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DEMONSTRATION ELEMENTAIRE DE LA RELATION
0, = 0, + 6.
ENTRE LES DIFFERENTES FONCTIONS DE JACOBI

PAR

Balth. vax peEr PoL

L’objet de cet article est I’équation bien connue qui relie les
quatriemes puissances des trois fonctions 6, (0, ©), 6, (0, 7) et
05 (0, v) de Jacobi définies par

-+ o0
0, (0, 7) = D) ¢",

—00

| .
0, (0, %) = S (—1)" ¢,

— 0

-+
8,8, ©) = X gBtRF,

—®

ol ¢ = €*% avec Im v > 0, v étanl le module des fonctions 6.
Si nous écrivons avec Jacobi '

050 = &k et 0;/0) = K,
I’équation en question est équivalente a
k2 4+ k2= 1.

Cette relation, qui est fondamentale dans la théorie des fonc-
tions elliptiques est habituellement démontrée au moyen de
substitutions modulaires. Il est cependant intéressant de savoir
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qu’il est possible d’en donner une démonstration ne faisant
aucun appel aux propriétés des fonctions elliptiques.

A cet effet, considérons les sommets de coordonnées (m, n)
du quadrillage infini de la figure, m et n prenant toutes les valeurs
entieres de — o & -+ oo. Tournons maintenant le systeme de
coordonnées autour de ’origine d’un angle égal a =/4, et appe-
lons & et [ les nouvelles coordonnées. Ainsi, le réseau A peut étre
considéré comme une superposition de deux nouveaux réseaux
B, et B,, B, étant décalé par rapport a B, dans les deux direc-
tions perpendiculaires k& et [ d’une distance égale a un demi-pas
des nouveaux systémes. Les points appartenant au réseau B,
sont ceux pour lesquels dans le quadrillage original (m -+ n) et
(m — n) sont pairs (marqués par un petit cercle). Ceux appar-
senant au réseau B, sont caractérisés par le fait que (m + n)
et (m — n) sont impairs (marqués par un point).
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On a donc pour le réseau B,

m-+n=2 e m—n= 2k,
c’est-a-dire
m=I0l+kF, n=I0—Fk; (1)

tandis que pour B,

m 4+ n=2+1 et m—n=2%k+41,
c’est-a-dire ' '
m=10+k+1l, n=I01—F. (2)

Considérons & présent une fonction f (m, n) définie sur tous
les points du réseau A telle que les sommes de f (m, n) étendues
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sur les réseaux B, et B, convergent séparément. Dans ce cas, on
aura, d’apres les formules de transformation (1) et (2),

+ o +o
DDV Fmn) = D flm,n) 4 D) flm,n)

¢’est-a-dire

SIDVFmn) = DRk, =k + DD+ R+, 1—R), (3

en omettant d’écrire les limites des sommes qui, par la suite,
seront toujours — o et + .

Cette relation suffit & démontrer ’équation mentionnée de
Jacobi.

En effet, d’aprés la définition de 65 (0, ) on a

_ 22 gt

et en faisant usage de (3), il vient

SIS gt o VST e 2§q2{(1+%)2+<k+l/2>2}

¢’est-a-dire
03 (0, 7) = 05 (0, 27) — 65 (0, 27) . (4)

En appliquant cette méme transformation a

22 n+m n2+m2 ,

on obtient

ZY‘ (__ n+m n2+m2 Z> Ql 2(12+h2) +
e
+ SIS (it (R ERN

¢’est-a-dire
0 (0, 7) = 65 (0, 2v) — 65 (0, 27) . (5)

Enfin, en 'appliquant en dernier lieu &

0, (0, 7 = S (g,
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il vient

22 — '1)” qm2+n'2 _ 22 (— 1)l—k q2(k2+12) i
| + 22— 1) e 2w atwr}

= (S=0'd") + (D= 1)t g2+

Or,
ol 20+%)E = 0,
=)t
car les termes & indices [ =tetl=—1—1,(t=0,1, ..)se

détruisent mutuellement; ainsi

0, (0, 7) 6, (0, 7) = 6 (0, 27) . (6)

\

En multipliant & présent (4) et (5) membre & membre, on

obtient
0; (0, 7) 65 (0, ©) = 05 (0, 27) — 63 (0, 27)

qui, d’apres (6) se réduit a

0: = 05 4- 0% . (7)

C’est 1’équation mentionnée de Jacobi que I'on peut ainsi
établir d’une maniére tout a fait élémentaire. -

En conclusion, remarquons que la transformation définie
par (3) n’est pas applicable seulement aux fonctions 6 (0, v) mais
également & bien d’autres fonctions; on obtient, par exemple,
pour les fonctions

6() (‘)’ T) 9 01 (V, T) b) 62 (‘)7 T) et 63 (Qa T)
la relation
05 (0, 7) + 67 (0, 7) = 65 (0, 7) + 05 (v, 7)

qui, pour ¢ = 0, se réduit a (7).
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