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248 A. OSTROWSKI

En second lieu, si 1 + xv < x < xv+l1 x4 sera situé dans
l'intervalle (#v+1, #*+1) de sorte qu'on aura

/M _ "*»'>
(8("+l)2lgxv+l)x*'

donc

/ (^4) 4 xs _
4 / K+l)

/(*) (gv2fSv+i

et, puisqu'on a en tout cas

,w >" g«,)»'
il vient

/ (a:4) 4a;3
^ Cv+l) (8v2+v Zg œv) • 4 / (a;.,) ig xv

/ <*) - (8v2+2v+1 ^ ^ / (ag 8v ^ f

Or, on a évidemment pour v go

l% *v+l °° 4 lS > / K+l) < f (xv) '

donc

/ (#4) 4 #3

/(*)

On a ainsi

0 (ic oo, 1 + < « < #v+1)

!im/ffilWi-TiW 0f
x->0 / (#) dx

et le critère B d'Ermakof avec la fonction conjuguée Y2 (x) x4

est applicable à la série E/(v).

IX. Les fonctions conjuguées auxquelles x -f- 1 est subordonné.

En second lieu Ermakof donne à l'endroit cité l'énoncé
suivant :

«De deux fonctions conjuguées de première espèce la plus
grande est celle qui donne le caractère le plus sensible de convergence
ou de divergence. »
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Or cet énoncé est de même inexact. Nous allons construire

une fonction conjuguée Y (x)qui, pour x > 3, est partout > 2,

et telle que pour f(x)=x(lg )2

(*„ — l)2 + 1

te + 1)* + 1

x„ — 1 « + 1

le critère B de convergence d'Ermakof est applicable avec la
fonction conjuguée x2et ne l'est pas avec la fonction conjuguée
Y (x).

A cet effet posons

10 v Xv 32 320 v (v 1, 2,

et considérons la courbe y x2, + 1 ^ 3) qui est situé au-
dessus de y x2. Pour obtenir la courbe y Y (#) nous poserons
Y (#) + 1 pour x>3 en dehors de tout intervalle fermé
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< xv — 1, 1 + #v )>. Quant aux intervalles <( xv — 1, 1 + xv >

nous y définirons Y (x) comme une fonction continue, constamment

croissante et douée d'une dérivée continue, telle qu'on ait
(x) > x2 4- 1 (x 3) et

Y (av — 1) (xv — + 1 Y (av + 1) (av -f 1)H 1

Y' (a;v — 1) 2 (sv — 1) Y7 (xv + 1) 2 (bv + 1)

T(*v) *v + 2 Y'K) V
On remplace donc l'arc correspondant de la courbe y — x2 1

par un arc qui est tangent à y x2 -f- 1 aux points # ± 1,

qui passe par le point (#v, 2 -f et y a une tangente à coefficient

angulaire Xv. On voit immédiatement qu'il est possible de

trouver un tel arc en étudiant la figure ci-contre. En effet, pour
qu'il soit possible de construire cet arc de y — Y (x) situé entre
les abscisses xv — 1 et 1 -f- #v, il suffit que l'arc correspondant
de y x2 + 1 soit convexe d'en bas et que l'on ait

Y (a:v — < Y (sv) < Y (xv + 1)

On a pour notre fonction / (x) :

f fo2) 2%
__ x(lgx)2 • 2x _ / > o\

f(x) x*(lgx2)2 2 1*=^-

Donc le critère de convergence B d'Ermakof est satisfait pour
la fonction conjuguée x2. D'autre part, on a

/('F(.xv))Y'(.r;)
_

/(2 + ^)XVf(*v)/ (*»)

_
a:v (k32 32 a2 (/g a:v)2

_
(2 + xl)(lg(2+ *2))2

>
2x2(Zga^)2

et le critère B de convergence d'Ermakof n'est pas satisfait par
la fonction conjuguée Y (x).

Toutefois, il est possible d'établir quelques énoncés dans cet
ordre d'idées. Nous nous bornerons dans cette discussion au
critère B de convergence et supposerons que / (x) est une fonction
non croissante de x.



CRITÈRES DE CONVERGENCE ET DIVERGENCE 251

Nous dirons alors qu'une fonction conjuguée Y (x) est

subordonnée à une fonction Yx (x) si, pour une fonction f (x)

positive et non croissante, l'inégalité

i(x)

entraîne toujours l'inégalité

— /(Yi(*)) Y>)lim — < lf(x)

La fonction conjuguée la plus simple étant x + 1, il est

naturel de se demander à quelles fonctions conjuguées Y (x) elle
est subordonnée. Tout d'abord x + 1 est subordonné à x + a

(a > 1). En effet, puisqu'on a par hypothèse:

/ (x + oc) < / (x + 1)

on a évidemment

f(x+ «)
< f{x+ 1)

_

/ (x) f (x)

Plus généralement, si pour la fonction conjuguée Y (x) on a
à partir d'un x:

Y (x) — x > 1 "îîm" (x) < 1
00

x + 1 est subordonné à Y (x). En effet, on a d'après les
hypothèses que nous avons faites

X~> oo / (x) X->oo f {x) X->oo f [x)

Un autre énoncé relatif à la fonction conjuguée x + 1 est le
suivant :

x + 1 est subordonné à une fonction conjuguée Y {x) si Von a

Y («) — x» [x co lim Y ^ < o
X~> 00 JL [Xj X —

En effet, supposons que l'on ait pour >

f(x+ï)
/(*)

L'Enseignement mathém., t. I, fasc. 4.

< q e < 1
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Alors on a pour tout entier positif :

f(x + ") < .-en
/(*) '

Or, soit n[Y (x) — x]. On obtient

/(Y(x)) rw s /(* + ») Y'(») ^ e-E[T(x)-x]. T,f(x)-f(x) -
D'autre part, on a à partir d'un x

donc

lgr'(x) «], Y' (x) <e2

rw/ \ i --PF(X)-X]
e~zmx)~x] .^'(x)<e2 0 C.Q.F.D.

X. Les fonctions conjuguées auxquelles est subordonné.

Nous allons maintenant établir une condition suffisante

pour que xk (k > 1) soit subordonné à la fonction conjuguée
Y (x) pour chaque k :

Si la jonction conjuguée Y (x) satisfait aux deux conditions

Y' (x) _ lg x / vw 0 ' t~\ *-° (x * 00) (x> *)
-Y (a;) (ZgYÇc))1+8

' lglg^(x)

pour chaque S > 0, la jonction conjuguée xk est subordonnée à

Y (x) pour chaque k > 1.

Démonstration. — On a à partir d'un x

f (xh) k ,k-i
< q e s < 1;

f(x)

il en résulte pour chaque entier positif n

t(X 2)
xf(x)

Or, choisissons l'entier n en fonction de x de façon que l'on ait

xhn+l >Y(*) > Xhn (X, 3)
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