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254 A. OSTROWSKI

donc

lg X
n > j —r1

lg k

e~in < ee ^

par suite, d'après (X, 8),

e~b,L < é"
•X ^

V/gY(*)

En introduisant cette borne dans (X, 9) on obtient

(X>10)f(x) {ig^wf
Or on a, en vertu de (X, 1) à partir d'un x:

8IglgV(x) > (k+1) Igx Y (x))s > xh+l

L'expression de droite de (X, 10) est donc à partir d'un x

< k é
(?g^)1+2s

et tend vers 0 avec x > oo xk est donc bien subordonné à

Y (x).
Nos conditions (X, 1) sont par exemple satisfaites pour

Y (x) =* e**,Y(x) eeeX Y (x) — ee(l°X>2

XI. Quelques observations sur le théorème A.

Nous établirons enfin quelques propositions supplémentaires
relatives au critère A d'Ermakof.

oc) Soient (x) et ip (x) deux fonctions positives, continues

et dérivables pour 0 < x0 < x < oo et telles que Von ait

W (x) > oo (x) > 00 (x > CO
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et que Y' (x) et ij/ (x) soient positifs et sotnmables dans tout sous-
intervalle fini de < x0, oo Soit f (x) positif pour x > x0 et

sommable dans tout sous-intervalle fini de < x0, oo Supposons,
qu'il existe un q (0 < q < 1) tel que Von ait

f (Y (x)) Y' (x) < q f (+ (x)) V (x) (x > x0) (XI, 1)

Alors on a ou bien pour tout x > x0: Y (x) > ^ (x), ou bien à

partir d'un x: Y (x) < ^ (x), suivant que l'intégrale

oo

/f(x)dx - (XI, 2)

*o ' >

est convergente ou divergente.
Démonstration. — Il résulte de (XI, 1) pour x0 < xf.< x"

f f (Y (x)) Y' (x) dix < q f f (x)) <J/ (x) dx
x' x '

c'est-à-dire
XV(x") ^(x")
J f (x) dx <. q f .f.(x) dx (XI, 3)

T(x') qj(x') M "l\

Donc, si (XI, 2) converge:

°° OO 00

f f (x) dx < q f f (x) dx < f f (x) dx -

xV(x') <]>(£') ^('x')

de sorte qu'on a pour chaque x' > xQ

Y (x') > ^ [x')

Supposons d'autre part que (XI, 2) soit divergente. Alors
nous allons démontrer qu'il est impossible que pour une suite

avec xv > x0 (v > 0), âv —v* oo on ait

Y (.Xv) > (xv) (XI, 4)

Car on il résulterait de (XI, 4) d'après (XI, 1)

Jf(xH'(x))x¥'(x)dx^qff^(x))Y(x)dx,
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y f (x) dx ^ q y / fc) dx
Y(x0) <K*0)

donc, d'après (XI, 4):

Y(*v) ^(xv) / T(XV) T(a.#) \
y f(x)dx^q f f(x)dx^ql f j (x) dx + f f{x)dx J

Y(x0) #(x0) W(x0) <Kx0) /

et, puisque 0<?< 1,

TN Y(X0) ^(«v) Y(x0)
(1 —(?) y f (x) dx < q f f(x)dx, f f(x)dx<—-±— f f(x)dx,

^(*o) <K*o) Y(*o) g M*o)

et l'intégrale (XI, 2) serait convergente puisque Y (xv) tend vers
l'infini, C.Q.F.D.

ß) Supposons que dans les hypothèses de la proposition oc) on
ait pour x > x0

x f (x) ^ c Y (x) > y ^ (a;) fc > #0) (XI, 5)

pour une constante positive c et une constante positive y < 1.

^4/ors Vintégrale (XI, 2) est convergente et Von a

Y (x) > <[, (s) (s > s0)

Démonstration. — On a pour x>_xQ comme dans la démonstration

de (XI, 3)

*F(x) 4i(x)

y f(x)dx<q y / (x) dx (XI, 6)

T(x0) <Kx0)

D'autre part, on a

Y(x) <Kx) <Mx) T(x0)

y f (x) dx y f(x) dx— y f(x)dx— f f(x)dx,
Y(x0) x0 T(x) x0

<Hx) <p(x) <Mx0)

y f{x)dx f f(x)dx — y f(x)dx-
<Kx0) x0 x0

Donc en introduisant ces expressions dans (XI, 6) et en résol-
<Mx)

vant l'inégalité obtenue par rapport à f f (x) dx:
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M*)
(1 —q)f f(x)dx< f f(x)dx + f f (x) dx q J f(x)dx.

X0 T(x) x0 x0

Ici on a pour la première intégrale de droite d'après (XI, 5):

-M*) <K*) Mx)dt

j f (x) dx Sf f(t)dt<c -=clg--
Y(X) Y<K3C) ymx)

OO

Donc l'intégrale f f (x) dx reste bornée pour x > go et (XI, 2)
*0

est convergente.

y) Remplaçons dans les hypothèses de la proposition oc) V

inégalité (XI, 1) par

f (T (x)) T' (x) > / (<Ji (x)) Y (x) (x > x0) (XI, 7)

et supposons en plus que Von ait pour un x1 > x0 convenablement
choisi

T (x,) > + M
Alors Vintégrale (XI, 2) est divergente.

Démonstration. — On a pour x > xx > xQ d'après (XI, 7)

x T(x) x vp(x)

f f (T (x)) Y' (x) dx f f (x) dx > f f (<J; (x)) Y (x) dx f f {x) dx
xx YCxj.) x1 ^(Xi)

donc
Y(x) ^(xp
f f (x) dx > f f (x) dx

<K*) <K*i)

Mais alors l'intégrale de gauche serait pour tout x > x1
supérieure à la constante positive

Y(*i)
f f (x) dx

et l'intégrale (XI, 2) ne pourrait converger d'après le critère de
Bolzano-Cauchy.
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