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=1,
la série

>
v
est divergente.

b) Si f(x) est mesurable et positive a partir d’'un x et reste
uniformément borné dans chaque sous-intervalle fini de Uin-
tervalle de définition de f(x) et s'il existe un nombre 3,
0 <3<, tel qua partir d’un x,

F (Y (2) T ()
f(z)

<3, 0<8<1,

la série
Z f(v)

est convergente.

VI. Le critéere B d’ Ermakof
et les critéres de premiére espéce.

Quelle est la portée du critére B d’Ermakof comparée a celle
des critéres connus ? On trouve souvent ['assertion que le
critéere B d’Ermakof (avec W (r) = €*) « embrasse» tous les
critéres de la série logarithmique de MorGaN-BERTRAND. Or
ceci n’est vral qu’en partie.

Si 'on considére les critéres de premiére espéce dans lesquels
a, est comparé avec différentes fonctions de 'index v, le critére B
d’Ermakof n’est pas méme plus efficace que le critére de Cauchy
portant sur f/ a,.

En effet, nous allons construire une fonection f(z) positive,
continue, non croissante et tendant vers 0 avec x — o0, telle

que 'on a

fla) =™ (xz1), (VI, 1)
(™) ™
Z—j—(;v)—————>oo (2 —> ) (VI, 2)

e o]

pour une suite z, tendant vers I'infini. Alors la série O f (v) est

v=1
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convergente et le critére de Cauchy sur i'/ a,_v est applicable
tandis que le critére du théoréme B ne s’applique pas.
Posons a cet effet

Zo=A, a, @ —e’+1 (=12 .).
Définissons f (x) dans I'intervalle { z,, & > par

flz) = ¢ v (xv <z=<ev).

Quant a P'intervalle de longueur un entre e* et z,,4 = e~ 4+ 1,
la fonction f (x) y est définie comme fonction linéaire et continue
dans tout I'intervalle fermé {e™v, x4 >: -

—X.

™ )=t ¢t —ne™ (0=<1<1).

Alors f (x) sera positive, continue et non croissante. Pour tout = -
de l'intervalle  z,, z,., > elle est au plus égale a

f(xv) — e—x\H—i i 8_x

—— ?

d’ou (VI, 1).
D’autre part, on a d’aprés la définition de f (x) pour v — oo
. HE) &
f(e )——-f(xv), —}——(-:-t-v-)-——ze —> 0,

c¢’est-a-dire (VI, 2).
Nous montrerons dans la section suivante qu’il n’en est plus
de méme pour les critéres de seconde espéce portant sur le
a
: 1
quotient —=,
a

v

Nous allons d’abord faire quelques observations sur les séries
de MorGAN-BERTRAND. Nous désignerons par lg, x (k =1, 2, ...)
la k-1éme 1térée du lgzx, c’est-a-dire

lgox = 2, lg,x = lgx, ..., lgon:lg(lgnx),... (n =1,2,..).

En plus, nous poserons
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Les séries de MorcAN-BERTRAND ont alors la forme

2 b ) (VI, 3)
lgi-l—s v

V=V,

et sont convergentes pour s > 0 et divergentes pour s = 0.
On a évidemment

L, () = ¢e*L, (z)lg, yz (n=1,2,.), (VI, &)

donc, en posant ¢ (x) = M
b p CP —' lg?l:-sx *

® (ex) e* lg:fs x
¢ (x) lg) 4z

(VI, 5)

Or, pour x — o, cette expression tend vers oo pour s =<0,
et vers O pour s > 0. On voit que le critére B d’Ermakof avec
Y () = e* permet de décider immédiatement la question de
la convergence ou divergence des séries de MORGAN-BERTRAND.

Quel sera le résultat si ’on pose ¥ (x) = 2*(k > 1) ? On a
évidemment les relations

_ lg k
k xk ! L2 (xk) = L2 (.’L‘) ’ lg2 (xk) = (1 + l;z x) lng)ﬁ 9
done
L, (z*) k 271 1. 1ok \—1-s
e die” [l _ (yy Jskye, V1, 6)
lgs («") lgy " x 82 %

(VI, 6) tend vers un pour x — o, de sorte que le critére B
de convergence pour s > 0 est en défaut pour les séries de
MorGAN-BERTRAND correspondant a n = 2. (VI, 6) est < 1 pour
s > — 1l etn’est > 1 que pour s < — 1. Le critére B d’Ermakof
ne permet donc de prouver la divergence des séries de MORGAN-
BERTRAND correspondant & n = 2 que pour s = — 1. D’autre
part, il résulte immédiatement des relations

k xk—i x1+s )1+s

= k=S

_ ](' x—S(k—l) ]f xh"i X (lg x
.’I:k(HS) ? .’Ilh (Ii' lg x)1+s
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que pour n =0 et n =1 la question de la convergence (ou
divergence) des séries de MORGAN-BERTRAND est complétement
résolue par le critére B d’Ermakof avec W (z) = z* (k> 1).

VII. Le critéere B d’Ermakof et les critéres de seconde espéce.

Les critéres de seconde espéce reposent sur le fait que si
I'on a
Ayt _ Syt

=
aV c\J

(av’cv>0; V:1,2,...),

la convergence de X ¢, entraine celle de X a,, donc la divergence
de X a, entraine la divergence de Z¢,. On obtient les différentes
formes de ce critére par un choix convenable des «séries de
comparaison »: la série convergente Xc, ou la série divergente
za,

Or si les a, et les ¢, convergent vers 0 en décroissant, le prin-
cipe suivant est « en général » valable:

St la convergence de la série de comparaison Xc, s’obtient au
moyen d’'un critére B d’ Ermakof avec la fonction conjuguée ¥V (x),
le méme critére d’ Ermakof assure directement la convergence de
2a, St la divergence de la série Xa, s’obtient au moyen d'un
critere B d’Ermakof, ce méme critére assure aussi la divergence
de Xc,. _

Toutefois, pour les énoncés précis, il faut utiliser des hypo-
théses supplémentaires. Nous dirons d’une fonction f(x) non
nulle a partir d’'un z, qu’elle posséde la propriété E si Uon a

lim [+ 9)

X—> 0 f (.12)

=1 (VIL, 1)

uniformément par rapport a 6 pour l 6 ] =1
Avec cette notion, nous allons démontrer le lemme suivant:
Lemme. — Soient f (x) et g (x) deux fonctions positives pour
X = Xy, dont U'une au moins jouit de la propriété E, tandis que
Pautre est ou bien non croissante, ou bien jouit de la propriété E.
Sotent W (x), @ (x) deux fonctions positives pour x > x, avec
¥ (x) = x + 1. Alors si Uon a pour tout entier v > n,:
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