tout s G G, où p est une représentation continue de G dans
le groupe multiplicatif des nombres réels > 0, égale à 1 si G
est abélien ou compact. Le support de la mesure de Haar est G
tout entier et on identifiera toujours deux fonctions définies
dans G qui sont égales presque partout pour la mesure de Haar;
si deux fonctions continues dans G sont égales presque partout,
elles sont égales.
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Si p est un nombre réel > 1, on désignera par Lp (G) l'espace
des fonctions de pieme puissance intégrable dans G pour la
mesure de Haar; cette mesure se prolonge en une forme linéaire
dans L1 (G) et on désigne par J/ (x) dx la valeur de ce

prolongement pour / GL1 (G); Lp (G) est un espace de Banach pour
la norme Np (/) (J|f (x) |p dx)llp. Si p > 1, le dual de

Lp (G) est lß (G) avec ijp -f- 1 \q — 1: toute forme linéaire
continue dans Lp (G) s'écrit en effet sous la forme

</, g> J7 (x) g (x)dx(l)où / G Lp (G) et g G (G). En particulier, L2 (G) est un espace
hilbertien si on le munit du produit scalaire défini par (1). Le
dual de L1 (G) est l'espace L°° (G) des fonctions mesurables dans
G et bornées en mesure de Haar: toute forme linéaire continue
dans L1 (G) est encore donnée par la formule (1) avec / GL1 (G)
et g G L°° (G); N »(g) désignera la borne supérieure en mesure
de Haar d'une fonction g G L°° (G); on définit alors facilement
la topologie faible dans L°° (G), qui sera largement utilisée dans
la suite.

Si 1 < p < -f- go et si / G Lp (G), on a Us • / G Lp (G) et

Np U(s-f) Np (/). Il en résulte que s->Us est une
représentation biunivoque de G dans le groupe des automor-
phismes de Lp (G) et, si / G Lp (G), s-> Us- f est une application
continue de G dans Lp (G). Si p est fini, le transposé de l'auto-
morphisme Us de Lp (G) est l'automorphisme Us-1 de lß (G)

(Ifp -f- Ifq 1). Enfin, par extension de la définition donnée

ci-dessus, les éléments s de G tels que Us-f f s'appellent les

périodes de la fonction / G Lp (G) et forment un sous-groupe
fermé de G.

_
Si / G L1 (G), on désignera par / la fonction x f(x~l)lp (x)

de L1 (G); de plus on identifiera souvent / à la mesure g bornée
dans G, définie par d\i (x) f (x) dx\ on a Nx (/) || q ||.

Plus généralement, si g est une mesure dans G, on désignera

par q la mesure définie par d\i (x) d]L(x~l) où g est la mesure
conjuguée de g; cette convention est évidemment compatible
avec la précédente.

Pour que G soit compact, il faut et il suffit que la mesure de

Haar de G soit une mesure bornée; on choisit alors cette mesure
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de façon que sa norme soit 1 ; pour toute fonction / continue
dans G, J7 (x) dx est alors la valeur moyenne de / dans G.

Si G est discret, la mesure de Haar de G est évidemment
définie par une masse constante, qu'on choisit le plus souvent

égale à 1, placée en chaque point de G; L1 (G) est alors l'ensemble
des fonctions / telles que la famille de terme général j (x) soit
sommable et on a J/ (x) dx S / (x). On a d'ailleurs

L1 (G) 31!1 (G).
La mesure de Haar sur le groupe Rn est la mesure de

Leresgue usuelle. D'autre part, à toute fonction / continue sur
le groupe compact T des nombres réels modulo 1 correspond une
fonction /* définie sur R et de période 1; l'intégrale de Haar
sur T est alors définie par J/ (x) dx J*/* (t) dt.

Soit enfin H un sous-groupe distingué et fermé de G et

Jh S id) dy (resp. h -> JCt/h h (x) dx) la mesure de Haar de

H (resp. G/H); si / GL1 (*G), / (x) JH / (xy) dy ne dépend

que de la classe x dans G/H de x G G et / est une fonction
intégrable dans G/H; on peut choisir (et on fera toujours ce

choix) la mesure de Haar dans G/H de façon que J/ (x) dx

JG/H/(x)dx pour toute / GL1 (G) • /-*/ est alors une représentation

continue de L1 (G) sur L1 (G/H), dont le noyau K (H) est
formé des fonctions orthogonales aux fonctions de g G L°° (G)
telles que g {xy~~[) — g (x) pour tout y G H 1.

2. Soient y et v deux mesures bornées dans G; la formule

* (/) J7 (xy)dy.(x)rfv (/ ,7Cr (G) (l)

définit une mesure bornée X dans G qu'on appelle le produit de

composition de y et v et qu'on désigne par y * v. On a

||(x*v||<||q||||v|j. Muni du produit de composition et de
l'involution l'espace de Banaci-i »lie1 (G) est une algèbre
normée involutive. Remarquons maintenant que L1 (G), identifié
comme on l'a vu à une partie de Jtl1 (G), est un idéal (bilatère)'
fermé de JII1 (G), le produit de composition de q G OTi1 (G) et de

i Cf. T33, 27] et aussi H. Reiter, Monatshefte für Math., 58, 73-78 (1954), et les
rectifications à cet article.
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f G L1 (G) étant la fonction intégrable dans G définie presque
partout par g * / (x) Jf (y~x x) d\x (y); on peut en particulier
définir le produit de composition de deux fonctions / et g de
L1 (G) par la formule

f * g(x)J/ (y) (y~l x) dy (2)

Plus généralement on appellera produit de composition de deux
fonctions / et g définies dans G la fonction / * g définie par (2)

lorsque cette formule a un sens. On appelle algèbre du groupe G

l'algèbre involutive normée et complète L1 (G). Si / et g
appartiennent à OC (G), il en est de même de / * g, de sorte que OC (G)
est une sous-algèbre partout dense de L1 (G), que certains
auteurs appellent encore algèbre de G (OC (G) est, si l'on veut,
1'« algèbre étroite » du groupe G). Remarquons encore que
l'ensemble 0Tic (G) des mesures sur G, dont le support est compact,
est une sous-algèbre de J111 (G). Pour que l'une des algèbres que
l'on vient de définir soit commutative, il faut et il suffit que G

soit abélien ; pour que L1 (G) ou f/C(G) possède un élément unité
(qui est alors ze) il faut et il suffit que G soit discret. Remarquons
enfin que, si H est un sous-groupe distingué fermé de G, /->/
est une représentation de l'algèbre involutive L1 (G) sur L1 (G/H).

Le produit de composition p. * / garde un sens si g G JfipfG)
et / G Lp (G) (1 < p < ~f oc) et on a alors g * / G Lp (G) et

Np((x * /) < |||i||Np(/). En particulier, on a Np(/ * < NX(/)N
si /GL1 (G) et g G Lp (G) (1 < p < -f °o); on voit ainsi que
g-*.f* g est un endomorphisme continu de Lp (G) et que
l'application qui à / G L1 (G) associe cet endomorphisme est une

représentation biunivoque et continue de l'algèbre L1 (G) dans

l'algèbre des endomorphismes continus de LP(G); le transposé
de l'endomorphisme g f * g de Lp (G) est l'endomorphisme

g->/*g de Iß (G) (1/p + ijq 1). Enfin Lp (G) f| L1 (G)
est un idéal à gauche partout dense de L1 (G). D'autre part, pour
qu'un sous-espace fermé de Lp (G) soit stable par toutes les

translations Us (s G G), il faut et il suffît qu'il soit stable par
tous les endomorphismes g^f* g (/ £ L1 (G)); en particulier,
les idéaux à gauche fermés de L1 (G) sont identiques aux sous-

espaces fermés de L1 (G), stables par toutes les translations.
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Lorsque U parcourt l'ensemble des voisinages compacts de e

dans G, l'ensemble des fonctions positives de JC (G), dont le

support est contenu dans U et dont l'intégrale de Haar est 1,

décrit une base de filtre <E> (G) dans JC (G). Pour toute fonction
g G Lp (G), l'application f f * g de JC (G) dans Lp (G) a g

comme limite suivant la base de filtre O (G) (principe de

régularisation). En particulier, 0(G) est une approximation de

Vunité dans L1 (G). De même, si g est une fonction continue
dans G, f * g converge uniformément sur tout compact de G

vers g suivant la base de filtre O (G) 1.

Lorsque le groupe G est compact, on a Lp (G) CI L1 (G) et

Ni (/) < Np (/) si p > 1 et / G Lp (G); en particulier L2 (G) est

un idéal bilatère de L1 (G) et on a N2 (/ * g) < N2 (/) N2 (g).
L2 (G), muni du produit de composition et de l'involution / -* /,
devient une algèbre normée involutive, dont la structure est
liée à la structure d'espace hilbertien de L2 (G) par la formule

</ * g, h> <g, f * h>. C'est cette algèbre qui permet
d'ailleurs d'étudier le plus facilement les groupes compacts.

3. On dit qu'une fonction cp continue dans G est de type
positif si elle vérifie les inégalités

S Cj Cj 9 (x~l xt) > 0 (3)

quels que soient les nombres complexes et les éléments x-
de G (1 < i<ri). On désigne par ri (G) l'ensemble des fonctions
continues de type positif. Toute fonction 9 £ (G) est
uniformément continue et bornée dans G et satisfait à || 9 || 9 (e)
et 9 (x'-1) 9 (x).Ilsera commode de considérer (G) comme
une partie de L°° (G); ri(G) est d'ailleurs un cône convexe
fermé de L (G). De plus, le produit de deux fonctions de type
positif est encore une fonction de type positif. Si p. est la mesure
discrète définie par les masses aux points xtde G (1 < <
l'inégalité (3) s'écrit sous la forme

p * p (9) > 0. (4)

1 Cf. [12J. On remplace souvent, dans la pratique, (Gr) par une base de filtre plus
fine, dont les ensembles sont constitués par des fonctions ayant des propriétés donnéesformant souvent un idéal de ;/C (G).
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On vérifie facilement que pour qu'une fonction continue cp soit
de type positif, il faut et il suffit qu'elle vérifie (4) pour toute
mesure à support compact, ou pour toute mesure p de la forme
d\± (x) f dx (/G JC (G)), c'est-à-dire que l'on ait

J/ * / {x) 9 (x) dx > 0 (5)

si / G t7v (G); on a alors aussi (5) pour toute / G L1 (G) (l'inégalité

(5) signifie que la forme sesquilinéaire (/, g) ->

Jg * f (x) 9 (x) dx est hermitienne et positive; nous reviendrons
sur ce point au paragraphe 8). Toute fonction 9 G L% (G) définit
au moyen de la formule P (/) </, cp> une forme linéaire P

positive et continue dans l'algèbre L1 (G). Réciproquemment,
toute fonction de L00 (G) qui définit une forme positive dans
L1 (G) est presque partout égale à une fonction de (G) à

laquelle on l'identifie. Ceci reste évidemment exact si on substitue

à l'algèbre L1 (G) l'algèbre t7C (G). On dira de même qu'une
mesure p sur G est de type positif si on a J/ * / (#) d\i {x) > 0

pour toute / G JC (G) ; p est ainsi une forme linéaire positive (mais
non continue) sur l'algèbre Jv (G).

On désignera par (G) l'espace vectoriel formé par les

combinaisons linéaires de fonctions de CT(G); T5 (G) est une
algèbre normée (mais non complète) avec le produit usuel des

fonctions et la norme (9) || 911. On désignera par (G)
le sous-espace Lp (G) f| V (G) de Lp (G) (1 < p < + 00 );
V1 (G) est contenu dans tous les (G).

Si / G L1 (G), f * f appartient à cî (G); il en résulte que les

fonctions g * f (g et / étant dans L1 (G)) appartiennent à V1 (G).
Ces fonctions forment un idéal partout dense de L1 (G). Plus

généralement les fonctions g * / sont partout denses dans Lp (G),
de telle sorte que V1 (G) et tTp (G) sont partout denses dans

Lp (G). Il n'est peut-être pas inutile de signaler que les fonctions
de type positif vont jouer un rôle considérable dans notre

propos.
Pour tout ce qui est dit dans ce paragraphe, et pour de plus

amples informations, le lecteur se reportera au traité de A. Weil
[33] (cf. aussi [12]).
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§ 3. Caractères d'un groupe abélien.

Dans tout ce qui suit, on supposera que le groupe G que Von

considère est abélien.

1. Une représentation continue de G dans le groupe
multiplicatif des nombres complexes de valeur absolue 1 s'appelle un

caractère de G. On désignera par G l'ensemble des caractères de

G. G est ainsi une partie de L°° (G) et, comme l'ensemble

GU{0} de L°° (G) est faiblement compact, G est localement

compact pour la topologie faible de L°° (G); en outre, on voit
facilement que, dans G, cette topologie coïncide avec la topologie
de convergence compacte dans G. Enfin, il est clair que, si x
et y sont des caractères de G, il en est de même de xy et que,
muni de la loi de composition (#, y) xy et de la topologie
décrite ci-dessus, G est un groupe abélien localement compact,

que l'on nomme dual de G. Remarquons que, si x G G, x -> x (x)
est un caractère x' de G; on verra au paragraphe 4, n° 4, que

x -> x' est un isomorphisme de G sur le dual du groupe G. Les

groupes G et G vont jouer des rôles symétriques et il sera
commode de désigner par <x, x> la valeur que prend au point
x G G le caractère x G G.

Par exemple, tout caractère du groupe additif Rn est de la
forme x -> exp (2t/rx-y) où xy est le produit scalaire des

vecteurs x et y de Rn; on voit ainsi qu'on peut identifier le dual
de Rn à Rn lui-même en posant <x, y> exp (2Ï7rx-y). De
même tout caractère du groupe additif T des nombres réels
modulo 1 est de la forme ^-^exp (2iiznx') où n est un entier
rationnel et où x' est un représentant dans R de x G T; on peut
ainsi identifier le dual de T au groupe additif Z des entiers
rationnels en posant <x, n> exp (2innx'). On voit d'ailleurs
facilement que le dual de Z s'identifie à T en posant <n, x>
<z, rc>. Ces identifications sont bien entendu compatibles
avec les topologies des différents groupes considérés.

Pour tout x G G, la formule

X* (/) ff(z) <x,x>dx(/GL1 (G)) (1)



26 J. BRACONNIER

définit un caractère continu de l'algèbre involutive normée
L1 (G); réciproquement, on montre facilement [10, 13] que tout
caractère continu de L1 (G) est défini par la formule x (/)
Jf (x) cp (x) dx où 9 est une fonction de L°° (G) égale presque
partout à un caractère de G auquel on l'identifie. On obtient
ainsi une correspondance biunivoque x Xx entre G le

spectre de L1 (G), correspondance qui est naturellement un
homéomorphisme. On notera que L1 (G) est ainsi une algèbre
symétrique au sens du paragraphe 1, n° 2.

Le caractère de L1 (G) défini par la formule (1) se prolonge
naturellement en un caractère continu de l'algèbre involutive
normée Jll1 (G) au moyen de la formule Xx (H-) J<#, d[i(x)
(mais on n'obtient pas ainsi tous les caractères de Jll1 (G)).

On démontre le résultat suivant, par un procédé dû à

I. Gelfand et D. A. Raïkov [10, 26]: Valgèbre L1 (G) est séparée

par ses caractères (i.e. L1 (G) est semi-simple): pour toute fonction

/ 0 de L1 (G), il existe x G G tel que Xx (/) ^ 0. Ce résultat
entraîne que G est séparé par ses caractères, c'est-à-dire que pour
tout élément x e de G, il existe x G G tel que <x, x> ^ 1.

2. Il sera commode d'appeler polynome trigonométrique dans
G toute combinaison linéaire à coefficients complexes de caractères

de G; les exemples donnés au n° 1 montrent que cette
définition est la définition usuelle des polynômes trigonomé-
triques si G T ou G R. Dans le cas où G est compact,
comme G est séparé par ses caractères, le théorème de Weier-
strass-Stone prouve immédiatement que Von peut approcher
uniformément toute fonction continue dans un groupe compact par
des polynômes trigonométriques (i.e. que G est un ensemble total
dans £ (G), muni de la topologie de convergence uniforme).

Tout caractère de G est évidemment une fonction de type positif
dans G; par suite tout polynome trigonométrique appartient à CV (G).

De plus, on montre -facilement que G est l'ensemble des points
extrémaux distincts de 0 de l'ensemble convexe 6?0 (G) formé des
fonctions 9 de type positif telles que 9 (e) sup [9 (x) | < 1.

Comme ^ (G) est faiblement compact, le théorème de Krein-
Milman 1 permet alors d'énoncer le théorème d'approximation

1 Cf. [4], Ch. II, § 4, n° 2.
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suivant: toute fonction <p £ L% (G) peut être faiblement approchée

{dans L00 (G)) par des polynômes trigonométriques à coefficients positifs,

coefficients dont la somme est égale à (p (e) [7, 12]; ce résultat se

complète d'ailleurs facilement de la façon suivante: toute fonction
de V (G) peut être approchée uniformément sur tout compact par
des polynômes trigonométriques; il en est par suite de même pour
toute fonction continue dans G. On verra au paragraphe 4, n° 3,

d'importants compléments à ces résultats.

§ 4. La transformation de Fourier.

1. Il est maintenant facile de définir la transformée de Fourier

d'une fonction / GL1 (G): c'est la fonction / définie dans G

par la formule f (x) — Xx (/)î autrement dit, on pose

f (x) J <x, x> f {x) dx ; t1)

/ est alors une fonction continue et nulle à l'infini dans G en

vertu de la définition de la topologie de G (généralisation du

classique théorème de Riemann-Leresgue). Plus précisément,
on voit facilement, d'après la formule (1), que la transformation
de Fourier /->/ est une représentation continue de Valgèbre

involutive normée L1 (G) sur une sous-algèbre cl (G) de <71 (G).
Le fait que G est séparé par ses caractères signifie alors que

/ -> / est biunivoque (c'est-à-dire que toute fonction intégrable
est déterminée par sa transformée de Fourier). La définition (1)

montre de plus que les fonctions de cT (G) séparent G; le théorème
de Weierstrass-Stone prouve alors que cX (G) est partout
dense dans JC (G), c'est-à-dire que l'on peut approcher
uniformément toute fonction continue, nulle à l'infini, dans G par
des transformées de Fourier de fonctions de L1 (G).

La définition de la transformation de Fourier s'étend
naturellement à Jll1 (G) : la transformée de Fourier de p G OU1 (G)
est la fonction F^ continue et bornée dans G définie par

y
UU) !<x>£> d\L (x) (2)
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On voit encore facilement que p. -> est une représentation

continue F de l'algèbre involutive normée JTt1(G) sur une
sous-algèbre de l'algèbre des fonctions uniformément continues

et bornées dans G. Si la mesure fx est positive, on voit immédiatement

que est une fonction de type positif, en sorte que F

applique Jll1 (G) dans -ï? (G).

Remarquons enfin que, si p. G J111 (G) et x G G, \i * x est le

polynôme trigonométrique F^ (x) x et que la transformée de

Fourier de Ux- p est la fonction <x, x> F^ {x) de x.
On peut naturellement définir par des formules analogues

la transformation de Fourier F' dans le groupe G (en fait, la
formule que l'on va lire n'est autre que la formule (2) écrite

pour G lorsqu'on aura pu identifier G au dual de G): la
transformée de Fourier de la mesure yf G J111 (G) est la fonction F'^

continue, bornée et définie dans G par la formule

Fj (x) J<£, x> dyf (x) (3)

Comme / -> f est une application linéaire continue de L1 (G)

dans JC (G), sa transposée est une application linéaire faiblement
continue du dual Jll1 (G) de (G) dans le dual L°° (G) de L1 (G),
application qui est liée à F' par la formule

J/ (x)d\L(x) jf (x) F^, (.r) (4)

Comme cl (G) est dense dans JC (G), ceci montre que F' est

biunivoque, et faiblement continue.
Les exemples indiqués au paragraphe 3, n° 1, permettent

d'écrire des formules normalisées pour la transformation de

Fourier usuelle: la transformée de Fourier d'une fonction /
intégrable de période 1 (i.e. appartenant à L1 (T)), est la suite
de terme général f (n) J*/ (x) exp (— 2iiznx) dx (n G Z) qu'on,
appelle suite des coefficients de Fourier de /. De même, la
transformée de Fourier de / G L1 (Z) est la fonction f (x)

S/ (n) exp (2innx) de période 1. La transformée de Fourier
d'une mesure y G JTt1 (Rn) est l'intégrale de Fourier F^ (y)
Jexp (— 2Ï7rx-y) d\x (x).
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2. Nous allons maintenant voir les propriétés fondamentales
de la transformation de Fourier. Tout d'abord, il est clair que
la transformée de Fourier d'une mesure positive et bornée

dans G est une fonction de type positif dans G. Réciproquement,
si 9 G (G), il existe une mesure positive (unique) p/ G OTi1 (G)
telle que

cp (x) J<x) xS>d[L (x) pour tout x G G (5)

(théorème de Bochner).
Ce résultat a été démontré par G. Hergoltz pour G Z, par

S. Bochner [2] pour G Rn et par A. Weil [33] pour G quelconque.
Nous pensons qu'il est intéressant de donner quelques indications

sur la démonstration de cet important résultat. Si 9 G G? (G), on

montre, par un artifice dû à D. A. Raïkov [25, 26] que / ~*jf(x) 9 {x) dx
est une forme linéaire positive et continue dans Ct (G) ; comme CT (G)

est partout dense dans JC (G), cette forme se prolonge par continuité
en une mesure positive p/ G Tlt1 (G) telle que l'on ait Jf (x) 9 (x) dx =»

jf (x) d[i' {x) pour toute / G L1 (G) ; en développant le second membre,
on voit que la mesure <#,.£> d\x (x) égale 9 (x) dx d'où le résultat
(cf. la fin du n° 2 du paragraphe 1). Signalons aussi une autre démonstration

due à H. Cartan et R. Godement [7]: comme la transformée
de Fourier de la masse 1 au point x G G est le caractère x de G,
l'ensemble convexe et faiblement compact des mesures positives de

norme < 1 dans G est appliqué biunivoquement, et par suite biconti-
nûment, sur un ensemble convexe et faiblement compact de Lf (G),
qui contient 0 et G; cet ensemble est, d'après le théorème d'approximation

cité au paragraphe 3, n° 2, égal à ?T0 (G), ce qui entraîne le
théorème de Bochner.

Remarquons encore que, si p/ est positive, on a || p/ [| F^ (e)
de telle sorte que F' est un boméomorphisme sur (G) de

l'ensemble des mesures positives et bornées dans G.

Il résulte du théorème de Bochner que F' est une représentation

biunivoque et continue de Valgèbre Jft1 (G) sur Valgèbre V (G).
Ceci permet de voir que, si G n'est pas compact, il existe des
fonctions uniformément continues et bornées dans G qu'on ne
peut pas approcher uniformément par des fonctions de ^(G);
c'est par exemple le cas si G R h

1 Cf. J. Dieu donné. Sur le produit de composition. Comp. Math., 1 2, 17-34 (19544.
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On peut de plus choisir la mesure de Haar dans le groupe G
de façon que toute fonction / G y1 (G) soit de la forme où [F

est la mesure définie par dp (x) j(x) dx dans G; cela signifie

que, la mesure de Haar étant convenablement choisie dans G,

F applique 'G1 (G) dans ^ (G) et que, dans sp1 (G), Vapplication
réciproque de F est F' ou, en explicitant, que l'on a

f (x) J f (x) <x\ x> dx pour toute f G V1 (G) (6)

(formule d'inversion de Fourier).
La mesure de Haar étant ainsi choisie dans G, F est de plus

une isométrie du sous-espace L1 (G) n L2 (G) de L2 (G) sur V2 (G),
autrement dit, on a

J \f (x) 2 dx= J j / (.r)j2 dx pour toute f £ L1 (G) n L2 (G) (7)

(théorème de Plancherel-Weil).
Cette isométrie se prolonge par continuité en un isomorphisme

de Vespace hilbertien L2 (G) sur Vespace hilbertien L2 (G),
isomorphisme dont le réciproque, ou Vadjoint, est le prolongement à

L2 (G) de la restriction de F' à L1 (G) fl L2 (G). Pour G T, ce

résultat est le classique théorème de Bessel-Parseval-Riesz;
il est dû à M. Plancherel pour G R et à A. Weil [33] pour
G quelconque (et indépendamment à M. Krein [18]). Des

démonstrations diverses ont été publiées par H. Cartan et
R. Godement [7] et D. A. Raïkov [25, 26]. On peut en déduire
la démonstration du théorème d'inversion de Fourier. Signalons
enfin qu'un théorème général sur la représentation des formes
linéaires positives dans une algèbre involutive et commutative
quelconque (théorème dû à R. Godement [14] et s'inspirant de

techniques utilisées par M. Neumark [9, 23] et analogues à

celles utilisées par D. A. Raïkov) permet de démontrer d'un
seul coup le théorème de Bochner, celui de Plancherel-Weil
et la formule d'inversiorî de Fourier (cf. § 8).

Depuis les travaux de L. Schwartz relatifs à la transformation

de Fourier des distributions, le calcul des transformées de

Fourier à l'aide des procédés de sommation (dans le cas de

G T ou G R) a perdu la plus grande partie de son intérêt



L'ANALYSE HARMONIQUE 31

théorique; d'ailleurs lorsque de tels procédés s'avèrent
nécessaires, il relèvent de la régularisation par des fonctions
convenablement choisies.

3. Nous allons maintenant indiquer un théorème d'approximation

(complétant celui du paragraphe 3, n° 2) qui sera
généralisé au paragraphe 6, n° 4. Tout d'abord, si 9 G G (G) est la

transformée de Fourier d'une mesure g/GJIl^G), on appelle

spectre de 9 le support Sp (9) de g/; Sp (9) est ainsi un ensemble

fermé de G, égal à l'ensemble des caractères de G que l'on peut
approcher faiblement dans L°° (G) par des combinaisons linéaires
de translatées de 9. De plus, l'ensemble des x G G tels que

<x, x> 1 pour tout x G Sp (9) est le sous-groupe des périodes
de 9.

Si 9 G (G), on peut approcher 9 faiblement dans 13° (G)

au moyen de polynômes trigonométriques xi tels que

x-% G Sp (9) et que les ci soient des nombres réels positifs de

somme inférieure à 9 (e). Plus généralement, on peut approcher
faiblement dans L°° (G), et même uniformément sur tout
compact, toute fonction de 4/ (G) au moyen de polynômes
trigonométriques formés avec les caractères appartenant à son spectre.

Remarquons enfin que toute fonction de G/ (G) peut être
approchée uniformément sur tout compact par des fonctions de

'G1 (G) et que toute fonction de L% (G) peut être approchée
uniformément sur tout compact par des fonctions de la forme f * /
où / G JC (G) [7].

4. En utilisant les résultats du n° 2, on montre alors l'important

théorème suivant de L. Poxtrjagin [14]: si pour tout

x G G, on désigne par x' le caractère x • > <j;. x> de G, x -> x'
est un isomorphisme du groupe G sur le dual du groupe G; on
identifiera ces deux groupes au moyen de cet isomorphisme (la
formule (3) qui définit la transformation de Fourier dans G se

réduit à la formule (2) écrite dans le groupe G). On peut alors
préciser les propriétés de F et F' de la manière suivante :

a) F est une représentation biunivoque et continue de Valgèbre
involutive normée DM1 (G) sur V (G);
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Jo) La restriction de F à ip1 (G) applique V1 (G) sur V1 (G) et a

pour application réciproque la restriction de F' à %^(G);

c) F est une isométrie de L2 (G) fi L1 (G) sur (G) et se pro¬

longe par continuité en un isomorphisme de L2 (G) sur L2 (G),

dont le réciproque est Vapplication de L2 (G) sur L2 (G) qu'on
obtient en prolongeant par continuité la restriction de F' à

L2 (G) n L1 (G) ;

d) F applique L1 (G) sur une sous-algèbre partout dense CT (G) de

JC (G) et on a sup | f (x) | lim Nx (* /)1/n.
n-> + oo

V (G) est donc dense par rapport à JC(G), mais en général,
si G n'est pas compact, l'adhérence de LV (G) est distincte de

JC (G). On obtient ainsi une généralisation des propriétés
fondamentales de l'intégrale de Fourier usuelle.

Pour que G soit compact, il faut et il suffit que G soit discret.
On choisit alors les mesures de Haar comme il a été dit au
paragraphe 2, n° 1. Les résultats précédents peuvent alors s'interpréter

comme une extension de la théorie des séries de Fourier:

a) La transformation de Fourier définie par (2) est une repré¬
sentation biunivoque et continue de Valgèbre DTi (G) (formée
de toutes les mesures sur G) sur l'algèbre %"> (G) des fonctions
de type positif sur G;

b) F applique LV (G) sur l'algèbre L1 (G) des fonctions sommables

dans G et Vapplication réciproque de F est la transformation
de Fourier F' dans G, transformation qui à f G L1 (G) associe

la fonction x%><x, x>f (x) (la convergence du second
.X

membre étant normale) ; c'est-à-dire que l'on a en particulier

f (x) Z<X, x> f(x) (8)
X

si / G LV (G) et f (x) J<^, x>f (x) dx\ V (G) est partout
dense dans C (G) et on peut ainsi approcher uniformément
toute fonction continue dans G par des polynômes trigono-
métriques.



L'ANALYSE HARMONIQUE 33

c) Comme L2 (G) c L1 (G), F est isomorphisme de l'espace

hilbertien L2 (G) sur L2 (G); le réciproque de F est le prolongement

de F' à L2 (G); c'est V appqui L2 (G)

correspondre la fonction la convergence
X

ayant lieu cette fois dans L2 (G). Ce résultat se précise encore

en disant que G est une base orthonormale de L2 (G) et que
le développement de / GL2 (G) suivant cette base est donné

par (8).

Signalons pour terminer que l'application des résultats qu'on
vient d'indiquer à des groupes moins usuels que Rn, Tn ou Zn

conduit à d'intéressants résultats dont on ne connaît
malheureusement pas d'exposé systématique.

§ 5. La théorie de la dualité.

1. On a vu que le dual de G était canoniquement isomorphe
à G; on peut alors développer une théorie de la dualité dans les

groupes abéliens localement compacts, au moyen de la forme

bilinéaire <#, x> définie dans G X G.

Si A est une partie de G, le sous-groupe fermé A1 de G formé
des caractères x G G tels que <x1 x> 1 si x G A est dit
orthogonal à A; on définit de la même manière le sous-groupe
fermé A'1 de G orthogonal à une partie A' de G. Si H est un

sous-groupe de G, on a (H1)1 H.

a) Ainsi H H1 est une application biunivoque, involutive et

décroissante de Vensemble des sous-groupes fermés de G

(ordonné par inclusion) sur Vensemble des sous-groupes fermés
de G, dont la correspondance réciproque est H' -> H'1; de

plus le sous-groupe orthogonal à l'intersection d'une
famille % de sous-groupes fermés de G est le sous-groupe
de G engendré par les orthogonaux des sous-groupes de

b) Si H est un sous-groupe fermé de G, tout caractère iGH1
définit par passage au quotient modulo H un caractère x
de G/H et x-> x est un isomorphisme de H1 sur le dual de

L'Enseignement mathém., t. II, fasc. 1-2. 3
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G/H, que l'on identifie alors à H1; de même on peut identifier
canoniquement le dual de H au groupe quotient G/H1. Pour
que H soit ouvert, il faut et il suffit que H1 soit compact; il
en résulte que le sous-groupe de G orthogonal à la composante

connexe de e dans G est la réunion des sous-groupes

compacts de G, la torsion de G.

c) Soient G et G± deux groupes abéliens localement compacts
et u une représentation continue de G dans Gx; pour tout
caractère x1 de Gx, x-* <u (x), x{> est un caractère lu (x-f)

de G et x± -> lu (%) est une représentation continue de G1

dans G, dite transposée de u; le sous-groupe orthogonal au

noyau de u est l'adhérence de lu (G^); on a l{vo u) 1uq G

si e est une représentation continue de Gx dans un groupe
abélien localement compact G2. Pour que lu soit un homo-

morphisme, il faut et il suffit que u soit un homomorphisme\ en

particulier, si u est un isomorphisme de G sur Gl7 lu est un

isomorphisme de Gj sur G.

Pour tous ces résultats, on pourra consulter [16] ou [33].

2. Soit H un sous-groupe fermé de G. Si / G L1 (G), on a vu
au paragraphe 2, n° 1, que la fonction f qui à la classe x de

x modulo H associe f(x) \uf{xy)dy appartient à L^G/H) et

que /-*/ est une représentation de l'algèbre involutive normée
L1 (G) sur L1 (G/H). On voit alors facilement que la transformée
de Fourier y -> JGin<x^ y> f (x) dx de f (y £ H1) est la
restriction à H1 de la transformée de Fourier f de /; en

particulier l'idéal fermé de L1 (G), noyau de / -> f est formé des

/GL1 (G) telles que / (y) 0 si y G H1 [27]. Ce résultat se

précise ainsi: f -> f applique V1 (G) dans Lip1 (G/H) et la formule
d'inversion de Fourier appliquée à f montre alors que l'on a

Jh / (y) dy — Jh1/ (y) dy (formule sommatoire de Poisson).

3. On peut déduire de la théorie de la dualité des précisions
sur la structure de G. Signalons les deux résultats suivants (qui
sont d'ailleurs équivalents) [24, 16, 33]:

a) Il existe dans G un sous-groupe fermé G0 ayant un supplémentaire

isomorphe à Rn et G0 a un sous-groupe ouvert et compact ;
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b) On dit qu'un groupe localement compact est élémentaire s'il
est isomorphe à un groupe de la forme Rn X Tp x TA X F

où F est un groupe abélien fini; alors G contient un sous-

groupe ouvert H, limite projective de groupes élémentaires;
autrement dit, il existe dans H une base de filtre qui
converge vers c, qui est formée de sous-groupes compacts
et telle que H/N soit un groupe élémentaire pour tout
NG^P1.

§ 6. Idéaux dans les algèbres de groupes
et théorie spectrale.

1. La théorie des idéaux de l'algèbre L1 (G) présente de

grandes difficultés et elle est encore assez peu avancée (même

pour G R) sauf dans le cas des groupes compacts. Elle se fait
essentiellement au moyen de la représentation de L1 (G), au

moyen de la transformation de Fourier, sur la sous-algèbre

Cl (G) de JC (G).
Soit H une partie de L1 (G) ; on appelle cospectre de H et on

désigne par Cosp (H) l'ensemble des caractères x G G tels que

j (x) 0 pour toute / G H. Cosp (H) est un ensemble fermé
de G, égal au cospectre de l'idéal fermé de L1 (G) engendré
par H. On remarquera que l'intérieur du cospectre de / G L? (G)
est simplement le complémentaire du support de /.

Soit maintenant A' une partie de G et Z (A') l'ensemble des
fonctions de L1 (G) dont les transformées de Fourier s'annulent
dans A', c'est-à-dire dont le cospectre contient AG Z (A') est

un idéal fermé de L1 (G) et on a Z (A') Z (A'), A' étant
l'adhérence de AG De plus, pour tout ensemble fermé A' de G,
on a Cosp (Z (A7)) A'; cela tient essentiellement au fait que,

pour tout compact K/ de G et tout voisinage IF de K/ dans G,
on peut trouver une fonction / GL1 (G) telle que f égale 1 dans

1 Pour de plus amples détails sur la théorie de la dualité et la structure des groupes
abéliens, cf. J. Braconnier, Sur les groupes topologiques localement compacts. Journal
Math, pures et appt., 27, 1-85 (1948).
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K' et s'annule dans CU'; on résume souvent cette propriété en
disant que L1 (G) est une algèbre régulière (cf. [11, 13]).

A cette propriété se rattache la suivante : soit K' un ensemble

compact de G et f une fonction de L1 (G); si le cospectre de / ne
rencontre pas K/, il existe une fonction g GL1 (G) telle que
g (x) 1 ff (x) si x G K' (résultat dû à N. Wiener pour G R
ou Z [34] et à R. Godement [13] pour G quelconque); plus

généralement, si h est une fonction holomorphe dans K/ D / (G),
il existe une fonction g G L1 (G) telle que g (x) h (f (x)) pour tout
^ G R'; ce résultat, dû à T. Carleman [6] pour G R a été
démontré par I. Segal [20], puis par H. J. Reiter [27] pour G

quelconque. Il peut s'interpréter comme une propriété de

clôture de l'algèbre normée, non complète, cT (G).

2. On a déjà remarqué que tout idéal régulier maximal de

L1 (G) est de la forme Z (x) où x est un caractère de G; de plus
L1 (G) est semi-simple, puisque séparée par ses caractères
(§3, n°l).

Tout idéal fermé I de L1 (G), distinct de L1 (G), est contenu dans

un idéal régulier maximal au moins. Autrement dit, pour qu'un
idéal fermé I de L1 (G) soit égal à L1 (G), il faut et il suffît que,

pour tout x G G, il existe / G I telle que f (x) ^ 0; en particulier,
pour que Vensemble des translatées de / GL1 (G) soit total dans

L1 (G), il faut et il suffit que f ne s''annule en aucun point de G.

On a là une des formes du célèbre théorème taubérien de Wiener
(la démonstration pour G R est due à N. Wiener [34] et,
pour G quelconque à R. Godement [13]; cf. aussi [30]. On en
déduit une autre forme du théorème taubérien, qui est la
suivante: supposons que G ne soit pas compact et que / soit une

fonction de L1 (G) telle que / ne s'annule pas; si g est une fonction

de L°° (G) telle que f * g s'annule à l'infini, alors h * g
s'annule à l'infini pour toute fonction h G L1 (G) (il suffît de

voir que l'ensemble des h G L1 (G) ayant la propriété indiquée
est un idéal fermé de L1 (G) contenant /, donc égal à L1 (G)
d'après la première forme du théorème taubérien).

3. Pour tout idéal fermé I de L1 (G), on a I G Z (Cosp (I));
mais il existe en général des idéaux fermés I pour lesquels I est
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distinct de Z(Cosp(I)): c'est par exemple ce qui se passe si

G Rn, avec n > 3 1. Il est intéressant de connaître des

conditions suffisantes pour qu'une fonction / G Z (Cosp (I))
appartienne à I: le théorème taubérien peut, par exemple,

s'exprimer en disant que l'on a I Z (Cosp (I)) si Cosp (I) est

vide. Une des conditions les plus simples est la suivante, qui

généralise le théorème taubérien: si f est une jonction de L1 (G)

telle que le support de f ne rencontre pas le cospectre de Vidéal

fermé I de L1 (G), alors f appartient à I [30] (cela signifie que
toute fonction de Z (Cosp (I)) appartient «localement» à I).
Ce résultat suffit déjà pour faire la théorie des idéaux de L1 (G)

lorsque G est compact: G est alors discret et on voit alors
immédiatement que I -> Cosp (I) est une application biunivoque et

décroissante de Vensemble des idéaux fermés de L1 (G) sur ^ (G),

application dont la réciproque est Z; autrement dit, tout idéal
fermé de l'algèbre d'un groupe compact G est formé des fonctions

de L1 (G) dont les transformées de Fourier s'annulent

sur une partie bien déterminée de G.

Si I est un idéal fermé de L1 (G) et si / G Z (Cosp (I)), on
voit facilement que le support de / rencontre Cosp (I) suivant
un ensemble contenu dans la frontière de Cosp (I) (donc rare);
si, de plus, cet ensemble est clairsemé (i.e. ne contient aucun
ensemble parfait qui ne soit déjà vide), alors / G I. Ce résultat,
qui généralise visiblement tous les précédents, est dû à S. A gm on
et S. Mandelbrojt [22] si G R et à H. Helson [15] et
H. J. Reiter [27] pour G quelconque.

La démonstration utilise essentiellement une technique de
Ditkin 2 et le fait suivant: il existe dans G une base de filtre T (G)
dont les ensembles sont formés de fonctions / intégrables, positives,
de type positif et telles que Jf (x) dx 1 et que le support de / soit
compact, base de filtre suivant laquelle / -> f (x) converge vers 1 pour
tout x G G; suivant cette base de filtre, f—> f * g converge vers g
(resp. 0) dans L1 (G) pour toute g G L1 (G), (resp. telle que

1 Of. L. Schwartz, Sur une propriété de synthèse spectrale dans les groupes non
compacts. C. R. Acacl. Sei. Poris, 227, 424-426 (1948) et Analyse et synthèse harmoniques

dans les espaces de distributions, Can. Journ. of Math., 3. 503-512 (1951).
2 Cf. V. Ditkin, On the structure of ideals in certain normed rings. Ucenye Zapiski

Moskov, G os. Univ. Mat., 30, 83-130 (1939).
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Jg (#) dx 0); en particulier, on voit que les fonctions à support
compact forment dans (X (G) un idéal partout dense [13].

En particulier, si I est un idéal fermé de L1 (G) tel que la
frontière de Cosp (I) soit clairsemée (par exemple si Cosp (I) est
discret), on a I Z (Cosp (I)). Remarquons que dire que
Cosp (I) se réduit à un point x G G revient à dire que l'idéal
fermé I est contenu dans le seul idéal maximal Z (x) (i.e. que I
est primaire); le résultat précédent montre qu'on a alors
I Z (x), c'est-à-dire que I est maximal. Ce résultat avait déjà
été prouvé par I. Segal [30] pour G R et par J. Riss [28]
et I. Kaplansky [17] pour G quelconque. Remarquons encore

que, si I est un idéal fermé de L1 (G) dont le cospectre est fini,
I Z (Cosp (I)) est de codimension finie égale au nombre
d'éléments de Cosp(ï); plus généralement, si Cosp (I) est
discret, on peut donner des précisions supplémentaires sur la
structure de l'algèbre quotient L1 (G)/I [27].

4. Soit maintenant H une partie de L°° (G); on désigne par
J (H) le sous-espace faiblement fermé de L°° (G) invariant par
les translations de G et engendré par H, c'est-à-dire l'ensemble
des fonctions de L°° (G) que l'on peut approcher faiblement dans
L°° (G) par des combinaisons linéaires de translatées de fonctions

de H. On appelle spectre de H l'ensemble fermé Sp (H) —

G fi J (H) de G. On dit que H est moyenne périodique si J (H)
est distinct de L°° (G). L'idéal fermé I de L1 (G) constitué par
les fonctions orthogonales aux fonctions de J (H) est évidemment

aussi formé des fonctions / GL1 (G) telles que / * g — 0

pour toute fonction g G H; pour que H soit moyenne périodique,
il faut et il suffit que I ^ 0; de plus le spectre de H est le cospectre
de I. On peut ainsi associer à chacun des résultats ci-dessus une

proposition de théorie spectrale qui apparaîtra le plus souvent
comme un théorème d'approximation dans L°° (G).

Tout d'abord, si A' est une partie fermée de G, elle est égale
à son spectre et l'idéal orthogonal à J (A') est Z (A'). D'autre
part, si g G (G), le spectre de g est celui qu'on a déjà défini

au n° 3 du paragraphe 4, c'est-à-dire le support de la mesure

de Jll1 (G) dont g est la transformée de Fourier; enfin, il est
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clair que, si g est intégrable et bornée dans G, le spectre de G

est le support de g.
Le théorème taubérien de Wiener signifie que, si H C L°° (G)

est telle que J (H) ne soit pas réduit à 0, le spectre de H n'est

pas vide (théorème de Beurling [1]). En général, J (H) contient
évidemment J (Sp (H)), mais ces deux espaces sont distincts.
Toutefois, si U' est un voisinage de Sp (H) dans G, on a

H C J (U/), c'est-à-dire qu'on peut approcher faiblement dans
L°° (G), et même uniformément sur tout compact, toute fonction
de H par des polynômes trigonométriques formés avec les éléments
de U/. Dans le cas où G est compact, on voit ainsi que J (H)
J (Sp (H)) pour toute partie H de L°° (G). Plus généralement,
si la frontière de Sp (H) est clairsemée (par exemple si Sp (H)
est discret), on a H c: J (Sp (H)). Si Sp (H) est discret, on peut
alors associer à chaque fonction de H un développement
formel canonique suivant Sp (H); si de plus / G H est uniformément

continue, / est presque périodique [27]; la théorie des

fonctions presque périodiques permet d'ailleurs de préciser de

nombreuses propriétés spectrales [27], mais il n'existe pas à

l'heure actuelle d'étude systématique des rapports qui existent
entre la théorie spectrale et la théorie ergodique. Il est permis
de croire qu'on pourra encore préciser considérablement les
critères indiqués ci-dessus pour qu'un idéal I de L1 (G) soit égal
à Z (Cosp (I)).
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