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248 A. OSTROWSKI

En second lieu, si 1 + 2, <2 < x,,4, 2* sera situé dans Pin-
tervalle (z,,, z,,) de sorte qu’on aura

-f (xv+1)

) = s T
donc
flat) da® 41 (%)
f (x) (8"2+2*’+1 lg va) zf(z)’

et, puisqu’on a en tout cas

@)
Fle) 2 (8 ig z,) =’
il vient
f () 4a® _ f(%,11) (8"2“ lg xv) A _ f(z,) 8, .
fl) = (8"2”‘”ri lgz,.) f (%) (2-8lg o) T (@)

Or, on a évidemment pour v —

g, o hlgz, , [(2) < (%)

done
f(3;4()x[;x3—>0 (—>00o, 1+z, <z<z,).
On a ainsi

lim !

et le critére B d’Ermakof avec la fonction conjuguée ¥, () = x4
est applicable a la série Xf(v).

IX. Les fonctions conjuguées auxquelles x | 1 est subordonné.

En second lieu Ermakof donne a D’endroit cité 1’énoncé

suivant:
«De deux fonctions conjuguées de premiére espéce la plus
grande est celle qut donne le caractére le plus sensible de convergence

ou de divergence. »
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Or cet énoncé est de méme inexact. Nous allons construire
une fonction conjuguée ¥ (x) qui, pour x = 3, est partout > x2,
et telle que pour

(x, + 1)* + 1

z, —1 x x + 1

le critére B de convergence d’Ermakof est applicable avec la
fonction conjuguée 22 et ne I’est pas avec la fonction conjuguée
W (x).

A cet effet posons

z, = 10v, X, =82z, =320y (v=1,2,..)

et considérons la courbe y = 2% 4- 1 (x = 3) qui est situé au-
dessus de y = 22. Pour obtenir la courbe y = ¥ (x) nous poserons
Y (z) = 2% + 1 pour z = 3 en dehors de tout intervalle fermé
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gy —1,1 -+ x,>. Quant aux intervalles {x, — 1,1 + z,>
nous y définirons W (z) comme une fonction continue, constam-
ment croissante et douée d’une dérivée continue, telle qu’'on ait
V(x) = a2 4 1(x = 3) et

¥(w,—1) = (z,— 1)+ 1, ¥(z,+ 1)': (z, + 1) + 1,

P (2, — 1) = 2 (z,— 1), ¥ (z, + 1) = 2 (z, + 1),

I

¥ (z,) =2 + 2, ¥ (z) =%, .

On remplace donc ’arc correspondant de la courbe y = 22 + 1
par un arc qui est tangent a y = 2% 4 1 aux points x = 2, + 1,
qui passe par le point (z,, 2 + z2) et y a une tangente a coeffi-
cient angulaire %,. On voit immeédiatement qu’il est possible de
trouver un tel arc en étudiant la figure ci-contre. En effet, pour
qu’il soit possible de construire cet arc de y = ¥ (x) situé entre
les abscisses x, — 1 et 1 + «,, 1l suffit que I'arc correspondant
de y = 2% + 1 soit convexe d’en bas et que 'on ait

‘P’(xv—1) < ‘F(xv) < ‘P’(xv -4 1).

On a pour notre fonction f(x):

fla?) 22  x(lga)®- 22 1 -
o~ wewer oz 2

Donc le critére de convergence B d’Ermakof est satisfait pour
la fonction conjuguée x2. D’autre part, on a

FrENY (@) _12+)%
f(=) - =)
z,(lgz,)? 32, 3222 (lg z,)°
- (2 + x%) (lg (2 + x%))2 = 23:3 (lg:cif)2 -

?

et le critéere B de convergence d’Ermakof n’est pas satisfait par
la fonction conjuguée Y (x).

Toutefois, il est possible d’établir quelques énoncés dans cet
ordre d’idées. Nous nous bornerons dans cette discussion au
critére B de convergence et supposerons que f (z) est une fonction
non croissante de x.
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Nous dirons alors qu’une fonction conjuguée ¥ (z) est
subordonnée a une fonction W, (z) si, pour une fonction f(x)
positive et non croissante, 1'inégalité

T 107 (@) ¥ (2]

1
S I
entraine toujours I'inégalité
T 1 (2) 7, () ed.
2> 00 /()

La fonction conjuguée la plus simple étant 2 + 1, il est
naturel de se demander a quelles fonctions conjuguées ¥ (z) elle
est subordonnée. Tout d’abord z + 1 est subordonné & z 4+ «
(e > 1). En effet, puisqu’on a par hypothese:

fle+ o) =flz+ 1)
on a évidemment
fla+ o flz+1)
f (z) f (z)

Plus généralement, si pour la fonction conjuguée ¥ (x) on a
a partir d’un z:

(IA

Vi) —zz=1, lIm ¥ (z)<1

frot )
X—>

x + 1 est subordonné & W (z). En effet, on a d’aprés les hypo-
theses que nous avons faites |

T 10 (@) ¥ (0) _ T 0¥ (@) _ e fle 1)

Un autre énoncé relatif & la fonction conjuguée z 4 1 est le
suivant:

x + 1 est subordonné a une fonction conjuguée ¥ (x) si l'on a

Vi) —2—> o (£ —> o) lim lg ¥ (z)

—_— <
el = panget-L

En effet, supposons que I'on ait pour z > z,

ﬂ?—(_;)—g—)éq:e_s<1.

L’Enseignement mathém., t. I, fasc. 4. 4
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Alors on a pour tout entier positif n:

fle 4+ n) _ —en

fla ="
Or, soit n =[¥ () — z]. On obtient

[ () ¥ () _ flx + n) ¥’ (2)
/(@) flz)

D’autre part, on a a partir d’'un «

< & e-s[‘I"(x)—x] L (x) )

1A

e = [ (x)-a]

lgW (@) = £[¥(a) —al, W(a) ¢ ,

donec

£ 5
—51¥ (x)—x]
eV @-x1 g () < ¢ 2 — >0, C.Q.F.D.

X. Les fonctions conjuguées auxquelles xk est subordonné.

Nous allons maintenant établir une condition suffisante
pour que z*(k > 1) soit subordonné a la fonction conjuguée
YV (z) pour chaque k:

St la fonction conjuguée ¥ (x) satisfait aux deux conditions

¥ (z)
V¥ (z) (Ig ¥ (2))'"®

lgx
lglg VW (z)

— 0, —> 0 (2 —> ») (X, 1)

pour chaque 8 > 0, la fonction conjuguée x* est subordonnée a
Y (x) pour chaque k > 1.
Démonstration. — On a a partir d’un x

f (%) k2!
f (@)

il en résulte pour chaque entier positif n

Sqg=€°<1;

f (xkn) AL xhn

z f ()

Or, choisissons I’entier n en fonction de x de fagon que l'on ait

< e, (X, 2)

n+1
xh

> W (z) > o . (X, 3)




	IX. Les fonctions conjuguées auxquelles x + 1 est subordonné.

