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DÉMONSTRATION ÉLÉMENTAIRE DE LA RELATION
6 4 û4 I û4

3 ~J~ V?2

ENTRE LES DIFFÉRENTES FONCTIONS DE JACORI

PAR

Balth. van der Pol

L'objet de cet article est l'équation bien connue qui relie les

quatrièmes puissances des trois fonctions 0O (0, t), 02 (0, t) et
03 (0, t) de Jacobi définies par

03 (0, x) 2 ^ '
00

+ 00

00 (0. x) 2 (- 1)n ?na •

00

0,(0, x) 2?(n+,/2)2'
oo

où c[ elnx avec Im t > 0, t étant le module des fonctions 0.

Si nous écrivons avec Jacobi

ei/öl ket 0o/03 k'

l'équation en question est équivalente à

Ä2 + F2 1

Cette relation, qui est fondamentale dans la théorie des fonctions

elliptiques est habituellement démontrée au moyen de

substitutions modulaires. Il est cependant intéressant de savoir
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qu'il est possible d'en donner une démonstration ne faisant
aucun appel aux propriétés des fonctions elliptiques.

A cet effet, considérons les sommets de coordonnées (m, n)
du quadrillage infini de la figure, met n prenant toutes les valeurs
entières de — 00 à + 00. Tournons maintenant le système de

coordonnées autour de l'origine d'un angle égal à 7t/4, et appelons

k et l les nouvelles coordonnées. Ainsi, le réseau A peut être
considéré comme une superposition de deux nouveaux réseaux

et B2, B2 étant décalé par rapport à B1 dans les deux directions

perpendiculaires k et l d'une distance égale à un demi-pas
des nouveaux systèmes. Les points appartenant au réseau Bx
sont ceux pour lesquels dans le quadrillage original (m + n) et
{m — n) sont pairs (marqués par un petit cercle). Ceux appartenant

au réseau B2 sont caractérisés par le fait que (m + n)
et (m — n) sont impairs (marqués par un point).

Bi B2

On a donc pour le réseau Bx

m -j- n 21 et m — n 2k

c'est-à-dire

m l -f- k n l — k ; (1)

tandis que pour B2

m -J- n 21 -f 1 et m — n 2k -f l
c'est-à-dire

m l + k 4- l n l — k (2)

Considérons à présent une fonction / (m, n) définie sur tous
les points du réseau A telle que les sommes de / (m, n) étendues
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sur les réseaux Bj et B2 convergent séparément. Dans ce cas, on

aura, d'après les formules de transformation (1) et (2),

+ 00 +00

2 2 f + 2 f
— go —oo B2

c'est-à-dire

22/(m're) 22^ + /f> + 22/<* + * + 1> <3

en omettant d'écrire les limites des sommes qui, par la suite,
seront toujours — oo et + oo.

Cette relation suffit à démontrer l'équation mentionnée de

Jacobi.
En effet, d'après la définition de 03 (0, t) on a

eï(o.T) 22 «m2+n2'

et en faisant usage de (3), il vient

22 2m2+n2 22 ^l2+k2) + 22 ^2{(i+i/2)2+(fe+i/2)2},

c'est-à-dire

63 (0, T) 0Î (0, 2T) - 02 (o, 2T) (4)

En appliquant cette même transformation à

0o (0, T) 22'-1>n+mïn2+m2'

on obtient

2 V ,)n+m?n2+m2_ l)2i?2 ('2+ft2)+

+ 22 (— i)2i+1 q-i^+y^+^+yA,

c'est-à-dire

0o (0, T) 03 (0, 2T) — ©î (0, 2T) (5)

Enfin, en l'appliquant en dernier lieu à

e3 (o, + 0O (o, x) 22(-1)m?m2+n2>
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il vient

(— 1 )"?m2+n'2 22, (— 1 )l-k++ 22 (—1 _

(2<-1)îî2!2)2 +

Or,

2 (_i)»s2«+54)' 0

car les termes à indices l — i et l — i — I, (£ 0, 1, se

détruisent mutuellement; ainsi

03 (0, T) 00 (0, T) 00 (0, 2T) (6)

En multipliant à présent (4) et (5) membre à membre, on
obtient

eî (0, t) e20 (0, t) 03 (0, 2t) — 0Î (0, 2t)

qui, d'après (6) se réduit à

ej (0, 2T) 0j (0, 2T) — 02 (0, 2T)

ou plus simplement à

03 « 00 + 02 •

C'est l'équation mentionnée de Jacobi que l'on peut ainsi
établir d'une manière tout à fait élémentaire.

En conclusion, remarquons que la transformation définie

par (3) n'est pas applicable seulement aux fonctions 0 (0, t) mais
également à bien d'autres fonctions; on obtient, par exemple,
pour les fonctions

00 K t) 0! (p, t) 02 (p, t) et 03 (p, t)
la relation

03 (e, t) + 0j (p, t) 0j (p, t) + 02 (p, t)

qui, pour p 0, se réduit à (7).
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